In Vitro Potent Anticancer, Antifungal, and Antioxidant Efficacy of Walnut (Juglans regia L.) Genotypes
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Fungal Strains Used
2.3. Cell Lines
2.4. Extraction
2.5. Determination of Total Polyphenolic, Flavonoid, and Flavonol Content
2.6. Antioxidant Activity
2.7. Quantification of Quercetin
2.7.1. Sample and Standard Preparation for HPLC
2.7.2. HPLC Analysis
2.8. Preparation of Medium for the Growth of Candida Cells
2.9. Preparation of Extracts for Cell Culture
2.9.1. Cell Culture
2.9.2. MTT Assay
2.10. Statistical Analysis
3. Results
3.1. Phytochemical Determinations
3.1.1. Total Polyphenolic Content (TPC)
3.1.2. Total Flavonoid and Flavonol Content Determination
3.2. Quantification of Quercetin in Walnut Leaves by RP-HPLC
3.3. Determination of Antioxidant Potential of Walnut
3.3.1. Antioxidant Activity (DPPH Free Radical Scavenging Activity)
3.3.2. Ferric Reducing Antioxidant Potential (FRAP) Assay
3.4. Antifungal Activity against Candida Species
3.4.1. Antifungal Activity against Candida Albicans
3.4.2. Antifungal Activity against CANDIDA Glabrata
3.4.3. Antifungal Activity against Candida tropicalis
3.4.4. Relative Percentage Inhibition Concerning Positive Control (Fluconazole)
3.5. Antiproliferative Activity of Walnut Leaf Extracts on Human Cancer Cell Lines Using MTT Assay
3.5.1. Antiproliferative Effect against Lung (A549) Cell Lines
3.5.2. Antiproliferative Effect against Colon (HCT116) Cell Lines
3.5.3. Statistical Analysis
Cluster Analysis
Correlation Studies
Principal Component Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sharma, P.; Gomathi, D.; Ravikumar, G.; Kalaiselvi, M.; Chandrasekaran, U. Phytochemical screening and high-performance thin layer chromatography fingerprinting analysis of green hull of Juglans regia (walnut). Elect. Med. J. 2014, 2, 235–239. [Google Scholar] [CrossRef] [Green Version]
- Delaviz, H.; Mohammadi, J.; Ghalamfarsa, G.; Mohammadi, B.; Farhadi, N. A Review Study on Phytochemistry and Pharmacology Applications of Juglans regia Plant. Pharmacogn. Rev. 2017, 11, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef] [PubMed]
- Panth, N.; Paudel, K.R.; Karki, R. Phytochemical profile and biological activity of Juglans regia. J. Integr. Med. 2016, 14, 359–373. [Google Scholar] [CrossRef] [PubMed]
- Noumi, E.; Snoussi, M.; Hajlaoui, H.; Valentin, E.; Bakhrouf, A. Antifungal properties of Salvadora persica and Juglans regia L. extracts against oral Candida strains. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 81–88. [Google Scholar] [CrossRef]
- Zhao, M.H.; Jiang, Z.T.; Liu, T.; Li, R. Flavonoids in Juglans regia L. leaves and evaluation of in vitro antioxidant activity via intracellular and chemical methods. Sci. World J. 2014, 2014, 6. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.T.; Li, Y.; Chu, P.; Ma, X.D.; Tang, Z.Y.; Sun, Z.L. Molecular biological mechanism of action in cancer therapies: Juglone and its derivatives, the future of development. Biomed. Pharmacother. 2022, 148, 112785. [Google Scholar] [CrossRef]
