Species-Specific and Altitude-Induced Variation in Karst Plants’ Use of Soil Dissolved Inorganic Carbon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design
2.3. Leaf Gas-Exchange Measurements
2.4. Air and Soil Sampling
2.5. Determination of Carbon Isotope Composition
2.6. Quantification of the Utilization of Soil DIC by Plants
2.7. Statistical Analysis
3. Results
3.1. Leaf Gas Exchange
3.2. Characteristics of Soil DIC and CO2
3.3. δ13C of Photosynthates
3.4. Interspecies Difference in fDIC_soil
3.5. Variations in fDIC_soil at Different Altitudes
4. Discussion
4.1. Isotope Evidence for the Utilization of Soil DIC by Karst Plants
4.2. Interspecies Difference in Plants’ Use of Soil DIC
4.3. Effect of Altitude on Plants’ Use of DIC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonacci, O.; Pipan, T.; Culver, D.C. A framework for karst ecohydrology. Environ. Geol. 2009, 56, 891–900. [Google Scholar] [CrossRef]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef] [Green Version]
- Yuan, D.X. On the karst ecosystem. Acta Geol. Sin.-Engl. Ed. 2001, 75, 336–338. [Google Scholar]
- Wang, S.; Liu, Q.; Zhang, D. Karst rocky desertification in southwestern China: Geomorphology, landuse, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Cao, J.; Yuan, D.; Tong, L.; Azim, M.; Yang, H.; Huang, F. An overview of karst ecosystem in southwest china: Current state and future management. J. Resour. Ecol. 2015, 6, 247–256. [Google Scholar]
- Yu, F.; Huang, X.; Liang, Q.; Yao, P.; Li, X.; Liao, Z.; Duan, C.; Zhang, A.; Shao, H. Ecological water demand of regional vegetation: The example of the 2010 severe drought in Southwest China. Plant Biosyst. 2015, 149, 100–110. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Li, G.; Zheng, Y.; Yu, L.; Yang, R. Comparative ecophysiological responses to drought of two shrub and four tree species from karst habitats of southwestern China. Trees 2011, 25, 537–549. [Google Scholar] [CrossRef]
- Sevanto, S.; McDowell, N.G.; Dickman, L.T.; Pangle, R.; Pockman, W.T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 2014, 37, 153–161. [Google Scholar] [CrossRef]
- Rowland, L.; da Costa, A.C.; Galbraith, D.R.; Oliveira, R.S.; Binks, O.J.; Oliveira, A.A.; Pullen, A.M.; Doughty, C.E.; Metcalfe, D.B.; Vasconcelos, S.S.; et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 2015, 528, 119–122. [Google Scholar] [CrossRef] [Green Version]
- Msilini, N.; Attia, H.; Bouraoui, N.; M’rah, S.; Ksouri, R.; Lachaâl, M.; Ouerghi, Z. Responses of Arabidopsis thaliana to bicarbonate-induced iron defciency. Acta Physiol. Plant. 2009, 31, 849–853. [Google Scholar] [CrossRef]
- Du, Y.; Pan, G.; Li, L.; Hu, Z.; Wang, X. Leaf N/P ratio and nutrient reuse between dominant species and stands: Predicting phosphorus deficiencies in karst ecosystems, southwestern China. Environ. Earth Sci. 2011, 64, 299–309. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, H.; Wang, H.; Peng, J.; Meersmans, J.; Green, S.; Quine, T.A.; Wu, X.; Song, Z. Bedrock geochemistry influences vegetation growth by regulating the regolith water holding capacity. Nat. Commun. 2020, 11, 2392. [Google Scholar] [CrossRef]
