Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia
Abstract
:1. Introduction
2. Material and Methods
2.1. Experimental Layout and Properties
2.2. Experimental Protocol
2.2.1. Biosafety Growth Bio-Stimulants Treatments
- The untreated group (control spray with tap water).
- Amino acids (2 mL/L and 4 mL/L) as a foliar fertigation; this was a commercial product from the Union for Agriculture Development (UAD) containing 20% free L amino acids, 40% total amino acids, 3% vitamin mix, 3.5% potassium citrate, and some micronutrients such as 1500 ppm Fe, 500 ppm Zn, and 500 ppm Mn.
- Brassinolide at 5 mL/L and 10 mL/L for each as foliar spray were obtained from the Union for Agriculture Development Co., UAP, and Egypt. It structure was (1R,3aS,3bS,6aS,8S,9R,10aR,10bS,12aS)-1-[(1S,2R,3R,4S)-2,3-Dihydroxy-1,4,5-trimethyl hexyl] hexadecahydro-8,9-dihydroxy-10a,12a-dimethyl-6H-benz[c]indeno[5,4-e] oxepin-6-one, (2a,3a,5a,22R,23R,24S)-2,3,22,23-Tetrahydroxy-B-homo-7-oxaergostan-6-one.
- Seaweed extract (created by Orbital Company, 24 Obour Bldgs, Salah Salem, Egypt, Cairo) was used at 2 mL/L and 4 mL/L as a foliar spray. The extract used includes vitamins, enzymes, amino acids, carbohydrates, and plant hormones and some minerals including Fe, Zn, Cu, Mn, and Mo. (i.e., auxins, cytokinins and gibberellins).
2.2.2. Harvesting
2.2.3. Experimental Measurements
2.3. Collecting Data and Measurements
2.3.1. Vegetative Parameters at the Start of Flowering
2.3.2. Seeds Yield Parameters
2.3.3. Chemical Constituents
Fixed Oil Productivity
Fatty Acids Measurement
Statistical Analysis
3. Results
3.1. Vegetative Growing Parameters
3.2. Seed Yield Parameters
3.3. Chemical Composition Determinations
3.4. Fixed Oil
3.5. Oil Fractionation
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ayerza, R.; Coates, W. Some Quality Components of Four Chia (Salvia hispanica L.) Genotypes Grown under Tropical Coastal Desert Ecosystem Conditions. Asian J. Plant Sci. 2009, 8, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Ayerza, R. Seed composition of two chia (Salvia hispanica L.) genotypes which differ in seed color. Emir. J. Food Agric. 2013, 25, 495–500. [Google Scholar] [CrossRef] [Green Version]
- Zanqui, A.B.; Morais, D.R.; Silva, C.M.; Santos, J.M.; Chiavelli, L.U.R.; Bittencourt, P.R.S.; Eberlin, M.N.; Visentainer, J.V.; Cardozo-Filho, L.; Matsushita, M. Subcritical extraction of Salvia hispanica L. oil with n-propane: Composition, purity and oxidation stability as compared to the oils obtained by conventional solvent extraction methods. J. Braz. Chem. Soc. 2015, 26, 282–289. [Google Scholar]
- Coorey, R.; Grant, A.; Jayasena, V. Effect of Chia flour incorporation on the nutritive quality and consumer acceptance of chips. J. Food Res. 2012, 1, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Ayerza, R.; Coates, W. Dietary levels of chia influence on yolk cholesterol, lipid content and fatty acid composition, for two strains of hens. Poult. Sci. 2000, 78, 724–739. [Google Scholar] [CrossRef]
