A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals
Abstract
:1. Introduction
2. Phytoremediation and Its Main Strategies
- Phytoextraction is the process of accumulation or absorption by plants of environmental pollutants that accumulate in the plant but do not decompose. It is most often used to clean soil contaminated with heavy metals. The depth of soil cleaning is limited by the depth of the plant’s root system. Phytoextraction can remove metals such as Cr, Cd, Cu, Co, Ag, Zn, Ni, Mo, Pb, and Hg [22,25,26]. This method, unlike phytostabilization, removes contaminants from the soil and not only stabilizes it. This process includes such steps as mobilization of heavy metals in the rhizosphere, penetration of heavy metals into plant roots, absorption of heavy metals by the roots, their movement from the roots to the above-ground parts, and the sequestration and compartmentation of heavy metal ions in plant tissues. The key factors in phytoextraction are the correct selection of the plant, and for this, it is necessary to determine the phytoextraction potential, the accumulation capacity of metals, and the above-ground biomass of the species; therefore, there are phytoextraction techniques with a lower capacity for accumulation of metals [3,27,28,29].
- Phytostabilization is the immobilization of pollutants in the soil through the accumulation and absorption of heavy metals by the roots, where they transform into a non-toxic form. This method minimizes the leaching of pollutants by increasing the evapotranspiration of the system [29,30,31]. Plant growth restores soil activity. The advantage of this strategy is that it does not require the disposal of hazardous biomass [32]. The decisive point here is the choice of plants, as the roots play a major role in the immobilization of heavy metals and the stabilization of the soil structure [28,33,34,35,36].
- Phytodegradation is the process of decomposition of harmful pollutants in plant tissues by plant enzymes, as well as endocytic bacteria inhabiting internal plant tissues. Decreasing the concentration of metals may also occur outside the plant, due to the release of plant root enzymes, such as nitroreductase, oxidase, phosphatase, and nitrilase [37,38,39]. Phytodegradation is based on the secretion of natural substances by plants in the root zone, which in turn creates a breeding ground for microorganisms in the soil. These microorganisms initiate the natural degradation of toxic compounds, especially organic ones.
- Phytovolatilization is the process by which plants absorb pollutants from the soil, convert them into volatile particles, and then release these volatile chemicals into the atmosphere. The advantage of this method is that, unlike phytoextraction, phytovolatilization does not require the removal of contaminated plant organs. This method is quite effective in removing mercury [29,40]. The disadvantage of this strategy, however, is that it does not completely emit pollutants, but only transfers them from the soil to the atmosphere, where they can pollute the air or return to the soil along with rainfall [3,41,42].
- Rhizofiltration is a method in which the roots of plants absorb and collect pollutants from surface or groundwater, and this method is also suitable for coastal areas. In the process of rhizofiltration, it is possible to isolate Pb, Cd, Cu, Ni, Zn, and Cr from the environment. Once saturated with pollutants, such plants should be harvested [25,43].
- Phytoaccumulation is defined as the increase in microbial activity to degrade organic compounds by exudates from plant roots [44].
3. Plants and Phytoremediation
4. Methods of Increasing the Effectiveness of Phytoremediation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Boorboori, M.R.; Zhang, H.-Y. Arbuscular Mycorrhizal Fungi Are an Influential Factor in Improving the Phytoremediation of Arsenic, Cadmium, Lead, and Chromium. J. Fungi 2022, 8, 176. [Google Scholar] [CrossRef] [PubMed]
- Solomou, A.D.; Germani, R.; Proutsos, N.; Petropoulou, M.; Koutroumpilas, P.; Galanis, C.; Maroulis, G.; Kolimenakis, A. Utilizing Mediterranean Plants to Remove Contaminants from the Soil Environment: A Short Review. Agriculture 2022, 12, 238. [Google Scholar] [CrossRef]
- Raklami, A.; Meddich, A.; Oufdou, K.; Baslam, M. Plants—Microorganisms-Based Bioremediation for Heavy Metal Cleanup: Recent Developments, Phytoremediation Techniques, Regulation Mechanisms, and Molecular Responses. Int. J. Mol. Sci. 2022, 23, 5031. [Google Scholar] [CrossRef] [PubMed]
- Wolski, K.; Szymura, M.; Świerszcz, S.; Dradrach, A.; Talar-Krasa, M. The Effect of Sward Renovation Method, Forage Mixture and Fertilization on Grassland Yield on Sandy Soil. Acta Sci. Polonorum. Agric. 2017, 16, 99–106. [Google Scholar]
- Petrova, S.; Nikolov, B.; Velcheva, I.; Angelov, N.; Valcheva, E.; Katova, A.; Golubinova, I.; Marinov-Serafimov, P. Buffer Green Patches Around Urban Road Network as a Tool for Sustainable Soil Management. Land 2022, 11, 343. [Google Scholar] [CrossRef]
- Rai, P.K.; Panda, L.L.S. Dust Capturing Potential and Air Pollution Tolerance Index (APTI) of Some Road Side Tree Vegetation in Aizawl, Mizoram, India: An Indo-Burma Hot Spot Region. Air Qual. Atmos. Health 2014, 7, 93–101. [Google Scholar] [CrossRef]
- World Health Organisation (WHO). 7 Million Premature Deaths Annually Linked to Air Pollution. 2014. Available online: http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ (accessed on 10 July 2021).
