Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Bioclimatic Analysis of Specific Territories
3.2. Bioclimatic Analysis of the Southern Iberian Peninsula
3.3. Bioclimate—Plant Cover: Mitigating the Damage Caused by Climate Change
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Piñar Fuentes, J.C.; Leiva, F.; Cano-Ortiz, A.; Musarella, C.M.; Quinto Canas, R.; Pinto Gomes, C.; Cano, E. Impact of the Management of Grass Cover During with Herbicides in the Biodiversity, Cover and Humidity of the Soil in the Olive Groves of the South of the Iberian Peninsula During the Period 2006–2016. Agronomy 2021, 11, 412. [Google Scholar] [CrossRef]
- Ighbareyeh, J.M.H.; Cano-Ortiz, A.; Cano, E. Biological and bioclimatic basis to optimize plant production: Increased economic areas of Palestine. Agric. Sci. Res. J. 2014, 4, 10–20. [Google Scholar]
- Ighbareyeh, J.M.H.; Cano Ortiz, A.; Cano, E. Analysis of the physical factors of Palestinian bioclimate. Am. J. Chim. Change 2014, 3, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Ighbareyeh, J.M.H.; Cano Ortiz, A.; Cano, E.; Ighbareyeh, M.M.H.; Suliemieh, A.A.A. Assessing Crop Yield sustainability under the Climatic and Bioclimatic Change in the Area of Palestine. Am. J. Clim. Change 2015, 4, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Ighbareyeh, J.M.H.; Ighbareyeh, M.M.H.; Suliemieh, A.A.A.; Abdel-Qader, D.; Cano, E.; Cano Ortiz, A. Peach (Prunus persica L. Batsch) production and environmental conditions in Jenin, Palestine. Net J. Agric. Sci. 2019, 7, 78–84. [Google Scholar] [CrossRef]
- Ighbareyeh, J.M.H.; Suliemieh, A.A.-R.A.; Sheqwarah, M.; Cano-Ortiz, A.; Carmona, E.C. Flora and Phytosociological of Plant in Al-Dawaimah of Palestine. Res. J. Ecol. Environ. Sci. 2022, 2, 58–91. [Google Scholar] [CrossRef]
- Quinto Canas, R.; Cano-Ortiz, A.; Musarella, C.M.; del Río, S.; Raposo, M.; Fuentes, J.C.P.; Gomes, C.P. Quercus rotundifolia Lam. Woodlands of the Southwestern Iberian Peninsula. Land 2021, 10, 268. [Google Scholar] [CrossRef]
- Canas, R.Q.; Cano-Ortiz, A.; Spampinato, G.; del Río, S.; Raposo, M.; Fuentes, J.C.P.; Gomes, C.P. Contribution to the Knowledge of Rocky Plant Communities of the Southwest Iberian Peninsula. Plants 2021, 10, 1590. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Quinto Canas, R.; Pinto Gomes, C.J.; Spampinato, G.; Ighbareyeh, J.M.H.; del Río, S.; Cano, E. Forest and Arborescent Scrub Habitats of Special Interest for SCIs in Central Spain. Land 2021, 10, 183. [Google Scholar] [CrossRef]
- Cano, E.; Piñar, F.J.C.; Cano-Ortiz, A.; Leiva, G.F.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Pinto Gomes, C.J.; Spampinato, G.; Del Río González, S.; Musarella, C.M. Chapter 17-Bioclimatology and botanical resources for sustainable development. In Natural Resources Conservation and Advances for Sustainability; Jhariya, M.K., Meena, R.S., Banerjee, A., Meena, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 377–388. ISBN 978-0-12-822976-7. [Google Scholar] [CrossRef]
- Piñar Fuentes, J.C.; Cano-Ortiz, A.; Musarella, C.M.; Quinto Canas, R.; Pinto Gomes, C.J.; Spampinato, G.; del Río, S.; Cano, E. Bioclimatology, Structure, and Conservation Perspectives of Quercus pyrenaica, Acer opalus subsp. Granatensis, and Corylus avellana Deciduous Forests on Mediterranean Bioclimate in the South-Central Part of the Iberian Peninsula. Sustainability 2019, 11, 6500. [Google Scholar] [CrossRef]
- Quinto Canas, R.; Mendes, P.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C. Forest fringe communities of the southwestern Iberian Peninsula. Rev. Chapingo Serte Cienc. For. Ambiente 2018, 24, 415–434. [Google Scholar] [CrossRef]