- Al-Snafi, A.E. Traditional uses of Iraqi medicinal plants. IOSR J. Pharm. 2018, 8, 32–96. [Google Scholar]
- Amaral, J.S.; Valentão, P.; Andrade, P.B.; Martins, R.C.; Seabra, R.M. Do cultivar, geographical location and crop season influence the phenolic profile of walnut leaves. Molecules 2008, 13, 1321–1332. [Google Scholar] [CrossRef] [Green Version]
- Spencer, J.P. Flavonoids: Modulators of brain function. Br. J. Nutr. 2008, 99, 60–77. [Google Scholar] [CrossRef] [Green Version]
- Shah, T.I.; Sharma, E.; Shah, G.A. Anti-proliferative, cytotoxicity and antioxidant activity of Juglans regia extract. Am. J. Cancer Prev. 2015, 3, 45–50. [Google Scholar]
- Shah, U.N.; Mir, J.I.; Ahmed, N.; Jan, S.; Fazili, K.M. Bioefficacy potential of different walnut Juglans regia L. J. Food Sci. Genotypes Technol. 2018, 55, 605–618. [Google Scholar] [CrossRef]
- Rahimipanah, M.; Hamedi, M.; Mirzapour, M. Antioxidant activity and phenolic contents of Persian walnut (Juglans regia L.) green husk extract. Afr. J. Food Sci. Technol. 2010, 1, 105–111. [Google Scholar]
- Rather, M.A.; Dar, B.A.; Dar, M.Y.; Wani, B.A.; Shah, W.A.; Bhat, B.A.; Ganai, B.A.; Bhat, K.A.; Anand, R.; Qurishi, M.A. Chemical composition, antioxidant and antibacterial activities of the leaf essential oil of Juglans regia L. and its constituents. Phytomedicine 2012, 19, 1185–1190. [Google Scholar] [CrossRef]
- Van Meerloo, J.; Kaspers, G.J.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Catanzaro, E.; Greco, G.; Potenza, L.; Calcabrini, C.; Fimognari, C. Natural products to fight cancer: A focus on Juglans regia. Toxins 2018, 10, 469. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Choi, J.; Kim, J.; Kim, Y.; Friso, S. Walnut substantially alters the DNA methylation profile in colon cancer stem cells. FASEB J. 2016, 30, 912–915. [Google Scholar]
- Mateș, L.; Rusu, M.E.; Popa, D.-S. Phytochemicals and Biological Activities of Walnut Septum: A Systematic Review. Antioxidants 2023, 12, 604. [Google Scholar] [CrossRef]
- Al-Mahmood, A.A.; Shu, L.; Kim, H.; Ramirez, C.; Pung, D.; Guo, Y.; Li, W.; Kong, A.N.T. Prostate cancer and chemoprevention by natural dietary phytochemicals. J. Chin. Pharm. Sci. 2016, 25, 633–650. [Google Scholar]
- Perugu, S.; Vemula, R.; Rao, M. Walnut pedunculagin a probable serm for breast cancer treatment. Int. J. Pharm. Pharm. Sci. 2014, 7, 233–235. [Google Scholar]
- Hardman, W.E.; Primerano, D.A.; Legenza, M.T.; Morgan, J.; Fan, J.; Denvir, J. Dietary walnut altered gene expressions related to tumor growth, survival, and metastasis in breast cancer patients: A pilot clinical trial. Nutr. Res. 2019, 66, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Bourais, I.; Elmarrkechy, S.; Taha, D.; Badaoui, B.; Mourabit, Y.; Salhi, N.; Alshahrani, M.M.; Al Awadh, A.A.; Bouyahya, A.; Goh, K.W.; et al. Comparative Investigation of Chemical Constituents of Kernels, Leaves, Husk, and Bark of Juglans regia L.; Using HPLC-DAD-ESI-MS/MS Analysis and Evaluation of Their Antioxidant, Antidiabetic, and Anti-Inflammatory Activities. Molecules 2022, 27, 8989. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, A.; Chauhan, V. Beneficial Effects of Walnuts on Cognition and Brain Health. Nutrients 2020, 12, 550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Shah, A.H.; Dhamgaye, S. Mechanism of Drug Resistance in Fungi and Their Significance in Biofilms. Antibiofilm Agents 2014, 8, 45–65. [Google Scholar]
- Prasad, R.; Shah, A.H.; Rawal, M.K. Antifungals: Mechanism of Action and Drug Resistance. Yeast Membr. Transp. Adv. Exp. Med. Biol. 2016, 892, 327–349. [Google Scholar]
- Sytykiewicz, H.; Chrzanowski, G.; Czerniewicz, P.; Leszczyński, B.; Sprawka, I.; Krzyzanowski, R.; Matok, H. Antifungal activity of Juglans regia (L.) leaf extracts against candida albicans isolates. Pol. J. Environ. Stud. 2015, 24, 1339–1348. [Google Scholar] [CrossRef]
- Wianowska, D.; Garbaczewska, S.; Cieniecka-Roslonkiewicz, A.; Dawidowicz, A.; Jankowska, A. Comparison of antifungal activity of extracts from different Juglans regia cultivars and juglone. Microb. Pathog. 2016, 100, 263–267. [Google Scholar] [CrossRef]
- Timothy, J.; Bradbury, K.E.; Aurora, P.-C.; Key, T.J.; Bradbury, K.E.; Perez-Cornago, A.; Sinha, R.; Tsilidis, K.K.; Tsugane, S. Diet, nutrition, and cancer risk: What do we know and what is the way forward? Analysis 2020, 2020, 368. [Google Scholar]
- Negi, A.S.; Luqman, S.; Srivastava, S.; Krishna, V.; Gupta, N.; Darokar, M.P. Antiproliferative and antioxidant activities of Juglans regia fruit extracts. Pharm. Biol. 2011, 49, 669–673. [Google Scholar] [CrossRef]
- Raheleh Jahanbani, S. Mahmood Ghaffari Maryam Salami Kourosh Vahdati Houri Sepehri Nazanin Namazi Sarvestani Nader Sheibani Ali Akbar Moosavi-Movahedi. Antioxidant and Anticancer Activities of Walnut (Juglans regia L.) Protein Hydrolysates Using Different Proteases. Plant Foods Hum. Nutr. 2016, 71, 402–409. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, R.H.; Halim, L. Antioxidant and antiproliferative activities of common edible nut seeds. LWT-Food Sci. Technol. 2009, 42, 1–8. [Google Scholar] [CrossRef]
- Genovese, C.; Cambria, M.T.; D’angeli, F.; Addamo, A.P.; Malfa, G.A.; Siracusa, L.; Salmeri, M. The double effect of walnut septum extract (Juglans regia L.) counteracts A172 glioblastoma cell survival and bacterial growth. Int. J. Oncol. 2020, 57, 1129–1144. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Majd, A.; Sepahdar, Z.; Azadmanesh, K.; Irian, S.; Ardestaniyan, M.H.; Hedayati, M.H.; Rastkari, N. Cytotoxicity effects of various Juglans regia (walnut) leaf extracts in human cancer cell lines. Pharm. Biol. 2012, 50, 1416–1422. [Google Scholar] [CrossRef] [PubMed]
S.NO. | Genotype | Phenol (mg/g GAE) | Flavonol (mg/g QE) | Flavonoid (mg/g QE) | Quercetin (mg/g) | DPPH (%Inhibition) | FRAP µM Fe2+/g DW |
---|---|---|---|---|---|---|---|
1 | Tuttle | 10.13 d ± 0.12 | 111.5 g ± 0.61 | 110 f ± 0.22 | 0.82 a ± 0.11 | 45.27 b ± 0.18 | 148.1 f ± 0.17 |
