The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents
Abstract
:1. Introduction
2. Material and Methods
2.1. Chemicals and Reagents
2.2. Preparation of Plant Extract
2.3. Synthesis of Cobalt Monometallic NPs
2.4. Synthesis of Cobalt–Zinc Bimetallic NPs
2.5. Characterization of Synthesized NPs
2.6. Antioxidant Potential
2.7. DPPH Free Radical Scavenging Activity
2.8. Total Phenolic Contents
2.9. Total Antioxidant Activity
2.10. Adsorption of MB Dye
2.11. Evaluation of Anti-Inflammatory Activity
3. Results and Discussion
3.1. Synthesis of NPs
3.2. Characterization of Synthesized NPs
Sr. | FWHM | Β | θ | D = Kλ/β cosθ | Average D (nm) |
---|---|---|---|---|---|
1. | 0.29 | 0.0051 | 15.07 | 25.59 | 22.77 |
2. | 0.31 | 0.0054 | 17.76 | 23.67 | |
3. | 0.29 | 0.0051 | 21.59 | 24.37 | |
4. | 0.32 | 0.0057 | 28.55 | 20.78 | |
5. | 0.34 | 0.0059 | 31.35 | 19.44 |
Sr. | FWHM | Β | 2θ | θ | D = Kλ/β cosθ | Average D (nm) |
---|---|---|---|---|---|---|
1. | 0.49 | 0.0086 | 29.99 | 14.99 | 15.49 | 14.87 |
2. | 0.56 | 0.0098 | 35.95 | 17.97 | 13.37 | |
3. | 0.39 | 0.0069 | 43.96 | 21.98 | 18.54 | |
4. | 0.52 | 0.0091 | 58.12 | 29.06 | 13.30 | |
5. | 0.49 | 0.0087 | 62.22 | 31.11 | 13.64 |
3.3. Antioxidant Potential
DPPH Free Radical Scavenging Activity
3.4. Total Phenolic Contents
3.5. Total Antioxidant Activity
3.6. Adsorption of Dyes
3.6.1. Adsorption of MB Dye
3.6.2. Effect of Temperature
3.7. Effect of pH
3.8. Effect of Contact Time on Adsorbent Doses
3.9. Effect of Dye Concentration
3.10. Evaluation of Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Annu; Ikram, S.; Yudha, S. Biosynthesis of gold NPs: A green approach. J. Photochem. Photobiol. B Biol. 2016, 161, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Munir, S.; Zeb, N.; Ullah, A.; Khan, B.; Ali, J.; Bilal, M.; Omer, M.; Alamzeb, M.; Salman, S.M. Green nanotechnology: A review on green synthesis of silver NPs—An ecofriendly approach. Int. J. Nanomed. 2019, 14, 5087–5107. [Google Scholar] [CrossRef] [Green Version]
- Akinsiku, A.A.; Dare, E.O.; Ajanaku, K.O.; Ajani, O.O.; Olugbuyiro, J.A.O.; Siyanbola, T.O.; Ejilude, O.; Emetere, M.E. Modeling and synthesis of Ag and Ag/Ni allied bimetallic NPs by green method: Optical and biological properties. Int. J. Biomater. 2018, 2018, 9658080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bala, N.; Saha, S.; Chakraborty, M.; Maiti, M.; Das, S.; Basu, R.; Nandy, P. Green synthesis of zinc oxide NPs using Hibiscus subdariffa leaf extract: Effect of temperature on synthesis, anti-bacterial activity and anti-diabetic activity. RSC Adv. 2014, 5, 4993–5003. [Google Scholar] [CrossRef]
- Boukhatem, M.N.; Ferhat, M.A.; Kameli, A.; Saidi, F.; Kebir, H.T. Lemon grass (Cymbopogon citratus) essential oil as a potent anti-inflammatory and antifungal drugs. Lib. J. Med. 2014, 9, 25431. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Sun, Y.; Liu, W.; Pan, F.; Sun, P.; Fu, J. An overview of nanomaterials applied for removing dyes from wastewater. Environ. Sci. Pollut. Res. 2017, 24, 15882–15904. [Google Scholar] [CrossRef] [PubMed]
- Dawood, S.; Sen, T.K. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: Equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012, 46, 1933–1946. [Google Scholar] [CrossRef]
- Fakhari, S.; Jamzad, M.; Fard, H.K. Green synthesis of zinc oxide NPs: A comparison. Green Chem. Lett. Rev. 2019, 12, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Figueirinha, A.; Paranhos, A.; Pérez-Alonso, J.J.; Santos-Buelga, C.; Batista, M.T. Cymbopogon citratus leaves: Characterization of flavonoids by HPLC–PDA–ESI/MS/MS and an approach to their potential as a source of bioactive polyphenols. Food Chem. 2008, 110, 718–728. [Google Scholar] [CrossRef]
- Francisco, V.; Figueirinha, A.; Costa, G.; Liberal, J.; Lopes, M.C.; García-Rodríguez, C.; Geraldes, C.F.; Cruz, M.T.; Batista, M.T. Chemical characterization and anti-inflammatory activity of luteolin glycosides isolated from lemongrass. J. Funct. Foods 2014, 10, 436–443. [Google Scholar] [CrossRef]