- Cahill, J.P.; Provance, M.C. Genetics of qualitative traits in domesticated chia (Salvia hispanica L.). J. Hered. 2002, 93, 52–55. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Meineri, G. Effects on growth performance, carcass characteristics, and the fat and meat fatty acid profile of rabbits fed diets with chia (Salvia hispanica L.) seed supplements. Meat Sci. 2008, 80, 1116–1121. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fiber content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Bresson, J.L.; Flynn, A.; Heinonen, M.; Hulshof, K.; Korhonen, H.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B. Opinion on the safety of Chia seeds (Salvia hispanica L.) and ground whole chia seeds as a food ingredient. Eur. Food Saf. Auth. J. 2009, 7, 1–26. [Google Scholar]
- Ixtaina, V.Y.; Nolasco, S.M.; Tomas, M.C. Physical properties of chia (Salvia hispanica L.) seeds. Ind. Crops Prod. 2008, 28, 286–293. [Google Scholar] [CrossRef]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories, and regulation. Sci. Hort. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Nardi, S.; Altissimo, A. Long-term research activity on the biostimulant properties of natural origin compounds. Acta Hort. 2012, 1009, 181–187. [Google Scholar] [CrossRef]
- Rai, V.K. Role of amino acids in plant responses to stresses. Biol. Plant. 2002, 45, 481–487. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology. Sunderland: Sinauer, Sunderland: Sinauer, 3rd ed.; Sinauer Associates, Inc. Publishers: Sunderland, MA, USA, 2002; p. 690. [Google Scholar]
- Sakurai, A.; Fujioka, S. The status of physiology and biochemistry of Brassinosteroids: A critical review. Plant Growth Reg. 1993, 13, 147–159. [Google Scholar] [CrossRef]
- Choe, S. Brassinosteroids: Biosynthesis and metabolism of Brassinosteroids. Nat. Prod. Rep. 1997, 14, 1–10. Available online: https://link.springer.com/chapter/10.1007/978-1-4020-2686-7_8 (accessed on 18 October 2022).
- Krishna, P. Brassinosteroids-mediated stress responses. J. Plant Growth Regul. 2003, 22, 289–297. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Arora, H.K.; Nagar, P.K.; Thukral, A.K. Brassinosteroids-A novel group of plant hormones. In Plant Molecular Physiology-Current Scenario and Future Projections; Trivedi, P.C., Ed.; Aaviskar Publisher: Jaipur, India, 2006; pp. 58–84. [Google Scholar]
- Kang, Y.Y.; Guo, S.R. Brassinosteroids: A Class of Plant Hormone, Role of Brassinosteroids on horticultural crops; Springer: Dordrecht, The Netherlands, 2010; pp. 269–288. [Google Scholar]
- Crouch, I.J.; VanStaden, J. Commercial seaweed products as biostimulants in horticulture. J. Home Consum. Hortic. 1994, 1, 19–76. [Google Scholar] [CrossRef]
- Mooney, P.A.; Van Staden, J. Algae and cytokinins. J. Plant Physiol. 1986, 123, 1–21. [Google Scholar] [CrossRef]
- Zhang, X.; Schmidt, R. Hormone-containing products’ impact on antioxidant status of tall fescue and creeping bentgrass subjected to drought. Crop Sci. 2000, 40, 1344–1349. [Google Scholar] [CrossRef]
- Zhang, X.; Ervin, E.; Schmidt, E. Plant growth regulators can enhance the recovery of Kentucky bluegrass sod from heat injury. Crop Sci. 2003, 43, 952–956. [Google Scholar] [CrossRef]
- Verkleij, F. Seaweed extracts in agriculture and horticulture: A review. Biol. Agri. Hort. 1992, 8, 309–324. [Google Scholar] [CrossRef]