- Wang, R.; Wu, Y.; Xing, D.; Hang, H.; Xie, X.; Yang, X.; Zhang, K.; Rao, S. Biomass production of three biofuel energy plants’ use of a new carbon resource by carbonic anhydrase in simulated karst soils: Mechanism and capacity. Energies 2017, 10, 1370. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Hong, W.; Chen, Y. Leaf physiological and anatomical characteristics of two indicator species in the limestone region of southern China under drought stress. Pak. J. Bot. 2018, 50, 1335–1342. [Google Scholar]
- Bloemen, J.; Teskey, R.O.; McGuire, M.A.; Aubrey, D.P.; Steppe, K. Root xylem CO2 flux: An important but unaccounted-for component of root respiration. Trees 2016, 30, 343–352. [Google Scholar] [CrossRef]
- Shimono, H.; Kondo, M.; Evans, J.R. Internal transport of CO2 from the root-zone to plant shoot is pH dependent. Physiol. Plant. 2019, 165, 451–463. [Google Scholar] [CrossRef]
- Tarvainen, L.; Wallin, G.; Linder, S.; Nasholm, T.; Oren, R.; Löfvenius, M.O.; Rantfors, M.; Tor-Ngern, P.; Marshall, J.D. Limited vertical CO2 transport in stems of mature boreal Pinus sylvestris trees. Tree Physiol. 2020, 41, 63–75. [Google Scholar] [CrossRef] [PubMed]
- Salomon, R.L.; De Roo, L.; Bodé, S.; Boeckx, P.; Steppe, K. Efflux and assimilation of xylem-transported CO2 in stems and leaves of tree species with different wood anatomy. Plant Cell Environ. 2021, 44, 3494–3508. [Google Scholar] [CrossRef] [PubMed]
- Aubrey, D.P.; Teskey, R.O. Root-derived CO2 efflux via xylem stream rivals soil CO2 efflux. New Phytol. 2009, 184, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Ford, C.R.; Wurzburger, N.; Hendrick, R.L.; Teskey, R.O. Soil DIC uptake and fixation in Pinus taeda seedlings and its C contribution to plant tissues and ectomycorrhizal fungi. Tree Physiol. 2007, 27, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.; Wu, Y.; Wang, R. Bicarbonate stimulates non-structural carbohydrate pools of Camptotheca acuminata. Physiol. Plant. 2019, 165, 780–789. [Google Scholar] [CrossRef]
- Liang, F.; Yang, W.; Xu, L.; Ji, L.; He, Q.; Wu, L.; Ran, Y.; Yan, S. Closing extra CO2 into plants for simultaneous CO2 fixation, drought stress alleviation and nutrient absorption enhancement. J. CO2 Util. 2020, 42, 101319. [Google Scholar] [CrossRef]
- Simkin, A.J.; Faralli, M.; Ramamoorthy, S.; Lawson, T. Photosynthesis in non-foliar tissues: Implications for yield. Plant J. 2020, 101, 1001–1015. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, D. Effect of bicarbonate treatment on photosynthetic assimilation of inorganic carbon in two plant species of Moraceae. Photosynthetica 2012, 50, 587–594. [Google Scholar] [CrossRef]
- Hang, H.; Wu, Y. Quantification of photosynthetic inorganic carbon utilisation via a bidirectional stable carbon isotope tracer. Acta Geochim. 2016, 35, 130–137. [Google Scholar] [CrossRef]
- Rao, S.; Wu, Y. Root-derived bicarbonate assimilation in response to variable water deficit in Camptotheca acuminata seedlings. Photosynth. Res. 2017, 134, 59–70. [Google Scholar] [CrossRef]
- Valipour, M.; Khoshgoftarmanesh, A.H.; Baninasab, B. Physiological responses of hawthorn (Crataegus persica Pojark.) and quince (Cydonia oblonga Mill.) rootstocks to bicarbonate-induced iron deficiency in nutrient solution. J. Plant Nutr. Soil Sci. 2018, 181, 905–913. [Google Scholar] [CrossRef]
- Han, X.; Jing, Y.; Xu, C.; Gao, L.; Li, M.; Liu, Y.; Qi, H. Root-zone CO2 concentration affects partitioning and assimilation of carbon in oriental melon seedlings. Int. J. Mol. Sci. 2022, 23, 10694. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y. The increase in the karstification–photosynthesis coupled carbon sink and its implication for carbon neutrality. Agronomy 2022, 12, 2147. [Google Scholar] [CrossRef]
