The Ability of Nitrification Inhibitors to Decrease Denitrification Rates in an Arable Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Fields
2.2. Experimental Design and Field Management
2.3. Soil Sampling and Measurement
2.4. In Situ Denitrification Rates
2.5. Denitrifying Enzyme Activity
2.6. DMPP Extraction and Its Qualification
2.7. Statistical Analysis
3. Results
3.1. Soil Denitrification Rates
3.2. Soil Microbial Mass, C Availability, pH, NH4+-N, and NO3−-N Concentration
3.3. Rate of Inhibitor Loss in the Soils
4. Discussion
4.1. Impact of DMPP on Soil Denitrification Rates
4.2. Impacts of DMPP on Carbon Availability, Soil Microbial Biomass, and pH
5. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Klimczyk, M.; Siczek, A.; Schimmelpfennig, L. Improving the efficiency of urea-based fertilization leading to reduction in ammonia emission. Sci. Total Environ. 2021, 771, 13. [Google Scholar] [CrossRef] [PubMed]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the Nitrogen Cycle: Recent Trends, Questions, and Potential Solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Yao, Z.; Zhan, Y.; Zheng, X.; Zhou, M.; Yan, G.; Wang, L.; Werner, C.; Butterbach-Bahl, K. Potential benefits of liming to acid soils on climate change mitigation and food security. Glob. Chang. Biol. 2021, 27, 2807–2821. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, S.; Ma, S.T.; Zheng, X.; Wang, Z.; Lu, C. Effects of commonly used nitrification inhibitors-dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and nitrapyrin on soil nitrogen dynamics and nitrifiers in three typical paddy soils. Geoderma 2020, 380, 114637. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. Impact of different forms of N fertiliser on N2O emissions from intensive grassland. Nutr. Cycl. Agroecosys. 2003, 67, 37–46. [Google Scholar] [CrossRef]
- Barton, K.; McLay, C.D.A.; Schipper, L.A.; Smith, C.T. Annual denitrification rates in agricultural and forest soils: A review. Aust. J. Soil Res. 1999, 37, 1073–1093. [Google Scholar] [CrossRef]
- Saud, S.; Wang, D.; Fahad, S. Improved nitrogen use efficiency and greenhouse gas emissions in agricultural soils as producers of biological nitrification inhibitors. Front. Plant Sci. 2022, 13, 854195. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Menneer, J.C. Nitrate leaching in grazing systems and management strategies to reduce losses. Occas. Rep. 2005, 18, 79–92. [Google Scholar]
- Di, H.J.; Cameron, K.C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agr. Ecosyst. Environ. 2005, 109, 202–212. [Google Scholar] [CrossRef]
- Weiske, A.; Benckiser, G.; Ottow, J.C.G. Effect of the new nitrification inhibitor DMPP in comparison to DCD on nitrous oxide (N2O) emissions and methane (CH4) oxidation during 3 years of repeated applications in field experiments. Nutr. Cycl. Agroecosys. 2001, 60, 57–64. [Google Scholar] [CrossRef]
- Majumdar, D.; Pathak, H.; Kumar, S.; Jain, M.C. Nitrous oxide emission from a sandy loam Inceptisol under irrigated wheat in India as influenced by different nitrification inhibitors. Agric, Ecosyst, Environ. 2002, 91, 283–293. [Google Scholar] [CrossRef]
- Xh, A.; Jme, A.; Ft, B.; Vm, A.; Gm, A.; Fm, A. Dimethylpyrazole-based nitrification inhibitors have a dual role in N2O emissions mitigation in forage systems under Atlantic climate conditions. Sci. Total. Envrion. 2022, 807, 150670. [Google Scholar]
- Hénault, C.; Germon, J.C. NEMIS, a predictive model of denitrification on the field scale. Eur. J. Soil Sci. 2000, 51, 257–270. [Google Scholar] [CrossRef]
- Vallejo, A.L.; Garcia-Torres, J.A.; Diez, A.; Lopez-Fernandez, S. Comparison of N losses (NO3−, N2O, NO) from surface applied, injected or amended (DCD) pig slurry of an irrigated soil in a Mediterranean climate. Plant Soil 2005, 272, 313–325. [Google Scholar] [CrossRef]
- Merino, P.; Menendez, S.; Pinto, M.; Gonzalez-Murua, C.; Estavillo, J.M. 3, 4-Dimethylpyrazole phosphate reduces nitrous oxide emissions from grassland after slurry application. Soil Use Manag. 2005, 21, 53–57. [Google Scholar] [CrossRef]