2 | Nugget | 2.02 a ± 0.00 | 111.83 g ± 0.20 | 111.93 g ± 0.24 | 0.81 a ± 0.06 | 65.37 d ± 0.19 | 145.3 bcd ± 0.28 |
3 | Franquette | 7.13 bc ± 0.12 | 108.67 def ± 0.41 | 108.67 ef ± 0.33 | 0.86 b ± 0.02 | 45.37 a ± 0.35 | 145.2 bc ± 0.34 |
4 | Sel-2 | 7.55 bc ± 0.24 | 110.33 fg ± 0.28 | 104.10 b ± 0.22 | 0.87 b ± 0.02 | 71.47 ef ± 0.13 | 144.9 b ± 0.03 |
5 | Suleiman | 8.39 c ± 0.10 | 109.50 efg ± 0.35 | 107.00 d ± 0.22 | 0.89 bc ± 0.04 | 75.50 f ± 0.27 | 146.7 cdef ± 0.0 |
6 | Sel-4 | 6.47 b ± 0.10 | 109.50 efg ± 0.13 | 106.50 cd ± 0.11 | 0.93 cd ± 0.02 | 68.87 de ± 0.07 | 147.3 ef ± 0.19 |
7 | Payne | 7.63 bc ± 0.12 | 106.33 bcd ± 0.20 | 104.83 b ± 0.17 | 0.96 d ± 0.10 | 67.77 de ± 0.25 | 146.2 bcde ± 0.7 |
8 | Hamdan | 8.42 c ± 0.11 | 109.63 efg ± 0.15 | 107.57 de ± 0.11 | 0.85 b ± 0.05 | 58.67 c ± 0.11 | 146.8 def ± 0.12 |
9 | Sel-3 | 10.62 d ± 0.12 | 105.33 b ± 0.28 | 105.00 bc ± 0.22 | 0.93 cd ± 0.03 | 48.20 b ± 0.22 | 145.6 bcd ± 0.29 |
10 | Serr | 12.57 e ± 0.18 | 105.67 bc ± 0.43 | 103.37 b ± 0.22 | 0.99 d ± 0.07 | 65.37 d ± 0.15 | 147.8 f ± 0.07 |
11 | Sel-1 | 10.49 d ± 0.11 | 101.67 a ± 0.41 | 99.80 a ± 0.06 | 0.86 b ± 0.06 | 54.50 c ± 0.16 | 145.8 bcd ± 0.09 |
12 | Sel-5 | 12.05 e ± 0.32 | 107.67 bcde ± 0.4 | 105.00 bc ± 0.22 | 1.03 d ± 0.04 | 43.30 ab ± 0.16 | 145.4 bcd ± 0.15 |
13 | Opexculchry | 13.23 e ± 0.20 | 107.93 cdef ± 0.2 | 104.67 b ± 0.13 | 1.20 e ± 0.00 | 74.80 f ± 0.19 | 144.6 b ± 0.22 |
14 | Chenovo | 10.60 d ± 0.12 | 101.67 a ± 0.41 | 100.13 a ± 0.05 | 1.23 e ± 0.10 | 72.47 ef ± 0.25 | 128.2 a ± 0.29 |
Average Diameters of the Inhibition Zones (mm) of Candida Albicans | ||
---|---|---|
Extracts | Inhibition Zones with Extracts | Inhibition Zones with Fluconazole |
Tuttle | 11.3 | 25.4 |
Nugget | 11.2 | 25.5 |
Franquette | 11.0 | 25.2 |
Sel 2 | 9.6 | 25.1 |
Suleiman | 10.2 | 25.0 |
Sel 4 | 10.3 | 24.3 |
Payne | 12.4 | 25.4 |
Hamdan | 13.2 | 25.6 |
Sel 3 | 6.5 | 24.2 |
Serr | 11.1 | 25.6 |
Sel 1 | 10.2 | 25.2 |
Sel 5 | 9.3 | 24.7 |
Opex Culchry | 9.2 | 24.9 |
Chenovo | 9.4 | 25.0 |
Average | 10.35 | 25.08 |
Average Diameters of the Inhibition Zones (mm) of Candida Glabrata. | ||
---|---|---|
Extracts | Inhibition Zones with Extracts | Inhibition Zones with Fluconazole |
Tuttle | 9.2 | 11.1 |
Nugget | 9.1 | 10.0 |
Franquette | 10.3 | 12.2 |
Sel 2 | 8.5 | 11.2 |
Suleiman | 10.1 | 12.1 |
Sel 4 | 8.4 | 10.2 |
Payne | 7.5 | 10.5 |
Hamdan | 5.2 | 9.0 |
Sel 3 | 7.3 | 10.7 |
Serr | 10.5 | 12.2 |
Sel 1 | 10.4 | 11.1 |
Sel 5 | 9.6 | 10.9 |
Opex Culchry | 9.1 | 11.5 |
Chenovo | 8.2 | 12.3 |
Average | 8.81 | 11.07 |
Average Diameters of the Inhibition Zones (mm) of Candida tropicalis | ||
---|---|---|
Extracts | Inhibition Zones with Extracts | Inhibition Zones with Fluconazole |
Tuttle | 6.5 | 20.4 |
Nugget | 7.2 | 19.9 |
Franquette | 6.1 | 21.1 |
Sel 2 | 7.7 | 20.2 |
Suleiman | 7.3 | 19.8 |
Sel 4 | 7.5 | 20.2 |
Payne | 8.2 | 19.5 |
Hamdan | 8.1 | 19.0 |
Sel 3 | 7.4 | 21.2 |
Serr | 8.6 | 20.5 |
Sel 1 | 6.5 | 20.8 |
Sel 5 | 6.3 | 19.7 |
Opex Culchry | 7.0 | 19.0 |