- World Health Organisation (WHO). Air Pollution and Child Health: Prescribing Clean Air: Summary. 2018. Available online: https://apps.who.int/iris/bitstream/handle/10665/275545/WHO-CED-PHE-18.01-eng.pdf (accessed on 10 July 2021).
- Wolski, K.; Grabowski, K. Trawy w Rekultywacji Terenów Trudnych i Zdegradowanych; Uniwersytet Przyrodniczy w Lublinie: Urszulin, Poland, 2016; p. 144. [Google Scholar]
- Ahmadpur, P.; Ahmadpur, F.; Mahmoud, T.M.M.; Abdu, A.; Suleimani, M.; Tayefeh, F.H. Phytoremediation of Heavy Metals: A Green Technology. Afr. J. Biotechnol. 2012, 11, 14036–14043. [Google Scholar] [CrossRef]
- Stephenson, C.; Black, C.R. One Step Forward, Two Steps Back: The Evolution of Phytoremediation into Commercial Technologies. Biosci. Horiz. 2014, 7, hzu009. [Google Scholar] [CrossRef]
- Ehsan, S.; Ali, S.; Noureen, S.; Mahmood, K.; Farid, M.; Ishaque, W.; Shakoor, M.B.; Rizwan, M. Citric Acid Assisted Phytoremediation of Cadmium by Brassica napus L. Ecotoxicol. Environ. Saf. 2014, 106, 164–172. [Google Scholar] [CrossRef]
- Wolski, K.; Biernacik, M.; Grabowski, K. The Possibilities of Using Grasses in the Reclamation of Difficult and Degraded Area. Zesz. Nauk. Uniw. Przyr. We Wrocławiu Rol. 2018, 124, 47–62. [Google Scholar]
- Brooks, R.R. Phytochemistry of hyperaccumulators. In Plants that Hyperaccumulate Heavy Metals: Their Role in Phytoremediation, Microbiology, Archaeology, Mineral Exploration and Phytomining; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Cherian, S.; Oliveira, M.M. Transgenic Plants in Phytoremediation: Recent Advances and New Possibilities. Environ. Sci. Technol. 2005, 39, 9377–9390. [Google Scholar] [CrossRef]
- Singh, O.V.; Jain, R.K. Phytoremediation of Toxic Aromatic Pollutants from Soil. Appl. Microbiol. Biotechnol. 2003, 63, 128–135. [Google Scholar] [CrossRef]
- Huang, C.; Lai, C.; Xu, P.; Zeng, G.; Huang, D.; Zhang, J.; Zhang, C.; Cheng, M.; Wan, J.; Wang, R. Lead-Induced Oxidative Stress and Antioxidant Response Provide Insight into the Tolerance of Phanerochaete Chrysosporium to Lead Exposure. Chemosphere 2017, 187, 70–77. [Google Scholar] [CrossRef] [PubMed]
- Prakash, J. Plant growth promoting rhizobacteria in phytoremediation of environmental contaminants: Challenges and future prospects. In Bioremediation for Environmental Sustainability; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–218. ISBN 978-0-12-820318-7. [Google Scholar]
- Dubchak, S.; Bondar, O. Bioremediation and Phytoremediation: Best Approach for Rehabilitation of Soils for Future Use. In Remediation Measures for Radioactively Contaminated Areas; Gupta, D.K., Voronina, A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 201–221. ISBN 978-3-319-73397-5. [Google Scholar]
- Zand, A.D.; Nabibidhendi, G.; Mehrdadi, N.; Shirdam, R.; Tabrizi, A.M. Total Petroleum Hydrocarbon (TPHs) Dissipation through Rhizoremediation by Plant Species. Pol. J. Environ. Stud. 2010, 19, 115–122. [Google Scholar]
- Ashraf, S.; Ali, Q.; Zahir, Z.A.; Ashraf, S.; Asghar, H.N. Phytoremediation: Environmentally Sustainable Way for Reclamation of Heavy Metal Polluted Soils. Ecotoxicol. Environ. Saf. 2019, 174, 714–727. [Google Scholar] [CrossRef] [PubMed]
- Paz-Alberto, A.M.; Sigua, G.C. Phytoremediation: A Green Technology to Remove Environmental Pollutants. Am. J. Clim. Change 2013, 2, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.N.; Dushenkov, V.; Motto, H.; Raskin, I. Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils. Environ. Sci. Technol. 1995, 29, 1232–1238. [Google Scholar] [CrossRef]