- Quinto-Canas, R.; Mendes, P.; Meireles, C.; Musarella, C.; Pinto-Gomes, C. The Agrostion castellanae Rivas Goday 1957 Corr. Rivas Goday & Rivas-Martínez 1963 Alliance in the Southwestern Iberian Peninsula. Plant Sociol. 2018, 55, 21–29. [Google Scholar] [CrossRef]
- Piñar Fuentes, J.C.; Raposo, M.; Pinto Gomes, C.J.; del Río González, S.; Spampinato, G.; Cano, E. New Contributions to the Ericion umbellatae Alliance in the Central Iberian Peninsula. Sustainability 2021, 13, 5639. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.; Fuentes, C.; Pinto-Gomes, C.; Río, S.; Cano, E. Diversity and conservation status of mangrove communities in two areas of Mesocaribea biogeographic region. Curr. Sci. 2018, 115, 534–540. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Musarella, C.M.; Piñar, J.C.; Spampinato, G.; Veloz, A.; Cano, E. Vegetation of the dry bioclimatic areas in the Dominican Republic. Plant Biosyst. 2015, 149, 451–472. [Google Scholar] [CrossRef]
- Cano Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Pinto Gomes, C.J.; Cano, E. Distribution patterns of endemic flora to define hotspots on Hispaniola. Syst. Biodivers. 2016, 14, 261–275. [Google Scholar] [CrossRef]
- Cano Ortiz, A.; Quinto, C.R.; Pinar, F.J.C.; del Rio, S.; Pinto, G.C.J.; Cano, E. Endemic Hemicryptophyte Grasslands of the High Mountains of the Caribbean. Res. J. Ecol. Environ. Sci. 2022, 2, 1–20. [Google Scholar] [CrossRef]
- Kegler, A.; Diesel, S.; Wasum, R.A.; Herrero, L.; Del Río, S.; Penas, Á. Contribution to the phytosociological survey of the primary forests in the NE of Rio Grande do Sul (Brazil). Plant Biosyst. 2010, 144, 53–84. [Google Scholar] [CrossRef]
- Cano Ortiz, A.; Musarella, C.M.; Pinto Gomes, C.J.; Quinto Canas, R.; Piñar Fuentes, J.C.; Cano, E. Phytosociological Study, Diversity and Conservation Status of the Cloud Forest in the Dominican Republic. Plants 2020, 9, 741. [Google Scholar] [CrossRef]
- Cano Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Pinto Gomes, C.J.; Quinto Canas, R.; Del Río, S.; Cano, E. Indicative value of the dominant plant species for a rapid evaluation of the nutritional of soils. Agronomy 2020, 11, 1. [Google Scholar] [CrossRef]
- Lv, J.; Xie, Y.; Luo, H. Erosion Process and Temporal Variations in the Soil Surface Roughness of Spoil Heaps under Mul-ti-Day Rainfall Simulation. Remote Sens. 2020, 12, 2192. [Google Scholar] [CrossRef]
- Burrascano, S.; Sabatini, F.M.; Blasi, C. Testing indicators of sustainable forest management on understorey composition and diversity in southern Italy through variation partitioning. Plant Ecol. 2011, 212, 829–841. [Google Scholar] [CrossRef]
- Cano, E.; Ruiz, L.; Cano-Ortiz, A.; Nieto, J. Bases Para el Establecimiento de Modelos de Gestión Agrícola y Forestal in Memorian Al prof; Isidoro, R.M., Ed.; Servicio Publicaciones Universidad de Jaén: Jaén, Spain, 2002; pp. 131–142. [Google Scholar]
- Cano, E.; Cano-Ortiz, A.; Musarella, C.M.; Piñar Fuentes, J.C.; Ighbareyeh, J.M.H.; Leiva, G.F.; Del Río, S. Mitigating climate change through bioclimatic applications and cultivation techniques in agriculture (Andalusia, Spain). In Sustainable Agriculture, Forest and Environmental Management; Jhariya, M.K., Banerjee, A., Meena, R.S., Yadav, D.K., Eds.; Springer Nature Singapore Pte Ltd: Singapore, 2019; pp. 31–69. [Google Scholar] [CrossRef]
- Rivas-Martínez, S. Clasificación Bioclimática de la Tierra. Folia Botánica Matritensis 1996, 16, 1–32. [Google Scholar]
- Blasi, C.; Biondi, E.; Izco, J. 100 years of plant sociology: A celebration. Plant Biosyst. 2011, 145 (Suppl. 1), 1–3. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Loidi Arregui, J. Bioclimatoloy of the Iberian Peninsula. Itinera Geobot. 1999, 13, 41–47. [Google Scholar]