- Fornes, F.; Sanchez-Perales, M.; Guadiola, J. Effect of a seaweed extract on the productivity of ‘de Nules Clementine mandarin and navelina orange. Bot. Mar. 2002, 45, 486–489. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Sami, R.; Benajiba, N.; Zewail, R.M.Y.; Mohamed, M.H.M. The Response of Globe Artichoke Plants to Potassium Fertilization Combined with the Foliar Spraying of Seaweed Extract. Agronomy 2022, 12, 490. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall of Indian Private: New Delhi, India, 1973; Volume 47, p. 8. [Google Scholar]
- Black, C.A.; Evans, D.O.; Ensminger, L.E.; White, J.L.; Clark, F.E.; Dinauer, R.C. Methods of Soil Analysis. Part 2. In Chemical and Microbiological Properties, 2nd ed.; Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Inskeep, W.P.; Bloom, P.R. Extinction coefficients of chlorophyll a & b in NN-dimethyl formade and 80% acetone. Plant Physiol. 1985, 77, 483–485. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Analytical Chemists, 15th ed.; AOAC: Rockville, MD, USA, 1990; pp. 62–63, 236 and 877–878. [Google Scholar]
- Horneck, D.A.; Miller, R.O. Determination of Total Nitrogen in Plant Tissue. In Handbook of Reference Methods for Plant Analysis, Soil and Plant Analysis Council, Inc.; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 75–83. [Google Scholar]
- Hucker, T.; Catroux, G. Phosphorus in sewage ridge and animal’s wastes slurries. In Proceedings of the EEC Seminar, Haren (Gr), Gromingen, The Netherlands, 12–13 June 1980; pp. 12–13. [Google Scholar]
- Horneck, D.A.; Hanson, D. Determination of potassium and sodium by flame Emission spectrophotometry. In Handbook of Reference Methods for Plant Analysis; Kolra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 153–155. [Google Scholar]
- Chaplin, M.F.; Kennedy, J.F. Carbohydrate Analysis, 2nd ed.; Oxford University Press: New York, NY, USA, 1994; p. 344. [Google Scholar]
- Houk, R.S.; Fassel, V.A.; Flesch, G.D.; Svec, H.J.; Gray, A.L.; Taylor, C.E. Inductively coupled argon plasma as an ion source for mass spectrometric determination of trace elements. Anal. Chem. 1980, 52, 2283–2289. [Google Scholar] [CrossRef] [Green Version]
- Stahl, E.E. Thin Layer Chromatography, a Laboratory Handbook; Springer: New York, NY, USA, 1967; pp. 14–37. [Google Scholar]
- Behzad, S. Effects of amino acids and irrigation interrupted on some characteristics in flixweed (Descurainia sophia L.). In Proceedings of the International Conference on Biology, Environmental and Chemistry IPCBEE, Dubai, United Arab Emirates, 28–30 December 2011; IACSIT Press: Singapore, 2011; 1, pp. 375–377. [Google Scholar]
- Clouse, S.D.; Sasse, J.M. Brassinosteroids: Essential regulators of plant growth anddevelopment. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1998, 491, 427–451. [Google Scholar] [CrossRef] [Green Version]