- Kulyk, M.I.; Galytska, M.A.; Samoylik, M.S.; Zhornyk, I.I. Phytoremediation Aspects of Energy Crops Use in Ukraine. Agrology 2019, 2, 65–73. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency (Ed.) EPA/600/R-99/107: Introduction to Phytoremediation; EPA: Washington, DC, USA, 2002. [Google Scholar]
- Enitan, I.T.; Durowoju, O.S.; Edokpayi, J.N.; Odiyo, J.O. A Review of Air Pollution Mitigation Approach Using Air Pollution Tolerance Index (APTI) and Anticipated Performance Index (API). Atmosphere 2022, 13, 374. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of Heavy Metals—Concepts and Applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef]
- Marques, A.P.G.C.; Rangel, A.O.S.S.; Castro, P.M.L. Remediation of Heavy Metal Contaminated Soils: Phytoremediation as a Potentially Promising Clean-Up Technology. Crit. Rev. Environ. Sci. Technol. 2009, 39, 622–654. [Google Scholar] [CrossRef]
- Jan, A.T.; Ali, A.; Rizwanul Haq, Q.M. Phytoremediation. In Soil Remediation and Plants; Elsevier: Amsterdam, The Netherlands, 2015; pp. 63–84. ISBN 978-0-12-799937-1. [Google Scholar]
- Galal, T.M.; Gharib, F.A.; Ghazi, S.M.; Mansour, K.H. Phytostabilization of Heavy Metals by the Emergent Macrophyte Vossia Cuspidata (Roxb.) Griff.: A Phytoremediation Approach. Int. J. Phytoremediation 2017, 19, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, M.; Grobelak, A.; Grosser, A.; Prasad, M.N.V. Efficacy of Biosolids in Assisted Phytostabilization of Metalliferous Acidic Sandy Soils with Five Grass Species. Int. J. Phytoremediation 2014, 16, 593–608. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. Int. Sch. Res. Not. 2011, 2011, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.K.; Huang, H.G.; Corpas, F.J. Lead Tolerance in Plants: Strategies for Phytoremediation. Environ. Sci. Pollut. Res. 2013, 20, 2150–2161. [Google Scholar] [CrossRef]
- Padmavathiamma, P.; Li, L. Phytostabilisation—A Sustainable Remediation Technique for Zinc in Soils. Water Air Soil Pollut. Focus 2009, 9, 253–260. [Google Scholar] [CrossRef]
- Vangronsveld, J.; Van Assche, F.; Clijsters, H. Reclamation of a Bare Industrial Area Contaminated by Non-Ferrous Metals: In Situ Metal Immobilization and Revegetation. Environ. Pollut. 1995, 87, 51–59. [Google Scholar] [CrossRef]
- Zhang, X.; Xia, H.; Li, Z.; Zhuang, P.; Gao, B. Potential of Four Forage Grasses in Remediation of Cd and Zn Contaminated Soils. Bioresour. Technol. 2010, 101, 2063–2066. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, N.L.; Hoehamer, C.F. Enzymes used by plants and microorganisms to detoxify organic compounds. In A Wiley-Interscience Series of Texts and Monographs; McCutcheon, S.C., Schnoor, J.L., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2003; pp. 159–187. ISBN 978-0-471-39435-8. [Google Scholar]
- Weyens, N.; Thijs, S.; Popek, R.; Witters, N.; Przybysz, A.; Espenshade, J.; Gawronska, H.; Vangronsveld, J.; Gawronski, S. The Role of Plant–Microbe Interactions and Their Exploitation for Phytoremediation of Air Pollutants. Int. J. Mol. Sci. 2015, 16, 25576–25604. [Google Scholar] [CrossRef] [Green Version]
- Favas, P.J.C.; Pratas, J.; Varun, M.; D’Souza, R.; Paul, M. Phytoremediation of soils contaminated with metals and metalloids at mining areas: Potential of native flora. In Environmental Risk Assessment of Soil Contamination; Hernandez Soriano, M.C., Ed.; InTech: Rang-Du-Fliers, France, 2014; ISBN 978-953-51-1235-8. [Google Scholar]