- Pesaresi, S.; Biondi, E.; Casavecchia, S. Bioclimates of Italy. J. Maps 2017, 13, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Pesaresi, S.; Galdenzi, D.; Biondi, E.; Casavecchia, S. Bioclimate of Italy: Application of the worldwide bioclimatic classification system. J. Maps 2014, 10, 538–553. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; Díaz González, T.E.; Ladero Álvarez, M.; Asensi Marfil, A.; Díez Garretas, B.; Molero Mesa, J.; Valle Tendero, F.; Cano, E.; Costa Talens, M.; et al. Mapa de series, geoseries y geopermaseries de vegetación de España. Parte II. Itinera Geobot. 2011, 18, 425–800. [Google Scholar]
- IPCC. Climate Change. Synthesis Report. In A Contribution of Working Groups I, II, and III to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Watson, R.T., the Core Writing Team, Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001; p. 398. [Google Scholar]
- IPCC. Climate change. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 1–135. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; In press. [Google Scholar] [CrossRef]
- Del Río, S.; Cano-Ortiz, A.; Herrero, L.; Penas, A. Recent trends in mean maximum and minimum air temperaturas over Spain (1961–2006). Theor. Appl. Climatol. 2012, 149, 605–626. [Google Scholar] [CrossRef]
- Del Río, S.; Anjum, L.M.; Cano-Ortiz, A.; Herrero, L.; Hassan, A.; Penas, A. Recent mean temperature trends in Pakistan and links with teleconnection patternes. Int. J. Climatol. 2013, 33, 277–290. [Google Scholar] [CrossRef]
- Del Río, S.; Canas, R.; Cano, E.; Cano-Ortiz, A.; Musarella, C.M.; Pinto Gomes, C.; Penas, A. Modelling the impacts of climte change on hábitat suitabilityy and vulnerability in deciduous forest in Spain. Ecol. Indic. 2021, 131, 108202. [Google Scholar] [CrossRef]
- Lovelli, S.; Perniola, M.; Scalcione, E.; Troccoli, A.; Ziska, L.H. Future climate change in the Mediterranean area: Implications for water use and weed management. Ital. J. Agron. 2012, 7, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Macías, F. Sumideros de carbono para el forzamiento climático Antropoceno. Una visión de alternativas de actuación desde la ciencia del suelo. Edafología 2004, 11, 7–25. [Google Scholar]
- Mota, C.; Alcaraz-López, C.; Iglesias, M.; Martínez-Ballesta, M.C.; Carvajal, M. Investigación Sobre la Absorción de CO2 por los Cultivos Más Representativos de la Región de Murcia, Ed; CSIC: Madrid, Spain, 2011; pp. 1–41. [Google Scholar]
- Rosas, C.A. Sumideros de carbono. ¿Solución a la mitigación de los efectos del cambio climático? Ecosistemas 2018, 11, 1–6. [Google Scholar]
- Spampinato, G.; Massimo, D.E.; Musarella, C.M.; De Paola, P.; Malerba, A.; Musolino, M. Carbon Sequestration by Cork Oak Forests and Raw Material to Built up Post Carbon City. In New Metropolitan Perspectives. ISHT 2018. Smart Innovation, Systems and Technologies; Calabrò, F., Della, S.L., Bevilacqua, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 101. [Google Scholar] [CrossRef]
- Spampinato, G.; Malerba, A.; Calabrò, F.; Bernardo, C.; Musarella, C.M. Cork Oak Forest Spatial Valuation Toward Post Carbon City by CO2 Sequestration. In New Metropolitan Perspectives. NMP 2020. Smart Innovation, Systems and Technologies; Bevilacqua, C., Calabrò, F., Della, S.L., Eds.; Springer: Cham, Switzerland, 2021; Volume 178. [Google Scholar] [CrossRef]
- Marshall, J.; Brown, V.; Boatman, N.; Lutman, P.; Squire, G. The impact of herbicides on weed abundance and biodiversity PN0940. A Report for the UK Pesticides Safety Directorate. IACR Long Ashton. Res. Stn. 2001, 1, 1–147. [Google Scholar]
- Marshall, E.J.P. Biodiversity, herbicides and non-target plants. Brighton. Crop. Prot. Conf. Weeds. 2001, 2, 855–862. [Google Scholar]
- Cano, E. Una Agricultura Respetuosa con el Medio Ambiente y Productiva es Posible: La Bioclimatología como Herramienta Viabilizadora. Foro 2021, 5, 17–23. Available online: https://www.revistaforo.com/2021/0502-03 (accessed on 15 May 2021).