- Göttlicher, S.; Knohl, A.; Wanek, W.; Buchmann, N.; Richter, A. Short-term changes in carbon isotope composition of soluble carbohydrates and starch: From canopy leaves to the root system. Rapid Commun. Mass Spectrom. 2006, 20, 653–660. [Google Scholar] [CrossRef]
- Yang, Y.; Siegwolf, R.T.; Körner, C. Species specific and environment induced variation of δ13C and δ15N in alpine plants. Front. Plant Sci. 2015, 6, 423. [Google Scholar] [CrossRef] [Green Version]
- Cernusak, L.A.; Ubierna, N.; Winter, K.; Holtum, J.A.; Marshall, J.D.; Farquhar, G.D. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 2013, 200, 950–965. [Google Scholar] [CrossRef]
- Marshall, J.D.; Dawson, T.E.; Ehleringer, J.R. Integrated nitrogen, carbon, and water relations of a xylem-tapping mistletoe following nitrogen fertilization of the host. Oecologia 1994, 100, 430–438. [Google Scholar] [CrossRef]
- Rao, S.; Wu, Y. Comparison of physiological and morphological traits of Platycarya longipes in different slope locations in karst area. Earth Environ. 2017, 45, 10–17. [Google Scholar]
- Zhang, Z.H.; Hu, G.; Ni, J. Effects of topographical and edaphic factors on the distribution of plant communities in two subtropical karst forests, southwestern China. J. Mt. Sci. 2013, 10, 95–104. [Google Scholar] [CrossRef]
- Brandes, E.; Kodama, N.; Whittaker, K.; Weston, C.; Rennenberg, H.; Keitel, C.; Adams, M.A.; Gessler, A. Short-term variation in the isotopic composition of organic matter allocated from the leaves to the stem of Pinus sylvestris: Effects of photosynthetic and postphotosynthetic carbon isotope fractionation. Glob. Chang. Biol. 2006, 12, 1922–1939. [Google Scholar] [CrossRef]
- Gessler, A.; Tcherkez, G.; Peuke, A.D.; Ghashghaie, J.; Farquhar, G.D. Experimental evidence for diel variations of the carbon isotope composition in leaf, stem and phloem sap organic matter in Ricinus communis. Plant Cell Environ. 2008, 31, 941–953. [Google Scholar] [CrossRef]
- Ghashghaie, J.; Badeck, F.W.; Girardin, C.; Sketriené, D.; Lamothe-Sibold, M.; Werner, R.A. Changes in δ13C of dark respired CO2 and organic matter of different organs during early ontogeny in peanut plants. Isot. Environ. Health Stud. 2015, 51, 93–108. [Google Scholar] [CrossRef]
- Yousfi, S.; Serret, M.D.; Araus, J.L. Comparative response of δ13C, δ18O and δ15N in durum wheat exposed to salinity at the vegetative and reproductive stages. Plant Cell Environ. 2013, 36, 1214–1227. [Google Scholar] [CrossRef]
- Studer, M.S.; Siegwolf, R.T.; Leuenberger, M.; Abiven, S. Multi-isotope labelling of organic matter by diffusion of 2H/18OH2O vapour and 13C-CO2 into the leaves and its distribution within the plant. Biogeosciences 2015, 12, 1865–1879. [Google Scholar] [CrossRef] [Green Version]
- Ruehr, N.K.; Offermann, C.A.; Gessler, A.; Winkler, J.B.; Ferrio, J.P.; Buchmann, N.; Barnard, R.L. Drought effects on allocation of recent carbon: From beech leaves to soil CO2 efflux. New Phytol. 2009, 184, 950–961. [Google Scholar] [CrossRef]
- Zuo, Y.; Ren, L.; Zhang, F.; Jiang, R. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil. Plant Physiol. Biochem. 2007, 45, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the relationship between carbon isotope discrimination and the intercellular carbon-dioxide concentration in leaves. Funct. Plant Biol. 1982, 9, 121–137. [Google Scholar] [CrossRef]