- Surriya, O.; Sarah Saleem, S.; Waqar, K.; Gul, K.A. Phytoremediation of soils. In Soil Remediation and Plants; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–36. ISBN 978-0-12-799937-1. [Google Scholar]
- Suman, J.; Uhlik, O.; Viktorova, J.; Macek, T. Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci. 2018, 9, 1476. [Google Scholar] [CrossRef] [Green Version]
- Vangronsveld, J.; Herzig, R.; Weyens, N.; Boulet, J.; Adriaensen, K.; Ruttens, A.; Thewys, T.; Vassilev, A.; Meers, E.; Nehnevajova, E.; et al. Phytoremediation of Contaminated Soils and Groundwater: Lessons from the Field. Environ. Sci. Pollut. Res. 2009, 16, 765–794. [Google Scholar] [CrossRef] [PubMed]
- Mesjasz-Przybyłowicz, J.; Nakonieczny, M.; Migula, P.; Augustyniak, M.; Tarnawska, M.; Reimold, W.U.; Koeberl, C.; Przybyłowicz, W.; Głowacka, E. Uptake of Cadmium, Lead, Nickel and Zinc from Soil and Water Solutions by the Nickel Hyperaccumulator Berkheya coddii. Acta Biol. Crac. Ser. Bot. 2004, 46, 75–85. [Google Scholar]
- Ojuederie, O.; Babalola, O. Microbial and Plant-Assisted Bioremediation of Heavy Metal Polluted Environments: A Review. Int. J. Environ. Res. Public Health 2017, 14, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steliga, T.; Kluk, D. Assessment of the Suitability of Melilotus Officinalis for Phytoremediation of Soil Contaminated with Petroleum Hydrocarbons (TPH and PAH), Zn, Pb and Cd Based on Toxicological Tests. Toxics 2021, 9, 148. [Google Scholar] [CrossRef] [PubMed]
- Dalvi, A.A.; Bhalerao, S.A. Response of Plants towards Heavy Metal Toxicity: An Overview of Avoidance, Tolerance and Uptake Mechanism. Ann. Plant Sci. 2013, 2, 362–368. [Google Scholar]
- Gupta, D.K.; Vandenhove, H.; Inouhe, M. Role of phytochelatins in heavy metal stress and detoxification mechanisms in plants. In Heavy Metal Stress in Plants; Gupta, D.K., Corpas, F.J., Palma, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 73–94. ISBN 978-3-642-38468-4. [Google Scholar]
- Thakur, S.; Singh, L.; Wahid, Z.A.; Siddiqui, M.F.; Atnaw, S.M.; Din, M.F.M. Plant-Driven Removal of Heavy Metals from Soil: Uptake, Translocation, Tolerance Mechanism, Challenges, and Future Perspectives. Environ. Monit. Assess 2016, 188, 206. [Google Scholar] [CrossRef] [PubMed]
- Sarma, H. Metal Hyperaccumulation in Plants: A Review Focusing on Phytoremediation Technology. J. Environ. Sci. Technol. 2011, 4, 118–138. [Google Scholar] [CrossRef] [Green Version]
- Assunção, A.G.L.; Herrero, E.; Lin, Y.-F.; Huettel, B.; Talukdar, S.; Smaczniak, C.; Immink, R.G.H.; van Eldik, M.; Fiers, M.; Schat, H.; et al. Arabidopsis Thaliana Transcription Factors BZIP19 and BZIP23 Regulate the Adaptation to Zinc Deficiency. Proc. Natl. Acad. Sci. USA 2010, 107, 10296–10301. [Google Scholar] [CrossRef] [Green Version]
- McGrath, S.P.; Zhao, F.J. Phytoextraction of metals and metalloids from contaminated soils. Curr. Opin. Biotechnol. 2003, 14, 277–282. [Google Scholar] [CrossRef]
- Baker, A.J.M. Accumulators and Excluders -strategies in the Response of Plants to Heavy Metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Przybysz, A.; Popek, R.; Stankiewicz-Kosyl, M.; Zhu, C.; Małecka-Przybysz, M.; Maulidyawati, T.; Mikowska, K.; Deluga, D.; Griżuk, K.; Sokalski-Wieczorek, J.; et al. Where trees cannot grow—Particulate matter accumulation by urban meadows. Sci. Total Environ. 2021, 785, 147310. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, S.; Tian, Y.; Guo, W.; Wang, J. The Influence of Humic Acids on the Accumulation of Lead (Pb) and Cadmium (Cd) in Tabacco Leaves Grown in Different Soils. J. Soil Sci. Plant Nutr. 2013, 13, 43–53. [Google Scholar] [CrossRef]