- Kumar, A.; Sharma, P.; Joshe, S. Assessing the Impacts of Climate Change on Land Productivity in Indian Crop Agriculture: An Evidence from Panel Data Analysis. J. Agric. Sci. Technol. 2016, 18, 1–13. [Google Scholar]
- Tang, Y.C.; Mao, S.F.; Ma, X.Q.; Qiu, M.M.; Ma, K.; Zhu, M.X.; Wang, Z.J. The Influence of Three Different Types of Herbicides on Biodiversity. Adv. Mater. Res. 2013, 838, 2417–2426. [Google Scholar]
- Vyas, M.D.; Jain, A.K. Effect of pre-and post-emergence herbicides on weed control and productivity of soybean (Glycine max). Indian J. Agron. 2003, 48, 309–311. [Google Scholar]
- Wang, S.; Fu, B.J.; Gao, G.Y.; Yao, X.L.; Zhou, J. Soil moisture and evapotranspiration of different land cover types in the Loess Plateau, China. Hydrol. Earth Syst. Sci. 2012, 16, 2883–2892. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.K.; Schilling, K.E. Effects of land cover on water table, soil moisture, evapotranspiration, and groundwater re-charge: A field observation and analysis. J. Hydrol. 2006, 319, 328–338. [Google Scholar] [CrossRef]
- Chamizo, S.; Meijide, A.; Serrano-Ortiz, P.; Sánchez-Cañete, E.P.; López-Ballesteros, A.; Kowalski, A.S. The influence of weeds on evapotranspiration and water use efficiency in an irrigated Mediterranean olive orchard. EGU Gen. Assem. Conf. Abstr. Geophys. Res. Abstr. 2018, 20, EGU2018–EGU14431. [Google Scholar]
- Rivas-Martínez, S. Mapa de series, geoseries y geopermaseries de vegetación de España. Parte I. Itinera Geobot. 2007, 17, 5–436. [Google Scholar]
- Cano, E.; Cano Ortiz, A. Bioclimatología Aplicada a la Agronomía in Nuevas Tendencias en Olivicultura; Servicio Publublicaciones Universidad Jaén: Jaén, Spain, 2016; pp. 7–69. ISBN 978-84-8439-000-0. [Google Scholar]
- Cano Ortiz, A. Bioindicadores y Cubiertas Vegetales en el Olivar in Nuevas Tendencias en Olivicultura; Servicio Publicaciones Universidad Jaén: Jaén, Spain, 2016; pp. 70–117. ISBN 978-84-8439-000-0. [Google Scholar]
- Perrino, E.V.; Musarella, C.M.; Magazzini, P. Management of grazing Italian river buffalo to preserve habitats defined by Directive 92/43/EEC in a protected wetland area on the Mediterranean coast: Palude Frattarolo, Apulia, Italy. Euro-Mediterr. J. Environ. Integr. 2021, 6, 32. [Google Scholar] [CrossRef]
- Perrino, E.V.; Calabrese, G. Vascular flora of vineyards in the DOC area “Gioia del Colle” (Apulia, Southern Italy): Preliminary data. Nat. Croat. 2018, 27, 41–55. [Google Scholar] [CrossRef] [Green Version]
- Cano-Ortiz, A. Bioindicadores ecológicos y manejo de cubiertas vegetales como herramienta para la implantación de una agricultura sostenible. Ph.D. Thesis, Universidad de Jaén, Jaén, Spain, 2007. [Google Scholar]
- El-Hajj, A.; Halwani, B.; Halwani, J. Hydro-Geochemical Study of the Coastal Aquifer in Tripoli (Lebanon). Res. J. Ecol. Environ. Sci. 2022, 2, 103–117. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Díaz, T.E.; Fernández-González, F.; Izco, J.; Loidi, J.; Lousa, M.; Penas, A. Vascular Plant Communities of Spain and Portugal (addenda to the syntaxonomical checklist of 2001, part I). Itinera Geobot. 2002, 15, 5–432. [Google Scholar]
- Rivas-Martínez, S.; Díaz, T.E.; Fernández-González, F.; Izco, J.; Loidi, J.; Lousa, M.; Penas, A. Vascular Plant Communities of Spain and Portugal (addenda to the syntaxonomical checklist of 2001, part II). Itinera Geobot. 2002, 15, 433–922. [Google Scholar]
- Rivas-Martínez, S.; Rivas-Saenz, S. Orldwide Bioclimatic Classification System. Phytosociological Research Center, Spain. (1996–2020). Available online: http://www.globalbioclimatics.org (accessed on 15 May 2022).