- Ubierna, N.; Holloway-Phillips, M.M.; Farquhar, G.D. Using stable carbon isotopes to study C3 and C4 photosynthesis: Models and calculations. In Photosynthesis; Humana Press: New York, NY, USA, 2018; pp. 155–196. [Google Scholar]
- Evans, J.R.; von Caemmerer, S. Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. 2013, 36, 745–756. [Google Scholar] [CrossRef]
- Ubierna, N.; Cernusak, L.A.; Holloway-Phillips, M.M.; Busch, F.A.; Cousins, A.B.; Farquhar, G.D. Critical review: Incorporating the arrangement of mitochondria and chloroplasts into models of photosynthesis and carbon isotope discrimination. Photosynth. Res. 2019, 141, 5–31. [Google Scholar] [CrossRef] [PubMed]
- Tcherkez, G. How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct. Plant Biol. 2006, 33, 911–920. [Google Scholar] [CrossRef]
- Gillon, J.; Yakir, D. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2. Science 2001, 291, 2584–2587. [Google Scholar] [CrossRef]
- Bernacchi, C.J.; Portis, A.R.; Nakano, H.; von Caemmerer, S.; Long, S.P. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 2002, 130, 1992–1998. [Google Scholar] [CrossRef] [Green Version]
- Teskey, R.O.; McGuire, M.A. Measurement of stem respiration of sycamore (Platanus occidentalis L.) trees involves internal and external fluxes of CO2 and possible transport of CO2 from roots. Plant Cell Environ. 2007, 30, 570–579. [Google Scholar] [CrossRef]
- Levy, P.E.; Meir, P.; Allen, S.J.; Jarvis, P.G. The effect of aqueous transport of CO2 in xylem sap on gas exchange in woody plants. Tree Physiol. 1999, 19, 53–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teskey, R.O.; Saveyn, A.; Steppe, K.; McGuire, M.A. Origin, fate and significance of CO2 in tree stems. New Phytol. 2008, 177, 17–32. [Google Scholar] [CrossRef]
- Bowling, D.R.; Pataki, D.E.; Randerson, J.T. Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol. 2008, 178, 24–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gessler, A.; Keitel, C.; Kodama, N.; Weston, C.; Winters, A.J.; Keith, H.; Grice, K.; Leuning, R.; Farquhar, G.D. δ13C of organic matter transported from the leaves to the roots in Eucalyptus delegatensis: Short-term variations and relation to respired CO2. Funct. Plant Biol. 2007, 34, 692–706. [Google Scholar] [CrossRef]
- Kodama, N.; Barnard, R.L.; Salmon, Y.; Weston, C.; Ferrio, J.P.; Holst, J.; Werner, R.A.; Saurer, M.; Rennenberg, H.; Buchmann, N.; et al. Temporal dynamics of the carbon isotope composition in a Pinus sylvestris stand: From newly assimilated organic carbon to respired carbon dioxide. Oecologia 2008, 156, 737–750. [Google Scholar] [CrossRef]
- Bathellier, C.; Badeck, F.W.; Ghashghaie, J. Carbon isotope fractionation in plant respiration. In Plant Respiration: Metabolic Fluxes and Carbon Balance; Springer: Cham, Switzerland, 2017; pp. 43–68. [Google Scholar]