- Anderson, T.A.; Guthrie, E.A.; Walton, B.T. Bioremediation in the Rhizosphere. Environ. Sci. Technol. 1993, 27, 2630–2636. [Google Scholar] [CrossRef]
- Mitchell, R.; Lee, D.K.; Casler, M. Switchgrass. In Cellulosic Energy Cropping Systems; Karlen, D.L., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2014; pp. 75–89. ISBN 978-1-118-67633-2. [Google Scholar]
- Pandey, V.C. Phytoremediation of Heavy Metals from Fly Ash Pond by Azolla Caroliniana. Ecotoxicol. Environ. Saf. 2012, 82, 8–12. [Google Scholar] [CrossRef]
- Barrutia, O.; Artetxe, U.; Hernández, A.; Olano, J.M.; García-Plazaola, J.I.; Garbisu, C.; Becerril, J.M. Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. Int. J. Phytoremediation 2011, 13, 256–270. [Google Scholar] [CrossRef]
- Waterlot, C.; Hechelski, M. Benefits of Ryegrass on Multicontaminated Soils Part 1: Effects of Fertilizers on Bioavailability and Accumulation of Metals. Sustainability 2019, 11, 5093. [Google Scholar] [CrossRef] [Green Version]
- Rizzi, L.; Petruzzelli, G.; Poggio, G.; Guidi, G.V. Soil Physical Changes and Plant Availability of Zn and Pb in a Treatability Test of Phytostabilization. Chemosphere 2004, 57, 1039–1046. [Google Scholar] [CrossRef]
- Leudo, A.M.; Cruz, Y.; Montoya-Ruiz, C.; Delgado, M.d.P.; Saldarriaga, J.F. Mercury Phytoremediation with Lolium Perenne-Mycorrhizae in Contaminated Soils. Sustainability 2020, 12, 3795. [Google Scholar] [CrossRef]
- Cruz, Y.; Villar, S.; Gutiérrez, K.; Montoya-Ruiz, C.; Gallego, J.L.; Delgado, M.d.P.; Saldarriaga, J.F. Gene Expression and Morphological Responses of Lolium perenne L. Exposed to Cadmium (Cd2+) and Mercury (Hg2+). Sci. Rep. 2021, 11, 11257. [Google Scholar] [CrossRef]
- Cruz, Y.; Carmago, G.; Gallego, J.L.; Saldarriaga, J.F. A Kinetic Modelling of the Growth Rate of Lolium Perenne for Phytotoxicity Bioassays. Chem. Eng. Trans. 2019, 74, 1441–1446. [Google Scholar] [CrossRef]
- Gajić, G.; Djurdjević, L.; Kostić, O.; Jarić, S.; Mitrović, M.; Stevanović, B.; Pavlović, P. Assessment of the Phytoremediation Potential and an Adaptive Response of Festuca rubra L. Sown on Fly Ash Deposits: Native Grass Has a Pivotal Role in Ecorestoration Management. Ecol. Eng. 2016, 93, 250–261. [Google Scholar] [CrossRef]
- Gu, H.-H.; Zhou, Z.; Gao, Y.-Q.; Yuan, X.-T.; Ai, Y.-J.; Zhang, J.-Y.; Zuo, W.-Z.; Taylor, A.A.; Nan, S.-Q.; Li, F.-P. The Influences of Arbuscular Mycorrhizal Fungus on Phytostabilization of Lead/Zinc Tailings Using Four Plant Species. Int. J. Phytoremediation 2017, 19, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Gamrat, R.; Stankowski, S.; Jaroszewska, A. Morphological Features of Plants on Ash Settling Ponds. Case Study. Plants 2021, 10, 616. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cui, T.; Niu, K.; Ma, H. Comparison and Characterization of Oxidation Resistance and Carbohydrate Content in Cd-Tolerant and-Sensitive Kentucky Bluegrass under Cd Stress. Agronomy 2021, 11, 2358. [Google Scholar] [CrossRef]
- Możdżeń, K.; Barabasz-Krasny, B.; Kviatková, T.; Zandi, P.; Turisová, I. Effect of Sorbent Additives to Copper-Contaminated Soils on Seed Germination and Early Growth of Grass Seedlings. Molecules 2021, 26, 5449. [Google Scholar] [CrossRef]
- Li, Y.; Becquer, T.; Quantin, C.; Benedetti, M.; Lavelle, P.; Dai, J. Effects of Heavy Metals on Microbial Biomass and Activity in Subtropical Paddy Soil Contaminated by Acid Mine Drainage. Acta Ecol. Sin. 2004, 24, 2430–2436. [Google Scholar]