- Cano, E.; García Fuentes, A.; Torres, J.A.; Salazar, C.; Melendo, M.; Pinto Gomes, C.; Valle, F. Phytosociologie appliquée a la planification agricole. Colloq. Phytosociol. 1997, 27, 1007–1022. [Google Scholar]
- Cano Ortiz, A.; Ighbareyeh, J.; Cano, E. Bioclimatic Applications and Soil Indicators for Olive Cultivation (South of the Iberian Peninsula). Glob. Adv. Res. J. Agric. Sci. 2014, 3, 433–438. [Google Scholar]
- Cano, E.; Velóz Ramirez, A.; Cano-Ortiz, A.; Esteban, F.J. Distribution of Central American Malastomataceae: Biogeographical Analysis of the Caribbean Islands. Acta Bot. Gallica. 2009, 156, 527–557. [Google Scholar] [CrossRef] [Green Version]
- Cano, E.; Cano-Ortiz, A.; Del Río, S.; Alatorre, J.; Velóz, A. Bioclimatic map of the. Dominican Republica. Plant Sociol. 2012, 49, 81–90. [Google Scholar] [CrossRef]
- Cano-Ortiz, A.; Piñar Fuentes, J.C.; Quinto Canas, R.; Pinto Gomes, C.J.; Cano, E. Analysis of the Relationship Between Bioclimatology and Sustainable Developement. In New Metropolitan Persperctives; Calabrò, B., Spina, D., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2020; Volume 178, pp. 1291–1301, NMP 2020, SIST. [Google Scholar]
- Burgos, J.L.; González, R.J.L. Diagramas Bioclimáticos; Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 1983; pp. 1–382. [Google Scholar]
- Cano, E.; Ruiz, L.; Melendo, M.; Nieto, J.; Cano Ortiz, A. Bases bioclimáticas para la planificación del olivar en el centro-sur de la Península Ibérica (España, Portugal). In Actas IFOAN; Sociedad Española de Agricultura Ecológica. SEAE: Valencia, Spain, 2004; pp. 305–311. ISBN 84-609-7732-3. [Google Scholar]
- Cano, E.; Cano Ortiz, A. Bioclimatología y Bioindicadores del olivar: Bases fundamentales para un desarrollo sostenible. In Asociación Grupo de Estudios Avanzados-Grupo Textura; Andalucía, E.O., Ed.; Universidad de Sevilla: Sevila, Spain, 2011; pp. 83–97. ISBN 978-84-695-7405-8. Available online: https://investigacion.us.es/sisius/sis_showpub.php?idpers=4244 (accessed on 28 October 2022).
- Reyes Palomino, S.E.; Cano CCoa, D.M. Efectos de la agricultura intensiva y el cambio climático sobre la biodiversidad. Rev. De Investig. Altoandinas 2022, 24, 53–64. [Google Scholar] [CrossRef]
- Cisneros, O.; Modrego, P.; Rueda, J.; Ágreda, T.; Águeda, B.; Alonso, R.; Gordo, J.; Sombrero, A.; De Benito, A.; Tenorio, J.L.; et al. Evaluación de diferentes alternativas de forestación y agricultura como sumideros de carbono en Castilla y León. In 5º Congreso Forestal; S.E.C.F.-Junta de Castilla y León, Ed.; Sociedad Española de Ciencias Forestales: Avila, Spain, 2009; pp. 2–10. [Google Scholar]
- Cano, E.; García Fuentes, A.; Torres, J.A.; Pinto Gomes, C.J.; Cano Ortiz, A.; Montilla, R.J.; Muñoz, J.J.; Ruiz, L.; Rodríguez, A. Estudio de los quejigares de Sierra Morena oriental (Jaén). Lagascalia 2004, 24, 51–61. [Google Scholar]
- Blasi, C.; Di Pietro, R.; Fortini, P. A phytosociological analysis of abandoned terraced olive grove shrublands in the Tyrrhenian district of Central Italy. Plant Biosyst. 2000, 134, 305–331. [Google Scholar] [CrossRef]