- Fujimoto, T.; Mizukoshi, Y.; Nagata, Y.; Maeda, Y.; Oshima, R. Sonolytical preparation of various types of metal NPs in aqueous solution. Scr. Mater. 2001, 44, 2183–2186. [Google Scholar] [CrossRef]
- Guo, K.W. Green nanotechnology of trends in future energy: A review. Int. J. Energy Res. 2011, 36, 1–17. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Mekanik, H. Plants in Nanoparticle Synthesis. Rev. Adv. Sci. Eng. 2014, 3, 261–274. [Google Scholar] [CrossRef]
- Kayani, Z.N.; Saleemi, F.; Batool, I. Effect of calcination temperature on the properties of ZnO NPs. Appl. Phys. A 2015, 119, 713–720. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, S.; Srivastava, B.; Bhadouria, R.; Singh, R. Green synthesis of silver NPs using leaf extract of Holoptelea integrifolia and preliminary investigation of its antioxidant, anti-inflammatory, antidiabetic and antibacterial activities. J. Environ. Chem. Eng. 2019, 7, 103094. [Google Scholar] [CrossRef]
- Lee, K.-G.; Shibamoto, T. Antioxidant property of aroma extract isolated from clove buds [Syzygium aromaticum (L.) Merr. et Perry]. Food Chem. 2001, 74, 443–448. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Blümmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agric. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Malaikozhundan, B.; Vaseeharan, B.; Vijayakumar, S.; Thangaraj, M.P. Bacillus thuringiensis coated zinc oxide nanoparticle and its biopesticidal effects on the pulse beetle, Callosobruchus maculatus. J. Photochem. Photobiol. B Biol. 2017, 174, 306–314. [Google Scholar] [CrossRef]
- Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic NPs using plant extracts. Biotechnol. Adv. 2013, 31, 346–356. [Google Scholar] [CrossRef]
- Mohamad, N.A.N.; Arham, N.A.; Jai, J.; Hadi, A. Plant Extract as Reducing Agent in Synthesis of Metallic NPs: A Review. Adv. Mater. Res. 2013, 832, 350–355. [Google Scholar] [CrossRef]
- Nagajyothi, P.; An, T.N.M.; Sreekanth, T.; Lee, J.-I.; Lee, D.J.; Lee, K. Green route biosynthesis: Characterization and catalytic activity of ZnO NPs. Mater. Lett. 2013, 108, 160–163. [Google Scholar] [CrossRef]
- Nandi, B.; Goswami, A.; Purkait, M. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef]
- Nourmoradi, H.; Nikaeen, M.; Hajian, M.K. Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chem. Eng. J. 2012, 191, 341–348. [Google Scholar] [CrossRef]
- Okwunodulu, F.U.; Chukwuemeka-Okorie, H.O.; Okorie, F.C. Biological synthesis of cobalt NPs from mangifera indica leaf extract and application by detection of manganese (II) ions present in industrial wastewater. Chem. Sci. Int. J. 2019, 27, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef]
- Rajakumar, G.; Thiruvengadam, M.; Mydhili, G.; Gomathi, T.; Chung, I.M. Green approach for synthesis of zinc oxide NPs from Andrographis paniculata leaf extract and evaluation of their antioxidant, anti-diabetic, and anti-inflammatory activities. Bioprocess Biosyst. Eng. 2017, 41, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Rajput, S.; Kumar, D.; Agrawal, V. Green synthesis of silver NPs using Indian Belladonna extract and their potential antioxidant, anti-inflammatory, anticancer and larvicidal activities. Plant Cell Rep. 2020, 39, 921–939. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, M.; Anbuvannan, M.; Viruthagiri, G. Green synthesis of ZnO NPs using Solanum nigrum leaf extract and their antibacterial activity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 864–870. [Google Scholar] [CrossRef]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3. [Google Scholar] [CrossRef]
- Santhoshkumar, T.; Rahuman, A.A.; Jayaseelan, C.; Rajakumar, G.; Marimuthu, S.; Kirthi, A.V.; Velayutham, K.; Thomas, J.; Venkatesan, J.; Kim, S.-K. Green synthesis of titanium dioxide NPs using Psidium guajava extract and its antibacterial and antioxidant properties. Asian Pac. J. Trop. Med. 2014, 7, 968–976. [Google Scholar] [CrossRef]