- Bidar, G.; Garçon, G.; Pruvot, C.; Dewaele, D.; Cazier, F.; Douay, F.; Shirali, P. Behavior of Trifolium Repens and Lolium Perenne Growing in a Heavy Metal Contaminated Field: Plant Metal Concentration and Phytotoxicity. Environ. Pollut. 2007, 147, 546–553. [Google Scholar] [CrossRef]
- Ali, H.; Naseer, M.; Sajad, M.A. Phytoremediation of Heavy Metals by Trifolium Alexandrinum. Agris Line Pap. Econ. Inform. 2012, 2, 1459–1469. [Google Scholar] [CrossRef]
- Wu, F.; Fan, J.; Ye, X.; Yang, L.; Hu, R.; Ma, J.; Ma, S.; Li, D.; Zhou, J.; Nie, G.; et al. Unraveling Cadmium Toxicity in Trifolium repens L. Seedling: Insight into Regulatory Mechanisms Using Comparative Transcriptomics Combined with Physiological Analyses. Int. J. Mol. Sci. 2022, 23, 4612. [Google Scholar] [CrossRef]
- Pathak, B.; Khan, R.; Fulekar, J.; Fulekar, M.H. Biotechnological strategies for enhancing phytoremediation. In Biotechnology of Crucifers; Gupta, S.K., Ed.; Springer: New York, NY, USA, 2013; pp. 63–90. ISBN 978-1-4614-7794-5. [Google Scholar]
- Göhre, V.; Paszkowski, U. Contribution of the Arbuscular Mycorrhizal Symbiosis to Heavy Metal Phytoremediation. Planta 2006, 223, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Yan, A.; Wang, Y.; Tan, S.N.; Mohd Yusof, M.L.; Ghosh, S.; Chen, Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci. 2020, 11, 359. [Google Scholar] [CrossRef] [PubMed]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef] [PubMed]
- de Fátima Pedroso, D.; Barbosa, M.V.; dos Santos, J.V.; Pinto, F.A.; Siqueira, J.O.; Carneiro, M.A.C. Arbuscular Mycorrhizal Fungi Favor the Initial Growth of Acacia Mangium, Sorghum Bicolor, and Urochloa Brizantha in Soil Contaminated with Zn, Cu, Pb, and Cd. Bull. Env. Contam. Toxicol 2018, 101, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Parvin, S.; Van Geel, M.; Yeasmin, T.; Lievens, B.; Honnay, O. Variation in Arbuscular Mycorrhizal Fungal Communities Associated with Lowland Rice (Oryza sativa) along a Gradient of Soil Salinity and Arsenic Contamination in Bangladesh. Sci. Total Environ. 2019, 686, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Mallik, A.; Zhang, J.; Huang, Y.; Zhou, L. Effects of Arbuscular Mycorrhizal Fungi on Inoculated Seedling Growth and Rhizosphere Soil Aggregates. Soil Tillage Res. 2019, 194, 104340. [Google Scholar] [CrossRef]
- Wang, F.Y.; Wang, L.; Shi, Z.Y.; Li, Y.J.; Song, Z.M. Effects of AM Inoculation and Organic Amendment, Alone or in Combination, on Growth, P Nutrition, and Heavy-Metal Uptake of Tobacco in Pb-Cd-Contaminated Soil. J. Plant Growth Regul. 2012, 31, 549–559. [Google Scholar] [CrossRef]
- Salazar, M.J.; Menoyo, E.; Faggioli, V.; Geml, J.; Cabello, M.; Rodriguez, J.H.; Marro, N.; Pardo, A.; Pignata, M.L.; Becerra, A.G. Pb Accumulation in Spores of Arbuscular Mycorrhizal Fungi. Sci. Total Environ. 2018, 643, 238–246. [Google Scholar] [CrossRef]
- Prasad, M.N.V. Phytoremediation of Metal-Polluted Ecosystems: Hype for Commercialization. Russ. J. Plant Physiol. 2003, 50, 686–701. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Role of Hyperaccumulators in Phytoextraction of Metals from Contaminated Mining Sites: A Review. Crit. Rev. Environ. Sci. Technol. 2010, 41, 168–214. [Google Scholar] [CrossRef]
- Gupta, D.K.; Srivastava, A.; Singh, V.P. EDTA Enhances Lead Uptake and Facilitates Phytoremediation by Vetiver Grass. J. Environ. Biol. 2008, 29, 903–906. [Google Scholar]