- Khripach, V.; Zhabinskii, V.; Groot, A. Twenty years of Brassinosteroids: Steroidal plant hormones warrant better crops for the XXI century. Ann. Bot. 2002, 86, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Müssig, C. Brassinosteroid-promoted growth. Plant Biol. 2005, 7, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Prins, C.; Vieira, J.C.; Freitas, S.P. Growth regulators and essential oil production. Braz. J. Plant Physiol. 2010, 22, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, Y.F.Y.; Zewail, R.M.Y.; Ghatas, Y.A.A. The role of boron and some growth substances on growth, oil productivity and chemical characterization of volatile oils in basil (Ocimum basilicum L.) Cv. Genovese. J. Hortic. Sci. Ornam. Plants 2016, 8, 108–118. [Google Scholar] [CrossRef]
- Mohamed, Y.F.Y.; Ghatas, Y.A.A. Effect of some safety growth stimulants and zinc treatments on growth, seeds yield, chemical constituents, oil productivity and fixed oil constituents of Chia (Salvia hispanica L.) plant. Sci. J. Flowers Ornam. Plants 2020, 7, 163–183. [Google Scholar] [CrossRef]
- Ghatas, Y.A.; El-Sayed, M.A.; Elsadek, M.; Mohamed, Y.F.Y. Enhancing growth, productivity, and artemisinin content of Artemisia annua L. Plant using seaweed extract and micronutrients. Ind. Crops Prod. 2021, 161, 113202. [Google Scholar] [CrossRef]
- Ayerza, R.; Coates, W. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop. Sci. 2004, 44, 131–135. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Ciau-Solís, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Physicochemical characterization of chia (Salviahispanica) seed oil from Yucatán. México Agric. Sci. 2014, 5, 220–226. [Google Scholar] [CrossRef]
- Silva, C.; Garcia, V.A.S.; Zanette, C.M. Chia (Salvia hispanica L.) oil extraction using different organic solvents: Oil yield, fatty acids profile and technological analysis of defatted meal. Int. Food Res. J. 2016, 23, 998–1004. [Google Scholar]
- Moghith, W.M.A.; Youssef, A.S.M.; Abd El-Wahab, M.A.; Mohamed, Y.F.Y.; Abou El- Ghait, E.M. Effect of Arbuscular Mycorrhizal Fungi and Some Phosphorus Sources on Growth, Seeds Yield, Chemical Compositions, Oil Productivity and Fixed Oil Constituents of Chia (Salvia hispanica L.) Plant. In Proceedings of the 5th International Conference on Biotechnology Applications in Agriculture (ICBAA), Benha, Egypt, 8 April 2021; pp. 541–562. [Google Scholar]
- Mohamed, Y.F.Y. Impact of some growth stimulants in cooperation with arbuscular mycorrhizal fungi on growth, productivity, and chemical constituents of dutch fennel plant. Sci. J. Flowers Ornam. Plants 2020, 7, 303–319. [Google Scholar] [CrossRef]
- Zewail, R.M.Y.; El-Gmal, I.S.; Khaitov, B.; El-Desouky, H.S. El-Desouky Micronutrients through foliar application enhance growth, yield and quality of sugar beet (Beta vulgaris L.). J. Plant Nutr. 2020, 43, 2275–2285. [Google Scholar] [CrossRef]
- Zewail, R.M.Y. Effect Of Seaweed Amino Acids On Growth And Productivity Of Common Bean (Phaseolus vulgaris L). Mansura. J. Agric. Sci. 2014, 50, 212–225. [Google Scholar]
Parameters | Values | Parameters | Values | ||
---|---|---|---|---|---|
Mechanical Properties | Chemical Analysis | ||||
(2019–2020) | (2020–2021) | (2019–2020) | (2020–2021) | ||
Coarse sand (%) | 9.0 | 5.8 | Organic matter (%) | 1.77 | 1.81 |
Fine sand (%) | 13.7 | 12.0 | Calcium carbonate (%) | 0.85 | 0.99 |
Silt (%) | 22.2 | 23.2 | Available nitrogen (mg Kg−1) | 0.68 | 0.74 |