- Rühl, J.; Pasta, S.; Schnittler, M. A chronosequence study of vegetation dynamics on abandoned vine and caper terraces of Pantelleria Island (Sicily). Arch. Nat. Conserv. Landsc. Res. 2006, 45, 71–94. [Google Scholar]
- Calabrese, G.; Perrino, E.V.; Ladisa, G.; Aly, A.; Tesfmichael Solomon, M.; Mazdaric, S.; Benedetti, A.; Ceglie, F.G. Short-term effects of different soil management practices on biodiversity and soil quality of Mediterranean ancient olive orchards. Org. Agric. 2015, 5, 209–223. [Google Scholar] [CrossRef]
- Patti, M.; Musarella, C.M.; Laface, V.L.A.; Cano-Ortiz, A.; Quinto-Canas, R.; Spampinato, G. The Use of Plants for Building Purposes in the Popular Tradition. In New Metropolitan Perspectives. NMP 2022. Lecture Notes in Networks and Systems; Calabrò, F., Della Spina, L., Piñeira Mantiñán, M.J., Eds.; Springer: Cham, Switzerland, 2022; Volume 482. [Google Scholar] [CrossRef]
- Federación Española de Municipios y Provincias. Los Sumideros de Carbono a Nivel Local. Edita; Federación Española de Municipios y provincias: Vigo, Spain, 2010; p. 162. [Google Scholar]
- NEIKER-Tecnalia. Sumideros de Carbono de la Comunidad Autónoma del País Vasco: Capacidad de Secuestro y Medidas Para su Promoción; Servicio Central de Publicaciones del Gobierno Vasco: Vitoria-Gasteiz, Spain, 2014; p. 212. [Google Scholar]
- Nagy, D.U.; Rauschert, E.S.; Henn, T.; Cianfaglione, K.; Stranczinger, S.; Pal, R.W. The more we do, the less we gain? Balancing effort and efficacy in managing the Solidago gigantea invasion. Weed Res. 2020, 60, 232–240. [Google Scholar] [CrossRef] [Green Version]
- Agencia Europea del Medio Ambiente. El Suelo y el Cambio Climático. 2015. Recuperado de. Available online: http://www.eea.europa.eu/es/senales/senales-2015/articu-los/el-suelo-y-el-cambio-climatico (accessed on 15 August 2022).
- García Fuentes, A.; Cano, E. Fitosociología aplicada al conocimiento de los herbazales: Nuevo método para el cálculo del valor forrajero. Ecol. Mediterránea 1993, 19, 19–28. [Google Scholar] [CrossRef]
- Bhanwaria, R.; Singh, B.; Musarella, C.M. Effect of Organic Manure and Moisture Regimes on Soil Physiochemical Properties, Microbial Biomass Cmic:Nmic:Pmic Turnover and Yield of Mustard Grains in Arid Climate. Plants 2022, 11, 722. [Google Scholar] [CrossRef]
- Panuccio, M.R.; Mallamaci, C.; Attinà, E.; Muscolo, A. Using Digestate as Fertilizer for a Sustainable Tomato Cultivation. Sustainability 2021, 13, 1574. [Google Scholar] [CrossRef]
- Švehláková, H.; Turčová, B.; Rajdus, T.; Plohák, P.; Nováková, J. Effective combination of management methods suppresses invasive Jerusalem artichoke. IOP Conf. Ser. Earth Environ. Sci. 2021, 900, 012045. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, X.; Zhu, Y.; Li, L.; Zhang, Y.; Li, J.; Qiang, S. Biological control of Solidago canadensis using a bioherbicide isolate of Sclerotium rolfsii SC64 increased the biodiversity in invaded habitats. Biol. Control. 2019, 139, 104093. [Google Scholar] [CrossRef]
