Seed-Germination Ecology of Vicia villosa Roth, a Cover Crop in Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Collection and Preparation
2.2. General Seed-Germination Test
2.3. Effect of Temperature on Seed Germination
2.4. Effect of Photoperiods on Seed Germination
2.5. Effect of pH on Seed Germination
2.6. Effects of Osmotic Stress and Salt Stress on Seed Germination
2.7. Effect of Burial Depth on Seedling Emergence
2.8. Statistical Analysis
3. Results and Discussion
3.1. Effect of Temperature on Seed Germination
3.2. Effect of Photoperiods on Seed Germination
3.3. Effect of pH on Seed Germination
3.4. Effects of Osmotic Stress on Seed Germination
3.5. Effect of Salt Stress on Seed Germination
3.6. Effect of Burial Depth on Seedling Emergence
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, J.G.; Wang, S. The harm and comprehensive control of weeds in orchard. Shanxi Fruit Tree 2004, 4, 27–29. [Google Scholar]
- Tursun, N.; Işık, D.; Demir, Z.; Jabran, K. Use of living, mowed, and soil-incorporated cover crops for weed control in apricot orchards. Agronomy 2018, 8, 105. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.Z.; Huang, Y.Z.; Zhang, L.L.; Liu, W.T.; Wang, J.X. Japanese foxtail (Alopecurus japonicus) management in wheat in China: Seed germination, seedling emergence, and response to herbicide treatments. Weed Technol. 2018, 32, 211–220. [Google Scholar] [CrossRef]
- John, R.T.; Aref, A.A.B. Soil temperature and tomato growth associated with black polyethylene and hairy vetch mulches. J. Am. Soc. Hortic. Sci. 1995, 120, 848–853. [Google Scholar]
- Chen, X.; Zhang, R.; Wang, Y.; Wang, N.; Jiang, S.; Xu, H.; Liu, J.; Wang, D.; Qu, C.; Zhang, Y.; et al. Effects of growing hairy vetch (Vicia villosa) on the soil nutrient, enzyme activities and microorganisms in apple orchard. Acta Hortic. Sin. 2016, 43, 2325–2334. [Google Scholar]
- Chen, L. Crop sequences for sustaining soil resources in China. Int. Crop Sci. I 1993, 8, 49–53. [Google Scholar]
- Liu, S.S.; Rao, A.; Vinson, S. Biological control in China: Past, present and future -an introduction to this special issue. Biol. Control 2014, 68, 5. [Google Scholar] [CrossRef]
- Kamo, T.; Hiradate, S.; Fujii, Y. First isolation of natural cyanamide as a possible allelochemical from hairy vetch Vicia villosa. J. Chem. Ecol. 2003, 29, 275–283. [Google Scholar] [CrossRef]
- Teasdale, J.R.; Devine, T.E.; Mosjidis, J.A.; Bellinder, R.R.; Beste, C.E. Growth and development of hairy vetch cultivars in the Northeastern United States as influenced by planting and harvesting date. Agron. J. 2004, 96, 1266–1271. [Google Scholar] [CrossRef]
- Mischler, R.; Duiker, S.W.; Curran, W.S.; Wilson, D. Hairy vetch management for no-till organic corn production. Agron. J. 2010, 102, 355–362. [Google Scholar] [CrossRef]
- Zhou, X.G.; Everts, K.L. Suppression of fusarium wilt of watermelon by soil amendment with hairy vetch. Plant Dis. 2004, 88, 1357–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spargo, J.T.; Cavigelli, M.A.; Mirsky, S.B.; Meisinger, J.J.; Ackroyd, V.J. Organic supplemental nitrogen sources for field corn production after a hairy vetch cover crop. Agron. J. 2016, 108, 1992–2002. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, S.B.; Ackroyd, V.J.; Cordeau, S.; Curran, W.S.; Hashemi, M.; Reberg-Horton, S.C.; Ryan, M.R.; Spargo, J.T. Hairy vetch biomass across the Eastern United States: Effects of latitude, seeding sate and date, and termination timing. Agron. J. 2017, 109, 1510–1519. [Google Scholar] [CrossRef]
- Sievers, T.; Cook, R.L. Aboveground and root decomposition of cereal rye and hairy vetch cover crops. Soil Sci. Soc. Am. J. 2018, 82, 147–155. [Google Scholar] [CrossRef]