- Sarwar, N.; Imran, M.; Shaheen, M.R.; Ishaque, W.; Kamran, M.A.; Matloob, A.; Rehim, A.; Hussain, S. Phytoremediation Strategies for Soils Contaminated with Heavy Metals: Modifications and Future Perspectives. Chemosphere 2017, 171, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials 2022, 12, 769. [Google Scholar] [CrossRef] [PubMed]
- Misra, M.; Ghosh Sachan, S. Nanobioremediation of Heavy Metals: Perspectives and Challenges. J. Basic Microbiol. 2022, 62, 428–443. [Google Scholar] [CrossRef]
- Faizan, M.; Rajput, V.D.; Al-Khuraif, A.A.; Arshad, M.; Minkina, T.; Sushkova, S.; Yu, F. Effect of Foliar Fertigation of Chitosan Nanoparticles on Cadmium Accumulation and Toxicity in Solanum Lycopersicum. Biology 2021, 10, 666. [Google Scholar] [CrossRef]
- Mubarak, N.M.; Sahu, J.N.; Abdullah, E.C.; Jayakumar, N.S.; Ganesan, P. Microwave-Assisted Synthesis of Multi-Walled Carbon Nanotubes for Enhanced Removal of Zn(II) from Wastewater. Res. Chem. Intermed. 2016, 42, 3257–3281. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of Nanoparticles in the Soil-Plant Systems and Their Effects on Human Health. Ann. Agric. Sci. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- Shi, J.; Ye, J.; Fang, H.; Zhang, S.; Xu, C. Effects of Copper Oxide Nanoparticles on Paddy Soil Properties and Components. Nanomaterials 2018, 8, 839. [Google Scholar] [CrossRef]
- García-Gómez, C.; Fernández, M.D.; García, S.; Obrador, A.F.; Letón, M.; Babín, M. Soil PH Effects on the Toxicity of Zinc Oxide Nanoparticles to Soil Microbial Community. Environ. Sci. Pollut. Res. 2018, 25, 28140–28152. [Google Scholar] [CrossRef]
- Shin, Y.-J.; Kwak, J.I.; An, Y.-J. Evidence for the Inhibitory Effects of Silver Nanoparticles on the Activities of Soil Exoenzymes. Chemosphere 2012, 88, 524–529. [Google Scholar] [CrossRef]
- Liu, J.; Fan, D.; Wang, L.; Shi, L.; Ding, J.; Chen, Y.; Shen, S. Effects of ZnO, CuO, Au, and TiO2 Nanoparticles on Daphnia Magna and Early Life Stages of Zebrafish Danio Rerio. Environ. Prot. Eng. 2014, 40, 139–149. [Google Scholar]
- Nel, A.; Xia, T.; Mädler, L.; Li, N. Toxic Potential of Materials at the Nanolevel. Science 2006, 311, 622–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olaru, D.G.; Olaru, A.; Kassem, G.H.; Popescu-Drigă, M.V.; Pinoşanu, L.R.; Dumitraşcu, D.I.; Popescu, E.L.; Hermann, D.M.; Popa-Wagner, A. Toxicity and Health Impact of Nanoparticles. Basic Biology and Clinical Perspective. Rom. J. Morphol. Embryol. 2019, 60, 787–792. [Google Scholar] [PubMed]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of Nanoparticles with Edible Plants and Their Possible Implications in the Food Chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, X.; Wang, J.; Zhang, X.; Chang, Y.; Chen, Y. Trophic Transfer of TiO2 Nanoparticles from Daphnia to Zebrafish in a Simplified Freshwater Food Chain. Chemosphere 2010, 79, 928–933. [Google Scholar] [CrossRef]
- Zhao, L.; Li, T.; Przybysz, A.; Guan, Y.; Ji, P.; Ren, B.; Zhu, C. Effect of Urban Lake Wetlands and Neighboring Urban Greenery on Air PM10 and PM2.5 Mitigation. Build. Environ. 2021, 206, 108291. [Google Scholar] [CrossRef]
- Mine Rehabilitation in the Australian Minerals Industry. Rehabilitation of Mining and Resources Projects as It Relates to Commonwealth Responsibilities. 2016. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjU0Lzyze_6AhVvkosKHZNNCmwQFnoECA8QAQ&url=https%3A%2F%2Fwww.aph.gov.au%2FDocumentStore.ashx%3Fid%3Daf63b449-6f2a-4fc6-b708-ea796b5ee665%26subId%3D510815&usg=AOvVaw1CUdDhF3wZ8GRKogWh_wev (accessed on 27 July 2022).