- Ubierna, N.; Kumar, A.S.; Cernusak, L.A.; Pangle, R.E.; Gag, P.J.; Marshall, J.D. Storage and transpiration have negligible effects on δ13C of stem CO2 efflux in large conifer trees. Tree Physiol. 2009, 29, 1563–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahabi, A.; Malakouti, M.J.; Fallahi, E. Effects of bicarbonate content of irrigation water on nutritional disorders of some apple varieties. J. Plant Nutr. 2005, 28, 1663–1678. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Fernández, J.A.; Rubio, L.; Pérez, L.; Terés, J.; Barceló, J. Transport and use of bicarbonate in plants: Current knowledge and challenges ahead. Int. J. Mol. Sci. 2018, 19, 1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubbert, M.; Rascher, K.G.; Werner, C. Species-specific differences in temporal and spatial variation in δ13C of plant carbon pools and dark-respired CO2 under changing environmental conditions. Photosynth. Res. 2012, 113, 297–309. [Google Scholar] [CrossRef]
- Werner, C.; Gessler, A. Diel variations in the carbon isotope composition of respired CO2 and associated carbon sources: A review of dynamics and mechanisms. Biogeosciences 2011, 8, 2437–2459. [Google Scholar] [CrossRef] [Green Version]
- Sierra, C.A.; Ceballos-Núñez, V.; Hartmann, H.; Herrera-Ramírez, D.; Metzler, H. Ideas and perspectives: Allocation of carbon from net primary production in models is inconsistent with observations of the age of respired carbon. Biogeosciences 2022, 19, 3727–3738. [Google Scholar] [CrossRef]
- Gao, D.; Joseph, J.; Werner, R.A.; Brunner, I.; Zürcher, A.; Hug, C.; Wang, A.; Zhao, C.; Bai, E.; Meusburger, K.; et al. Drought alters the carbon footprint of trees in soils—Tracking the spatio-temporal fate of 13C-labelled assimilates in the soil of an old-growth pine forest. Glob. Chang. Biol. 2021, 27, 2491–2506. [Google Scholar] [CrossRef]
- Huang, J.; Hammerbacher, A.; Gershenzon, J.; van Dam, N.M.; Sala, A.; McDowell, N.G.; Chowdhury, S.; Gleixner, G.; Trumbore, S.; Hartmann, H. Storage of carbon reserves in spruce trees is prioritized over growth in the face of carbon limitation. Proc. Natl. Acad. Sci. USA 2021, 118, e2023297118. [Google Scholar] [CrossRef]
- Hilman, B.; Muhr, J.; Helm, J.; Kuhlmann, I.; Schulze, E.D.; Trumbore, S. The size and the age of the metabolically active carbon in tree roots. Plant Cell Environ. 2021, 44, 2522–2535. [Google Scholar] [CrossRef]
- Muhr, J.; Trumbore, S.; Higuchi, N.; Kunert, N. Living on borrowed time–Amazonian trees use decade-old storage carbon to survive for months after complete stem girdling. New Phytol. 2018, 220, 111–120. [Google Scholar] [CrossRef]
- Brændholt, A.; Ibrom, A.; Ambus, P.; Larsen, K.S.; Pilegaard, K. Combining a quantum cascade laser spectrometer with an automated closed-chamber system for δ13C measurements of forest soil, tree stem and tree root CO2 fluxes. Forests 2019, 10, 432. [Google Scholar] [CrossRef] [Green Version]
- Kuptz, D.; Fleischmann, F.; Matyssek, R.; Grams, T.E. Seasonal patterns of carbon allocation to respiratory pools in 60-yr-old deciduous (Fagus sylvatica) and evergreen (Picea abies) trees assessed via whole-tree stable carbon isotope labeling. New Phytol. 2011, 191, 160–172. [Google Scholar] [CrossRef] [PubMed]
- Diao, H.; Wang, A.; Yuan, F.; Guan, D.; Dai, G.; Wu, J. Environmental effects on carbon isotope discrimination from assimilation to respiration in a coniferous and broad-leaved mixed forest of Northeast China. Forests 2020, 11, 1156. [Google Scholar] [CrossRef]
- Bloemen, J.; McGuire, M.A.; Aubrey, D.P.; Teskey, R.O.; Steppe, K. Assimilation of xylem-transported CO2 is dependent on transpiration rate but is small relative to atmospheric fixation. J. Exp. Bot. 2013, 64, 2129–2138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stutz, S.S.; Hanson, D.T. Contribution and consequences of xylem-transported CO2 assimilation for C3 plants. New Phytol. 2019, 223, 1230–1240. [Google Scholar] [CrossRef]