- Thapa, R.; Poffenbarger, H.; Tully, K.L.; Ackroyd, V.J.; Kramer, M.; Mirsky, S.B. Biomass production and nitrogen accumulation by hairy vetch-cereal rye mixtures: A meta-analysis. Agron. J. 2018, 110, 1197–1208. [Google Scholar] [CrossRef] [Green Version]
- Pott, L.P.; Amado, T.J.C.; Schwalbert, R.A.; Gebert, F.H.; Reimche, G.B.; Pes, L.Z.; Ciampitti, I.A. Effect of hairy vetch cover crop on maize nitrogen supply and productivity at varying yield environments in Southern Brazil. Sci. Total Environ. 2021, 759, 144313. [Google Scholar] [CrossRef]
- Abbad, A.; Belaqziz, R.; Bekkouche, K.; Markouk, M. Influence of temperature and water potential on laboratory germination of two Moroccan endemic thymes: Thymus maroccanus Ball. and Thymus broussonetii Boiss. Afr. J. Agron. Res. 2011, 6, 4740–4745. [Google Scholar]
- Baskin, C.C.; Baskin, J.M. Seeds: Ecology, biogeography, and evolution of dormancy and germination; Elsevier/Academic: San Diego, CA, USA, 1998. [Google Scholar]
- Chauhan, B.S.; Gill, G.; Preston, C. African mustard (Brassica tournefortii) germination in southern Australia. Weed Sci. 2006, 54, 891–897. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. The role of seed ecology in improving weed management strategies in the tropics. Adv. Agron. 2010, 105, 221–262. [Google Scholar]
- Fallahi, H.R.; Mohammadi, M.; Aghhavani-Shajari, M.; Ranjbar, F. Determination of germination cardinal temperatures in two basil (Ocimum basilicum L.) cultivars using non-linear regression models. J. Appl. Res. Med. Aroma Plants 2015, 2, 140–145. [Google Scholar] [CrossRef]
- Guan, B.; Zhou, D.; Zhang, H.; Tian, Y.; Japhet, W.; Wang, P. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature. J. Arid Environ. 2009, 73, 135–138. [Google Scholar] [CrossRef]
- Laghmouchi, Y.; Belmehdi, O.; Bouyahya, A.; Skali Senhaji, N.; Abrini, J. Effect of temperature, salt stress and pH on seed germination of medicinal plant Origanum compactum. Biocatal Agron. Biotechnol. 2017, 10, 156–160. [Google Scholar] [CrossRef]
- Tolyat, M.A.; Afshari, R.T.; Jahansoz, M.R.; Nadjafi, F.; Naghdibadi, H.A. Determination of cardinal germination temperatures of two ecotypes of Thymus daenensis subsp. daenensis. Seed Sci. Technol. 2014, 42, 28–35. [Google Scholar] [CrossRef]
- Vleeshouwers, L.M.; Bouwmeester, H.J.; Karssen, C.M. Redefining seed dormancy: An attempt to integrate physiology and ecology. J. Ecol. 1995, 83, 1031–1037. [Google Scholar] [CrossRef] [Green Version]
- Javaid, M.M.; Tanveer, A. Germination ecology of Emex spinosa and Emex australis, invasive weeds of winter crops. Weed Res. 2014, 54, 565–575. [Google Scholar] [CrossRef]
- Ramin, A.A. Effects of salinity and temperature on germination and seedling establishment of Sweet Basil (Ocimum basilicum L.). J. Herbs Spices Med. Plants 2006, 11, 81–90. [Google Scholar] [CrossRef]
- Merino-Martín, L.; Courtauld, C.; Commander, L.; Turner, S.; Lewandrowski, W.; Stevens, J. Interactions between seed functional traits and burial depth regulate germination and seedling emergence under water stress in species from semi-arid environments. J. Arid Environ. 2017, 147, 25–33. [Google Scholar] [CrossRef]
- Iqbal, N.; Manalil, S.; Chauhan, B.S.; Adkins, S.W. Germination biology of sesbania (Sesbania cannabina): An emerging weed in the Australian cotton agro-environment. Weed Sci. 2019, 67, 68–76. [Google Scholar] [CrossRef]
- Chauhan, B.S.; Johnson, D.E. Germination ecology of goosegrass (Eleusine indica): An important grass weed of rainfed rice. Weed Sci. 2008, 56, 699–706. [Google Scholar] [CrossRef]
- Li, Q.; Tan, J.; Li, W.; Yuan, G.; Du, L.; Ma, S.; Wang, J. Effects of environmental factors on seed germination and emergence of Japanese brome (Bromus japonicus). Weed Sci. 2015, 63, 641–646. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Xu, H.L.; Dong, L.Y. Factors affecting seed germination and seedling emergence of Asia minor bluegrass (Polypogon fugax). Weed Sci. 2015, 63, 440–447. [Google Scholar] [CrossRef]