- Powles, S.B.; Yu, Q. Evolution in Action: Plants Resistant to Herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Hermosín, M.C.; Rodríguez-Linaza, L.C.; Cornejo, J.; Ordóñez-Fernández, R. Efecto de uso de agroquímicos en el olivar sobre la calidad de las aguas. Sostenibilidad Prod. Oliv. Andal. 2009, 127–160. [Google Scholar]
Location | P | Io | Ic | It/Itc | Alt | Iosc2 | Iosc3 | Iosc3/I |
---|---|---|---|---|---|---|---|---|
1. Vadillo-Castil (J) | 1182.3 | 8.42 | 17.6 | 199 | 970 | 0.48 | 1.10 | 229 |
2. Pontones (J) | 1148.7 | 6.98 | 18.0 | 214 | 740 | 0.53 | 0.92 | 1.73 |
3. La Iruela (J) | 850.1 | 4.78 | 19.2 | 343 | 933 | 0.27 | 0.71 | 2.62 |
4. B. Moraleda (J) | 612.1 | 3.33 | 19.7 | 370 | 887 | 0.36 | 0.66 | 1.83 |
5. B. Segura-Perales (J) | 612.7 | 3.52 | 20.7 | 253 | 760 | 0.43 | 0.64 | 1.48 |
6. Siles (J) | 785.7 | 4.33 | 21.6 | 260 | 826 | 0.39 | 0.75 | 1.92 |
7. V. del Arzobispo (J) | 698.2 | 3.54 | 19.4 | 297 | 685 | 0.23 | 0.54 | 2.34 |
8. Villacarrillo (J) | 610.8 | 3.26 | 20.4 | 284 | 794 | 0.26 | 0.52 | 2.00 |
9. P. del Dañador (J) | 612.3 | 3.75 | 18.8 | 260 | 700 | 0.40 | 0.73 | 1.85 |
10. B. E.- Centenillo (J) | 679.1 | 3.87 | 19.4 | 271 | 824 | 0.18 | 0.45 | 2.50 |
11. P. Rumblar (J) | 657.4 | 3.28 | 18.6 | 353 | 300 | 0.18 | 0.45 | 2.50 |
12. Torredonjimano (J) | 648.9 | 3.25 | 19.7 | 329 | 591 | 0.33 | 0.55 | 1.66 |
13. P. Tranco de Beas (J) | 849.6 | 4.65 | 18.2 | 298 | 600 | 0.41 | 0.81 | 1.97 |
14. Beas de Segura (J) | 658.0 | 3.20 | 19.7 | 322 | 577 | 0.30 | 0.58 | 1.93 |
15. Cazorla. ICONA (J) | 792.4 | 4.68 | 19.2 | 257 | 885 | 0.32 | 0.74 | 2.31 |
16. Huelma-Solera (J) | 526.9 | 3.20 | 20.8 | 293 | 1084 | 0.40 | 0.74 | 1.85 |
17. P. de la Bolera (J) | 653.7 | 3.83 | 17.0 | 284 | 980 | 0.50 | 0.90 | 1.80 |
18. Jimena (J) | 600.3 | 3.20 | 20.0 | 303 | 590 | 0.32 | 0.69 | 2.15 |
19. A. Real-Charilla (J) | 681.0 | 4.05 | 17.3 | 270 | 920 | 0.42 | 0.68 | 1.61 |
20. P.del Jandula (J) | 505.2 | 2.50 | 19.5 | 339 | 360 | 0.17 | 0.41 | 2.43 |
21. Arjona (J) | 609.9 | 2.97 | 19.5 | 406 | 410 | 0.25 | 0.41 | 1.64 |
22. Bailen (J) | 581.7 | 2.70 | 20.1 | 369 | 369 | 0.14 | 0.32 | 2.34 |
23. Andújar (J) | 463.9 | 2.13 | 19.1 | 371 | 212 | 0.17 | 0.28 | 1.66 |
24. Jaén. Instituto (J) | 578.3 | 2.85 | 18.8 | 345 | 510 | 0.20 | 0.40 | 2.00 |
25. Linares (J) | 642.2 | 3.12 | 18.3 | 339 | 419 | 0.21 | 0.52 | 2.48 |
26. L. Torubias (J) | 490.4 | 2.34 | 20.3 | 355 | 290 | 0.14 | 0.31 | 2.26 |
27. Mancha Real (J) | 551.6 | 3.02 | 18.1 | 299 | 753 | 0.37 | 0.69 | 1.87 |
28. P. Guadalmena (J) | 517.9 | 2.74 | 20.0 | 308 | 602 | 0.37 | 0.55 | 1.48 |
29. L. Fuente Higuera (J) | 471.0 | 2.36 | 18.6 | 342 | 300 | 0.15 | 0.30 | 2.00 |
30. Ubeda (J) | 579.6 | 3.03 | 18.4 | 313 | 748 | 0.22 | 0.44 | 2.00 |
31. La P. de Segura (J) | 674.7 | 3.55 | 19.9 | 305 | 584 | 0.35 | 0.64 | 1.82 |
32. Cabra de S. Cristo (J) | 449.9 | 2.62 | 17.7 | 275 | 938 | 0.35 | 0.65 | 1.86 |
33. Ubeda P. Guadiana (J) | 404.6 | 2.24 | 19.6 | 285 | 420 | 0.23 | 0.46 | 2.00 |
34. P. Guadalmellato (CO) | 698.4 | 3.42 | 18.0 | 349 | 200 | 0.40 | 0.64 | 1.60 |