- Courtney, R. Irish Mine Sites Rehabilitation—A Case Study. In Bio-Geotechnologies for Mine Site Rehabilitation; Elsevier: Amsterdam, The Netherlands, 2018; pp. 439–456. ISBN 978-0-12-812986-9. [Google Scholar]
- Kumar, A.; Maiti, S.K.; Prasad, M.N.V.; Singh, R.S. Grasses and Legumes Facilitate Phytoremediation of Metalliferous Soils in the Vicinity of an Abandoned Chromite–Asbestos Mine. J. Soils Sediments 2017, 17, 1358–1368. [Google Scholar] [CrossRef]
- Wen, W.; Zhao, H.; Ma, J.; Li, Z.; Li, H.; Zhu, X.; Shao, J.; Yang, Z.; Yang, Y.; He, F.; et al. Effects of Mutual Intercropping on Pb and Zn Accumulation of Accumulator Plants Rumex Nepalensis Lolium Perenne Trifolium Repens. Chem. Ecol. 2018, 34, 259–271. [Google Scholar] [CrossRef]
Plant Species | Process | Metals | References |
---|---|---|---|
Agrostis capillaris | Phytostabilization | As, Pb, Cu, Ni | [35] |
Agrostis stolonifera | Phytostabilization | Cd, Pb, Zn, As, Cu | [30,52] |
Arabidopsis halleri | Phytoextraction | Zn, Cd | [2,15] |
Arabidopsis thaliana | Phytoextraction | Cd | [12,41,50] |
Festuca rubra | Phytostabilization | Zn, Cd, Pb, Cu | [31,64] |
Dactylis glomerata | Phytostabilization | Cd, Zn, Pb | [31] |
Festuca arudinacea | Phytoextraction | Zn, Pb | [60,65] |
Lolium perenne | Phytoextraction | Cd, Pb, Zn | [31,61,62,65] |
Lolium italicum | Phytostabilization | Zn, Pb | [31,60] |
Melilotus officinalis | Phytostabilization | Zn, Pb, Cu | [45] |
Paspalum atratum | Phytoextraction | Zn, Cd | [31,36] |
Poa pratensis | Phytoextraction | Cd, Cu | [67,68] |
Phytostabilization | Zn | [34] | |
Trifolium olexandrinum | Phytoextraction | Zn, Cd, Pb, Cu | [71] |
Trifolium repens | Phytostabilization | Cd, Pb | [72] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sladkovska, T.; Wolski, K.; Bujak, H.; Radkowski, A.; Sobol, Ł. A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals. Agronomy 2022, 12, 2587. https://doi.org/10.3390/agronomy12102587
Sladkovska T, Wolski K, Bujak H, Radkowski A, Sobol Ł. A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals. Agronomy. 2022; 12(10):2587. https://doi.org/10.3390/agronomy12102587
Chicago/Turabian StyleSladkovska, Tetiana, Karol Wolski, Henryk Bujak, Adam Radkowski, and Łukasz Sobol. 2022. "A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals" Agronomy 12, no. 10: 2587. https://doi.org/10.3390/agronomy12102587
APA StyleSladkovska, T., Wolski, K., Bujak, H., Radkowski, A., & Sobol, Ł. (2022). A Review of Research on the Use of Selected Grass Species in Removal of Heavy Metals. Agronomy, 12(10), 2587. https://doi.org/10.3390/agronomy12102587