- Wang, H.Z.; Wang, L.P.; Bai, S.; Guo, W.L.; Wang, J.X.; Liu, W.T. Germination ecology of giant chickweed (Myosoton aquaticum). Weed Sci. 2020, 68, 619–626. [Google Scholar] [CrossRef]
- Michel, B.E.; Radcliffe, D.A. Computer Program relating solute potential to solution composition for five solutes. Agron. J. 1995, 87, 126–130. [Google Scholar] [CrossRef]
- Ungar, I.A. Ecophysiology of Vascular Halophytes; CRC Press: Boca Raton, FL, USA, 1991. [Google Scholar]
- Mahmood, A.H.; Florentine, S.K.; Chauhan, B.S.; McLaren, D.A.; Palmer, G.C.; Wright, W. Influence of various environmental factors on seed germination and seedling emergence of a noxious environmental weed: Green galenia (Galenia pubescens). Weed Sci. 2016, 64, 486–494. [Google Scholar] [CrossRef]
- Ding, B.; Gu, X.; Miao, Q. Characteristics in the variation of temperature over the Yangtze River valley over last 50 years. Resour. Environ. Yangtze Basin 2006, 15, 531–536. [Google Scholar]
- Chu, L.; Gao, Y.; Chen, L.; McCullough, P.E.; Jespersen, D.; Sapkota, S.; Li, X.; Yu, J. Impacts of environmental factors on seed germination and seedling emergence of white clover (Trifolium repens L.). Agronomy 2022, 12, 190. [Google Scholar] [CrossRef]
- Baxter, L.L.; Grey, T.L.; Tucker, J.J.; Hancock, D.W. Optimizing temperature requirements for clover seed germination. Agrosys. Geosci. Environ. Inter. 2019, 2, 1–7. [Google Scholar] [CrossRef]
- Butler, T.J.; Celen, A.E.; Webb, S.L.; Krstic, D.; Interrante, S.M. Temperature affects the germination of forage legume seeds. Crop Sci. 2014, 54, 2846–2853. [Google Scholar] [CrossRef] [Green Version]
- Kendall, W.A.; Stringer, W.C. Physiological aspects of clover. In Clover Science and Technology; Taylor, N.L., Ed.; ASA, CSSA, SSSA: Madison, WI, USA, 1985; Volume 25, pp. 111–116. [Google Scholar]
- Sun, R.; Jiang, L.; Gong, Q.; Wu, H.; Jiang, E. Planting management and effect of mixed grass in deciduous orchard. Spec. Econ. Anim. Plant 2020, 23, 45–47. [Google Scholar]
- Chauhan, B.S.; Gill, G.; Preston, C. Influence of environmental factors on seed germination and seedling emergence of rigid ryegrass (Lolium rigidum). Weed Sci. 2006, 54, 1004–1012. [Google Scholar] [CrossRef]
- López-Granados, F.; Lutman, P.J.W. Effect of environmental conditions on the dormancy and germination of volunteer oilseed rape seed (Brassica napus). Weed Sci. 1998, 46, 419–423. [Google Scholar] [CrossRef]
- Chen, S.; Liang, Z.; Webster, R.; Zhang, G.; Zhou, Y.; Teng, H.; Hu, B.; Arrouays, D.; Shi, Z. A high-resolution map of soil pH in China made by hybrid modelling of sparse soil data and environmental covariates and its implications for pollution. Sci. Total Environ. 2019, 655, 273–283. [Google Scholar] [CrossRef]
- Boyd, N.S.; Brennan, E.B.; Fennimore, S.A. Stale seedbed techniques for organic vegetable production. Weed Technol. 2006, 20, 1052–1057. [Google Scholar] [CrossRef]
- Karta, K.K.; Bekele, A. Influence of seed priming on seed germination and vigor traits of Vicia villosa ssp. dasycarpa (Ten.). Afr. J. Agr. Res. 2012, 7, 3202–3208. [Google Scholar]
- Benech-Arnold, R.L.; Sánchez, R.A.; Forcella, F.; Kruk, B.C.; Ghersa, C.M. Environmental control of dormancy in weed seed banks in soil. Field Crop Res. 2000, 67, 105–122. [Google Scholar] [CrossRef]
- Varier, A.; Vari, A.K.; Dadlani, M. The sub-cellular basis of seed priming. Curr. Sci. 2010, 99, 450–456. [Google Scholar]
- Rao, N.; Dong, L.Y.; Li, J.; Zhang, H.J. Influence of environmental factors on seed germination and seedling emergence of American sloughgrass (Beckmannia syzigachne). Weed Sci. 2008, 56, 529–533. [Google Scholar] [CrossRef]