- Jucker, T.; Hardwick, S.R.; Both, S.; Elias, D.M.; Ewers, R.M.; Milodowski, D.T.; Swinfield, T.; Coomes, D.A. Canopy structure and topography jointly constrain the microclimate of human-modified tropical landscapes. Glob. Chang. Biol. 2018, 24, 5243–5258. [Google Scholar] [CrossRef] [Green Version]
- Burgess, A.J.; Retkute, R.; Preston, S.P.; Jensen, O.E.; Pound, M.P.; Pridmore, T.P.; Murchie, E.H. The 4-dimensional plant: Effects of wind-induced canopy movement on light fluctuations and photosynthesis. Front. Plant Sci. 2016, 7, 1392. [Google Scholar] [CrossRef]
Altitudes | Sampling Sites | Elevation (m) | Species | |
---|---|---|---|---|
Tree | Shrub | |||
Lower | S1 | 1115 | L. lucidum, B. papyrifera | V. dilatatum, A. delavayana, R. cymosa |
S2 | 1123 | L. lucidum, B. papyrifera | A. delavayana, R. cymosa | |
Medium | S3 | 1224 | P. longipes, Z. serrata | V. dilatatum, A. delavayana |
S4 | 1229 | L. lucidum, P. longipes, Z. serrata | A. delavayana, R. cymosa | |
Higher | S5 | 1289 | P. longipes | V. dilatatum, A. delavayana, Z. armatum, R. biflorus |
S6 | 1292 | L. lucidum | A. delavayana, Z. armatum, R. biflorus |
Species | A (μmol m−2 s−1) | gs (mol m−2 s−1) | E (mol H2O m−2 s−1) | ci/ca | WUEi (μmol H2O mol−1) |
---|---|---|---|---|---|
L. lucidum | 11.07 (0.72) C | 0.14 (0.01) D | 3.38 (0.20) CD | 0.60 (0.01) C | 3.30 (0.14) BCD |
B. papyrifera | 18.24 (0.92) A | 0.28 (0.01) A | 3.67 (0.19) BCD | 0.67 (0.01) AB | 4.98 (0.13) A |
P. longipes | 9.99 (0.59) C | 0.19 (0.02) BCD | 3.81 (0.16) ABCD | 0.72 (0.02) A | 2.71 (0.23) D |
Z. serrata | 13.91 (0.27) B | 0.21 (0.01) BC | 3.95 (0.25) ABCD | 0.67 (0.01) AB | 3.61 (0.22) B |
V. dilatatum | 10.58 (0.47) C | 0.18 (0.01) CD | 3.59 (0.11) CD | 0.70 (0.01) AB | 2.96 (0.13) CD |
A. delavayana | 13.39 (0.47) B | 0.24 (0.01) AB | 4.58 (0.26) A | 0.70 (0.01) AB | 3.11 (0.18) BCD |
R. cymosa | 9.81 (0.50) C | 0.16 (0.02) CD | 3.23 (0.22) D | 0.65 (0.03) BC | 3.10 (0.11) BCD |
Z. armatum | 14.07 (1.03) B | 0.21 (0.02) BC | 4.18 (0.27) ABC | 0.66 (0.02) AB | 3.42 (0.24) BC |
R. biflorus | 13.54 (0.41) B | 0.21 (0.01) BC | 4.46 (0.13) AB | 0.68 (0.01) AB | 3.04 (0.10) BCD |
Factors | fDIC_soil | |
---|---|---|
r | p | |
A | 0.287 | 0.003 |
gs | −0.122 | 0.210 |
E | −0.096 | 0.325 |
ci/ca | −0.486 | <0.001 |
WUEi | 0.350 | <0.001 |
C_DIC | 0.053 | 0.586 |
δDIC | −0.100 | 0.306 |
δWSOM | −0.155 | 0.105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, S.; Wu, Y. Species-Specific and Altitude-Induced Variation in Karst Plants’ Use of Soil Dissolved Inorganic Carbon. Agronomy 2022, 12, 2489. https://doi.org/10.3390/agronomy12102489
Rao S, Wu Y. Species-Specific and Altitude-Induced Variation in Karst Plants’ Use of Soil Dissolved Inorganic Carbon. Agronomy. 2022; 12(10):2489. https://doi.org/10.3390/agronomy12102489
Chicago/Turabian StyleRao, Sen, and Yanyou Wu. 2022. "Species-Specific and Altitude-Induced Variation in Karst Plants’ Use of Soil Dissolved Inorganic Carbon" Agronomy 12, no. 10: 2489. https://doi.org/10.3390/agronomy12102489
APA StyleRao, S., & Wu, Y. (2022). Species-Specific and Altitude-Induced Variation in Karst Plants’ Use of Soil Dissolved Inorganic Carbon. Agronomy, 12(10), 2489. https://doi.org/10.3390/agronomy12102489