Chenovo | 7.9 | 20.0 |
Average | 7.31 | 20.09 |
Extracts | Candida Albicans | Candida Glabrata | Candida Tropicalis |
---|---|---|---|
%Inhibition | %Inhibition | %Inhibition | |
Tuttle | 44.4 | 82.2 | 31.8 |
Nugget | 43.9 | 91.1 | 36.1 |
Franquette | 43.1 | 84.4 | 28.9 |
Sel 2 | 27.4 | 75.8 | 38.1 |
Suleiman | 40.8 | 83.4 | 36.8 |
Sel 4 | 42.3 | 82.3 | 37.1 |
Payne | 48.8 | 71.4 | 42.0 |
Hamdan | 51.5 | 57.7 | 42.6 |
Sel 3 | 26.8 | 68.2 | 34.9 |
Serr | 43.3 | 86.0 | 41.9 |
Sel 1 | 40.4 | 93.6 | 31.2 |
Sel 5 | 37.6 | 88.0 | 32.9 |
Opex Culchry | 36.9 | 79.1 | 36.8 |
Chenovo | 37.6 | 66.6 | 39.1 |
Average | 40.34 | 79.27 | 36.44 |
Correlation Matrix | |||||||
---|---|---|---|---|---|---|---|
DPPH | FRAP | Phenols | Flavonol | Flavonoid | Quercetin | ||
Correlation | DPPH | −0.280 | −0.141 | −0.015 | −0.226 | 0.377 | |
FRAP | −0.125 | 0.542 | 0.483 | −0.662 | |||
phenols | −0.522 | −0.606 | 0.598 | ||||
flavonol | 0.884 | −0.522 | |||||
flavonoid | −0.572 | ||||||
quercetin | |||||||
Sig. (1-tailed) | DPPH | 0.166 | 0.315 | 0.479 | 0.218 | 0.092 | |
FRAP | 0.335 | 0.023 | 0.040 | 0.005 | |||
phenols | 0.028 | 0.011 | 0.012 | ||||
flavonol | 0.000 | 0.028 | |||||
flavonoid | 0.016 | ||||||
quercetin |
Total Variance Explained | ||||||
---|---|---|---|---|---|---|
Component | Initial Eigenvalues | Extraction Sums of Squared Loadings | ||||
Total | % of Variance | Cumulative % | Total | % of Variance | Cumulative % | |
1 | 3.293 | 54.891 | 54.891 | 3.293 | 54.891 | 54.891 |
2 | 1.276 | 21.270 | 76.161 | 1.276 | 21.270 | 76.161 |
3 | 0.694 | 11.570 | 87.731 | |||
4 | 0.574 | 9.564 | 97.296 | |||
5 | 0.108 | 1.800 | 99.096 | |||
6 | 0.054 | 0.904 | 100.000 | |||
Extraction Method: Principal Component Analysis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ara, T.; Shafi, S.; Ghazwani, M.; Mir, J.I.; Shah, A.H.; Qadri, R.A.; Hakami, A.R.; Khalid, M.; Hani, U.; Wahab, S. In Vitro Potent Anticancer, Antifungal, and Antioxidant Efficacy of Walnut (Juglans regia L.) Genotypes. Agronomy 2023, 13, 1232. https://doi.org/10.3390/agronomy13051232
Ara T, Shafi S, Ghazwani M, Mir JI, Shah AH, Qadri RA, Hakami AR, Khalid M, Hani U, Wahab S. In Vitro Potent Anticancer, Antifungal, and Antioxidant Efficacy of Walnut (Juglans regia L.) Genotypes. Agronomy. 2023; 13(5):1232. https://doi.org/10.3390/agronomy13051232
Chicago/Turabian StyleAra, Tabasum, Sabeeha Shafi, Mohammed Ghazwani, Javid Iqbal Mir, Abdul Haseeb Shah, Raies A. Qadri, Abdulrahim R. Hakami, Mohammad Khalid, Umme Hani, and Shadma Wahab. 2023. "In Vitro Potent Anticancer, Antifungal, and Antioxidant Efficacy of Walnut (Juglans regia L.) Genotypes" Agronomy 13, no. 5: 1232. https://doi.org/10.3390/agronomy13051232
APA StyleAra, T., Shafi, S., Ghazwani, M., Mir, J. I., Shah, A. H., Qadri, R. A., Hakami, A. R., Khalid, M., Hani, U., & Wahab, S. (2023). In Vitro Potent Anticancer, Antifungal, and Antioxidant Efficacy of Walnut (Juglans regia L.) Genotypes. Agronomy, 13(5), 1232. https://doi.org/10.3390/agronomy13051232