Clay (%) | 55.1 | 59.1 | Available phosphorus (mg kg−1) | 0.42 | 0.38 |
Textural class | Clay loam | Clay loam | Available potassium (mg kg−1) | 199 | 210 |
pH water (1:1) | 7.66 | 7.59 | |||
Electrical conductivity (dS/m) | 0.95 | 0.77 |
Parameters | Plant Height (cm) | Fresh Weight g/Plant | Dry Weight g/Plant | ||||
---|---|---|---|---|---|---|---|
Treatments | 1st Season | 2nd Season | 1st Season | 1st Season | 2nd Season | 1st Season | |
Control (tap water) | 70.33 ± 0.67 g | 76.43 ± 0.96 f | 78.93 ± 1.58 f | 81.00 ± 0.73 g | 9.07 ± 0.23 d | 11.10 ± 1.68 e | |
Amino acid at 2 mL/L | 81.77 ± 1.36 f | 85.33 ± 0.74 e | 99.70 ± 0.46 d | 105.50 ± 1.06 d | 12.03 ± 1.69 c | 15.33 ± 0.81 d | |
Amino acid at 4 mL/L | 84.93 ± 0.67 e | 89.77 ± 1.02 d | 103.90 ± 1.70 c | 110.20 ± 0.95 c | 14.83 ± 0.40 b | 17.93 ± 0.55 c | |
Barthenosteriode at 5 mL/L | 89.03 ± 1.12 d | 91.13 ± 1.29 d | 89.80 ± 1.06 e | 93.97 ± 1.19 f | 10.00 ± 0.35 cd | 14.03 ± 0.23 d | |
Barthenosteriode at 10 mL/L | 93.57 ± 0.95 c | 95.97 ± 0.47 c | 92.70 ± 0.53 e | 99.63 ± 0.51 e | 10.60 ± 0.52 cd | 14.67 ± 0.50 d | |
Algae extract at 2 mL/L | 100.70 ± 0.50 b | 110.4 ± 1.1 b | 115.40 ± 1.15 b | 116.90 ± 1.3 b | 16.95 ± 0.83 b | 23.37 ± 0.68 b | |
Algae extract at 4 mL/L | 107.60 ± 0.96 a | 113.0 ± 1.12 a | 128.80 ± 1.36 a | 135.2 ± 0.51 a | 21.43 ± 0.83 a | 25.70 ± 0.85 a |
Parameters | Leaf Area (cm2) | Number of Branches/Plant | |||
---|---|---|---|---|---|
Treatments | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Control (tap water) | 628.3 ± 2.68 c | 636.6 ± 16.55 c | 13.33 ± 1.58 d | 12.67 ± 1.15 e | |
Amino acid at 2 mL/L | 909.6 ± 14.50 ab | 908.6 ± 16.62 ab | 17.67 ± 0.58 bc | 19.67 ± 0.58 d | |
Amino acid at 4 mL/L | 934.1 ± 18.85 ab | 950.8 ± 14.98 ab | 19.00 ± 1.0 b | 23.33 ± 1.15 c | |
Barthenosteriode at 5 mL/L | 869.0 ± 14.56 ab | 897.9 ± 13.63 ab | 15.67 ± 0.58 cd | 18.33 ± 0.58 d | |
Barthenosteriode at 10 mL/L | 834.9 ± 18.56 b | 856.6 ± 14.53 b | 16.33 ± 0.58 bc | 19.67 ± 0.58 d | |
Algae extract at 2 mL/L | 944.7 ± 13.11 ab | 947.2 ± 13.07 ab | 25.00 ± 1.0 a | 26.67 ± 1.15 b | |
Algae extract at 4 mL/L | 959.4 ± 10.11 a | 972.2 ± 17.23 a | 27.67 ± 0.58 a | 29.67 ± 0.58 a |
Parameters | Inflorescences Weights (g)/Plant | Seeds Weights (g)/Plant | Weight of 1000 Seeds/(g) | ||||
---|---|---|---|---|---|---|---|
Treatments | 1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Control (tap water) | 9.33 ± 0.39 e | 9.97 ± 0.54 c | 3.63 ± 0.15 e | 3.50 ± 0.1 e | 1.06 ± 6.5 c | 1.10 ± 0.11 c | |
Amino acid at 2 mL/L | 10.87 ± 0.58 de | 10.87 ± 0.57 c | 5.37 ± 0.32 c | 6.43 ± 0.21 c | 1.12 ± 0.1 bc | 1.15 ± 0.11 bc | |
Amino acid at 4 mL/L | 12.03 ± 0.74 cd | 12.83 ± 0.40 b | 5.87 ± 0.06 c | 7.03 ± 0.29 bc | 1.20 ± 0.1 bc | 1.19 ± 0.01 bc | |
Barthenosteriode at 5 mL/L | 10.67 ± 0.50 de | 11.57 ± 1.0 bc | 4.20 ± 0.30 de | 5.30 ± 0.20 d | 1.15 ± 0.1 bc | 1.15 ± 0.01 bc | |
Barthenosteriode at 10 mL/L | 12.93 ± 0.55 c | 12.80 ± 0.44 b | 4.53 ± 0.35 d | 5.43 ± 0.21 d | 1.24 ± 0.2 b | 1.21 ± 0.02 b | |
Algae extract at 2 mL/L | 15.10 ± 0.56 b | 18.90 ± 0.61 a | 7.20 ± 0.30 b | 7.43 ± 0.32 b | 1.40 ± 0.3 a | 1.46 ± 0.02 a | |