- Lv, X.S.; Zhang, L.L.; Li, Q.; Zhao, K.P.; Wang, J.X. Influence of environmental factors on seed germination and seedling emergence of Capsella bursa-pastoris. Chin. Agron. Sci. Bull. 2017, 33, 68–72. [Google Scholar]
- Fernandez-Quinantilla, C.; Andujar, J.L.G.; Appleby, A.P. Characterization of the germination and emergence response to temperature and soil moisture of Avena fatua and A. sterilis. Weed Res. 1990, 30, 289–295. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, P.; Singh, S.; Singh, R.; Singh, V.P.; Prasad, S.M. Effect of salinity stress on plants and its tolerance strategies: A review. Environ. Sci. Pollut. R. 2015, 22, 4056–4075. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Irfan, M.; Ahmad, A.; Hayat, S. Causes of salinity and plant manifestations to salt stress: A review. J. Environ. Biol. 2011, 32, 667–685. [Google Scholar] [PubMed]
- Abrol, I.; Yadav, J.S.P.; Massoud, F. Salt-Affected Soils and Their Management; Food & Agriculture Organization of the United Nations: Rome, Italy, 1988. [Google Scholar]
- Sun, A.; Liu, X.; Pan, B. Application of orchard grass-growing technology in improving soil conditions of winter jujube orchard in saline-alkali land. Anhui Agron. Sci. Bull. 2019, 25, 100–102, 109. [Google Scholar]
- Benvenuti, S. Soil texture involvement in germination and emergence of buried weed seeds. Agron. J. 2003, 95, 191–198. [Google Scholar] [CrossRef]
- Ghaderi-Far, F.; Gherekhloo, J.; Alimagham, M. Influence of environmental factors on seed germination and seedling emergence of yellow sweet clover (Melilotus officinalis). Planta Daninha 2010, 28, 463–469. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, S.M.; Boyd, N.S. Black medic (Medicago lupulina) germination response to temperature and osmotic potential, and a novel growing degree-day accounting restriction for heat-limited germination. Weed Sci. 2019, 67, 246–252. [Google Scholar] [CrossRef]
- Yu, J.; Sharpe, S.M.; Boyd, N.S. Germination and emergence of common beggar’s-tick (Bidens alba) seeds at two different stages of afterripening as affected by environmental factors. Weed Sci. 2020, 68, 503–509. [Google Scholar] [CrossRef]
Temperature (°C) | Onset of Germination a (d) | Total Germination a (%) (SE) | t50 a,b (d) |
---|---|---|---|
5 | 2 b | 93.0 (1.0) a | 3.03 a |
10 | 2 b | 93.0 (2.2) a | 2.55 ab |
15 | 1 d | 94.0 (1.4) a | 2.04 bc |
20 | 1 d | 95.0 (1.0) a | 1.78 c |
25 | 1 d | 94.5 (0.9) a | 2.04 bc |
30 | 1 d | 93.0 (2.2) a | 2.03 bc |
35 | 3 a | 24.5 (1.7) c | NE c |
5/15 | 2 b | 93.5 (3.0) a | 2.04 bc |
10/20 | 1.5 c | 93.0 (2.2) a | 2.03 bc |
15/25 | 1 d | 94.5 (1.7) a | 1.04 d |
20/30 | 2 b | 93.0 (1.0) a | 1.06 d |
25/35 | 2 b | 37.0 (2.2) b | NE |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Sun, R.; Lu, X.; Jin, T.; Peng, X.; Zhang, N.; Wang, J.; Wang, H.; Liu, W. Seed-Germination Ecology of Vicia villosa Roth, a Cover Crop in Orchards. Agronomy 2022, 12, 2488. https://doi.org/10.3390/agronomy12102488
Yang C, Sun R, Lu X, Jin T, Peng X, Zhang N, Wang J, Wang H, Liu W. Seed-Germination Ecology of Vicia villosa Roth, a Cover Crop in Orchards. Agronomy. 2022; 12(10):2488. https://doi.org/10.3390/agronomy12102488
Chicago/Turabian StyleYang, Cheng, Ruihong Sun, Xingtao Lu, Tao Jin, Xuegang Peng, Na Zhang, Jinxin Wang, Hengzhi Wang, and Weitang Liu. 2022. "Seed-Germination Ecology of Vicia villosa Roth, a Cover Crop in Orchards" Agronomy 12, no. 10: 2488. https://doi.org/10.3390/agronomy12102488
APA StyleYang, C., Sun, R., Lu, X., Jin, T., Peng, X., Zhang, N., Wang, J., Wang, H., & Liu, W. (2022). Seed-Germination Ecology of Vicia villosa Roth, a Cover Crop in Orchards. Agronomy, 12(10), 2488. https://doi.org/10.3390/agronomy12102488