- Sorbiun, M.; Shayegan Mehr, E.; Ramazani, A.; Mashhadi Malekzadeh, A. Biosynthesis of metallic NPs using plant extracts and evaluation of their antibacterial properties. Nanochem. Res. 2018, 3, 1–16. [Google Scholar] [CrossRef]
- Stevanato, R.; Fabris, A.S.; Momo, F. New enzymatic method for the determination of total phenolic content in tea and wine. J. Agric. Food Chem. 2004, 52, 6287–6293. [Google Scholar] [CrossRef] [PubMed]
- Turakhia, B.; Turakhia, P.; Shah, S. Green synthesis of zero valent iron NPs from Spinacia oleracea (spinach) and its application in waste water treatment. J. Adv. Res. Appl. Sci. 2018, 5, 46–51. [Google Scholar]
- Uddin, S.; Bin Safdar, L.; Iqbal, J.; Yaseen, T.; Laila, S.; Anwar, S.; Abbasi, B.A.; Saif, M.S.; Quraishi, U.M. Green synthesis of nickel oxide NPs using leaf extract of Berberis balochistanica: Characterization, and diverse biological applications. Microsc. Res. Tech. 2021, 84, 2004–2016. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; He, F.; Li, L. Preparation of bimetallic NPs using a facile green synthesis method and their application. Langmuir 2013, 29, 4901–4907. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, H.; Tian, Y.; Chen, Z.; Han, L. Adsorption of methylene blue from aqueous solutions onto sintering process red mud. Desalination Water Treat. 2012, 47, 31–41. [Google Scholar] [CrossRef]
- Zhang, X.-F.; Liu, Z.-G.; Shen, W.; Gurunathan, S. Silver NPs: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
Sr. No. | Sample | Concentration in the Assay (µg/mL) | % Scavenging of DPPH Radical ± S.E.M |
---|---|---|---|
1000 | 70.02 ± 0.54 | ||
1. | Co NPs | 500 | 59.19 ± 0.43 |
250 | 38.01 ± 0.78 | ||
1000 | 75.85 ± 1.18 | ||
2. | Co-Zn Bimetallic NPs | 500 | 64.41 ± 1.30 |
250 | 39.5 ± 0.19 | ||
60 | 94 ± 0.13 | ||
3. | BHT | 30 | 73 ± 0.07 |
15 | 49 ± 0.06 |
Sample | DPPH-Radical Scavenging Activity (IC50; µg/mL) ± S.E.M | TPC (GAE mg/g of Sample) ± S.E.M | Total Antioxidant Activity ± S.E.M |
---|---|---|---|
Co NPs | 64.165 ± 0.79 | 70.25 ± 2 | 0.11 ± 0.02 |
Co-Zn Bimetallic NPs | 361.97 ± 0.233 | 82.4 ± 0.07 | 0.32 ± 0.007 |
BHT | 12.1 ± 0.91 | - | 0.70 ± 0.06 |
Blank | - | 4.8 ± 0.09 | - |
Treatments | Absorbance | Positive Control (Diclofenac) | % Inhibition of Protein Denaturation | % Anti-Inflammatory Activity |
---|---|---|---|---|
Co NPs | 0.24 | 0.31 | 20 | 1.5 |
Co-Zn Bimetallic NPs | 0.23 | 0.31 | 25 | 18.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riaz, T.; Nayyar, S.; Shahzadi, T.; Zaib, M.; Shahid, S.; Mansoor, S.; Javed, M.; Iqbal, S.; Al-Anazy, M.M.; B. Elkaeed, E.; et al. The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents. Agronomy 2022, 12, 2505. https://doi.org/10.3390/agronomy12102505
Riaz T, Nayyar S, Shahzadi T, Zaib M, Shahid S, Mansoor S, Javed M, Iqbal S, Al-Anazy MM, B. Elkaeed E, et al. The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents. Agronomy. 2022; 12(10):2505. https://doi.org/10.3390/agronomy12102505
Chicago/Turabian StyleRiaz, Tauheeda, Soha Nayyar, Tayyaba Shahzadi, Maria Zaib, Sammia Shahid, Sana Mansoor, Mohsin Javed, Shahid Iqbal, Murefah Mana Al-Anazy, Eslam B. Elkaeed, and et al. 2022. "The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents" Agronomy 12, no. 10: 2505. https://doi.org/10.3390/agronomy12102505
APA StyleRiaz, T., Nayyar, S., Shahzadi, T., Zaib, M., Shahid, S., Mansoor, S., Javed, M., Iqbal, S., Al-Anazy, M. M., B. Elkaeed, E., Pashameah, R. A., Alzahrani, E., & Farouk, A. -E. (2022). The Biogenic Synthesis of Cobalt Monometallic and Cobalt–Zinc Bimetallic Nanoparticles Using Cymbopogan citratus L. Leaf Extract and Assessment of Their Activities as Efficient Dye Removal and Antioxidant Agents. Agronomy, 12(10), 2505. https://doi.org/10.3390/agronomy12102505