Algae extract at 4 mL/L | 17.34 ± 0.82 a | 20.00 ± 0.34 a | 8.57 ± 0.06 a | 8.53 ± 0.35 a | 1.46 ± 0.3 a | 1.50 ± 0.02 a |
Parameters | Chlorophyll a (mg/g Fresh Weight) | Chlorophyll b (mg/g Fresh Weight) | Carotenoids (mg/100 g Fresh Weight) | ||||
---|---|---|---|---|---|---|---|
Treatments | 1st Season | 2nd Season | 1st Season | 2nd Season | 1st Season | 2nd Season | |
Control (tap water) | 0.540 ± 0.02 d | 0.546 ± 0.04 c | 0.260 ± 0.09 e | 0.263 ± 0.02 d | 0.350 ± 0.01 b | 0.346 ± 0.01 b | |
Amino acid at 2 mL/L | 0.653 ± 0.01 c | 0.667 ± 0.01 b | 0.327 ± 0.02 d | 0.337 ± 0.02 c | 0.447 ± 0.01 a | 0.443 ± 0.01 a | |
Amino acid at 4 mL/L | 0.673 ± 0.01 bc | 0.670 ± 0.01 b | 0.333 ± 0.02 cd | 0.333 ± 0.01 c | 0.423 ± 0.03 ab | 0.427 ± 0.01 ab | |
Barthenosteriode at 5 mL/L | 0.677 ± 0.01 b | 0.677 ± 002 b | 0.333 ± 0.02 cd | 0.340 ± 0.01 c | 0.437 ± 0.01 ab | 0.443 ± 0.01 a | |
Barthenosteriode at 10 mL/L | 0.690 ± 0.01 b | 0.690 ± 0.01 b | 0.347 ± 0.05 c | 0.353 ± 0.04 bc | 0.430 ± 0.01 ab | 0.430 ± 0.03 ab | |
Algae extract at 2 mL/L | 0.783 ± 0.02 a | 0.780 ± 0.02 a | 0.370 ± 0.03 b | 0.370 ± 0.01 b | 0.440 ± 0.02 ab | 0.433 ± 0.01 ab | |
Algae extract at 4 mL/L | 0.793 ± 0.02 a | 0.797 ± 0.01 a | 0.407 ± 0.02 a | 0.400 ± 0.02 a | 0.487 ± 0.02 a | 0.500 ± 0.02 a |
Peak No. | Component Name | Area% | ||||||
---|---|---|---|---|---|---|---|---|
Control (Tap Water) | Amino Acid at 2 mL/L | Amino Acid 4 mL/L | Barthenosteriode at 5 mL/L | Barthenosteriode at 10 mL/L | Algae at 2 mL/L | Algae at 4 mL/L | ||
1 | Palmitic acid | 9.52 | 10.65 | 10.41 | 10.63 | 10.35 | 8.99 | 9.10 |
2 | Oleic acid | 14.70 | 13.49 | 13.15 | 16.32 | 13.47 | 12.84 | 12.09 |
3 | Linoleic acid | 23.12 | 21.81 | 21.25 | 23.32 | 21.30 | 21.72 | 20.93 |
4 | α-α linolenic acid | 52.65 | 54.05 | 55.18 | 49.72 | 54.88 | 56.46 | 57.89 |
Solvent | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Desouky, H.S.; Zewail, R.M.Y.; Selim, D.A.-F.H.; Baakdah, M.M.; Johari, D.M.; Elhakem, A.; Mostafa, Y.S.; Alamri, S.; Sami, R.; El-Khayat, L.A.S.; et al. Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia. Agronomy 2022, 12, 2633. https://doi.org/10.3390/agronomy12112633
El-Desouky HS, Zewail RMY, Selim DA-FH, Baakdah MM, Johari DM, Elhakem A, Mostafa YS, Alamri S, Sami R, El-Khayat LAS, et al. Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia. Agronomy. 2022; 12(11):2633. https://doi.org/10.3390/agronomy12112633
Chicago/Turabian StyleEl-Desouky, Heba S., Reda M. Y. Zewail, Dalia Abdel-Fattah H. Selim, Morooj M. Baakdah, Doaa Mahmoud Johari, Abeer Elhakem, Yasser S. Mostafa, Saad Alamri, Rokayya Sami, Lamiaa A. S. El-Khayat, and et al. 2022. "Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia" Agronomy 12, no. 11: 2633. https://doi.org/10.3390/agronomy12112633
APA StyleEl-Desouky, H. S., Zewail, R. M. Y., Selim, D. A. -F. H., Baakdah, M. M., Johari, D. M., Elhakem, A., Mostafa, Y. S., Alamri, S., Sami, R., El-Khayat, L. A. S., Islam, K. R., Azab, E. S., & Yousry, M. Y. F. (2022). Bio-Growth Stimulants Impact Seed Yield Products and Oil Composition of Chia. Agronomy, 12(11), 2633. https://doi.org/10.3390/agronomy12112633