35. C. La Jarosa (CO) | 831.1 | 4.46 | 16.5 | 315 | 340 | 0.25 | 0.31 | 1.24 |
36. Pantano P. Nuevo (CO) | 760.6 | 4.03 | 17.9 | 321 | 410 | 0.16 | 0.59 | 3.68 |
37. Villaralto (CO) | 501.4 | 2.66 | 18.8 | 310 | 583 | 0.42 | 0.60 | 1.42 |
38. Pozoblanco (CO) | 514.4 | 2.66 | 19.9 | 311 | 649 | 0.34 | 0.66 | 1.94 |
39. Aldea de Cuenca (CO) | 559.0 | 2.98 | 18.1 | 307 | 571 | 0.23 | 0.67 | 2.91 |
40. H. del Duque. Aer. (CO) | 476.9 | 2.68 | 18.4 | 284 | 540 | 0.42 | 0.68 | 1.61 |
41. Pedroche (CO) | 506.8 | 2.60 | 19.2 | 322 | 621 | 0.38 | 0.63 | 1.65 |
42. La Rambla (CO) | 527.4 | 2.81 | 17.9 | 308 | 200 | 0.30 | 0.41 | 1.37 |
43. Castro del Rio (CO) | 470.7 | 2.45 | 20.1 | 305 | 210 | 0.17 | 0.36 | 2.12 |
44. Montoro (CO) | 572.4 | 2.72 | 18.1 | 360 | 195 | 0.19 | 0.37 | 1.94 |
45. Pozoblanco. Cerro (CO) | 594.7 | 2.98 | 19.0 | 339 | 500 | 0.32 | 0.52 | 1.62 |
It/Itc | Io | Ic | Ios2 | Ios3 | Ios3/Ios2 | |
---|---|---|---|---|---|---|
Aracena | 281/281 | 5.88 | 17.8 | 0.29 | 0.81 | 2.79 |
Arjona | 321/336 | 2.84 | 19.50 | 0.11 | 0.30 | 2.72 |
Jodar | 328/343 | 2.31 | 20.0 | 0.20 | 0.38 | 1.90 |
O. Montiel | 195/209 | 3.30 | 20.9 | 0.48 | 0.86 | 1.79 |
Tabernas | 388/388 | 1.14 | 16.4 | 0.06 | 0.10 | 1.66 |
Torredonjimeno | 322/331 | 3.25 | 19.7 | 0.33 | 0.55 | 1.66 |
Tabernas | ETP | e | P | R | D |
---|---|---|---|---|---|
January | 23 | 4.6 | 16 | 3 | 32 |
February | 22 | 4.4 | 24 | 5 | 21 |
Mach | 36 | 7.2 | 20 | 0 | 24 |
April | 55 | 11 | 28 | 0 | 20 |
May | 99 | 19.8 | 22 | 0 | 28 |
June | 133 | 26.6 | 5 | 0 | 22 |
July | 168 | 33.6 | 2 | 0 | 5 |
August | 161 | 32.2 | 1 | 0 | 2 |
September | 109 | 21.8 | 29 | 0 | 1 |
October | 69 | 13.8 | 43 | 0 | 29 |
November | 33 | 6.6 | 26 | 0 | 43 |
December | 19 | 3.8 | 29 | 10 | 36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cano-Ortiz, A.; Fuentes, J.C.P.; Gea, F.L.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Meireles, C.I.R.; Raposo, M.; Gomes, C.J.P.; Spampinato, G.; del Río González, S.; et al. Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy 2022, 12, 2707. https://doi.org/10.3390/agronomy12112707
Cano-Ortiz A, Fuentes JCP, Gea FL, Ighbareyeh JMH, Quinto Canas RJ, Meireles CIR, Raposo M, Gomes CJP, Spampinato G, del Río González S, et al. Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy. 2022; 12(11):2707. https://doi.org/10.3390/agronomy12112707
Chicago/Turabian StyleCano-Ortiz, Ana, Jose Carlos Piñar Fuentes, Felipe Leiva Gea, Jehad Mahmoud Hussein Ighbareyeh, Ricardo Jorje Quinto Canas, Catarina Isabel Rodrigues Meireles, Mauro Raposo, Carlos Jose Pinto Gomes, Giovanni Spampinato, Sara del Río González, and et al. 2022. "Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves" Agronomy 12, no. 11: 2707. https://doi.org/10.3390/agronomy12112707
APA StyleCano-Ortiz, A., Fuentes, J. C. P., Gea, F. L., Ighbareyeh, J. M. H., Quinto Canas, R. J., Meireles, C. I. R., Raposo, M., Gomes, C. J. P., Spampinato, G., del Río González, S., Musarella, C. M., & Cano, E. (2022). Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy, 12(11), 2707. https://doi.org/10.3390/agronomy12112707