- Pan, B.; Xia, L.; Lam, S.K.; Wang, E.; Zhang, Y.; Mosier, A.; Chen, D. A global synthesis of soil denitrification: Driving factors and mitigation strategies. Agr. Ecosyst. Environ. 2022, 327, 107850. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Inhibition of ammonium oxidation by a liquid formulation of 3,4-Dimethylpyrazole phosphate (DMPP) compared with a dicyandiamide (DCD) solution in six new Zealand grazed grassland soils. J. Soils Sediments. 2011, 11, 1032–1039. [Google Scholar] [CrossRef]
- Shi, X.Z.; Hu, H.W.; He, J.Z.; Chen, D.L.; Suter, H.C. Effects of 3,4-dimethylpyrazole phosphate (DMPP) on nitrification and the abundance and community composition of soil ammonia oxidizers in three land uses. Biol. Fertil. Soils. 2016, 52, 927–939. [Google Scholar] [CrossRef]
- Chen, H.; Yin, C.; Fan, X.; Ye, M.; Peng, H.; Li, T.; Zhao, Y.; Wakelin, S.A.; Chu, G.; Liang, Y. Reduction of N2O emission by biochar and/or 3,4-dimethylpyrazole phosphate (DMPP) is closely linked to soil ammonia oxidizing bacteria and nosZI-N2O reducer populations. Sci. Total Environ. 2019, 694, 133658. [Google Scholar] [CrossRef]
- Luchibia, O.; Suter, H.; Hu, W.; Lam, K.; He, Z. Effects of repeated applications of urea with DMPP on ammonia oxidizers, denitrifiers, and non-targeted microbial communities of an agricultural soil in Queensland, Australia. Appl. Soil Ecol. 2020, 147, 103392. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Sources of nitrous oxide from 15N-labelled animal urine and urea fertilizer with and without a nitri-fication inhibitor, dicyandiamide (DCD). Aust. J. Soil Res. 2008, 46, 7682. [Google Scholar]
- Lui, C.; Mi, X.; Zhang, X.; Fan, Y.; Zhang, W.; Liao, W.; Xie, J.; Gao, Z.; Roelcke, M.; Liu, H. Impacts of slurry application methods and inhibitors on gaseous emissions and N2O pathways in meadow-cinnamon soil. J. Environ. Manag. 2022, 318, 115560. [Google Scholar]
- Adrian, B.; Mario, C.M.; Luis, M.A.; Pedro, M.A.; Carmen, G.M. Evaluation of a crop rotation with biological inhibition po-tential to avoid N2O emissions in comparison with synthetic nitrification inhibition. J. Environ. Sci. 2023, 127, 222–233. [Google Scholar]
- Tiedje, J.M.; Simkins, S.; Groffman, P.M. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant Soil 1989, 115, 261284. [Google Scholar] [CrossRef]
- Luo, J.; White, R.E.; Ball, R.P.; Tillman, R.W. Measuring denitrification activity in soils under pasture: Optimizing conditions for the short-term denitrification enzyme assay and effects of soil storage on denitrification activity. Soil Biol. Biochem. 1996, 28, 409–417. [Google Scholar] [CrossRef]
- Watkins, N.L.; Schipper, L.A.; Sparlinga, G.P.; Thorroldb, B.; Balks, M. Multiple small monthly doses of dicyandiamide (DCD) did not reduce denitrification in Waikato dairy pasture. N. Z. J. Agri. Res. 2013, 56, 37–48. [Google Scholar] [CrossRef] [Green Version]
- Benckiser, G.; Christ, E.; Herbert, T.; Weiske, A.; Blome, J.; Hardt, M. The nitrification inhibitor 3,4-dimethylpyrazole-phosphat (DMPP)—Quantification and effects on soil metabolism. Plant Soil 2013, 371, 257–266. [Google Scholar] [CrossRef]
- Calderon, F.J.; McCarty, G.W.; Reeves, J.B. Nitrapyrin delays denitrification on manured soils. Soil Sci. 2005, 170, 350–359. [Google Scholar] [CrossRef]
- Thompson, R.B. Denitrification in slurry-treated soil: Occurrence at low temperatures, relationship with soil nitrate and reduction by nitrification inhibitors. Soil Biol. Biochem. 2005, 21, 875882. [Google Scholar] [CrossRef]
- Zhang, H.; Hunt, D.E.; Ellert, B.; Maillard, E.; Kleinman, P.J.A.; Spiegal, S.; Angers, D.A.; Bittman, S. Nitrogen dynamics after low-emission applications of dairy slurry or fertilizer on perennial grass: A long term field study employing natural abundance of δ15N. Plant Soil 2021, 465, 415–430. [Google Scholar] [CrossRef]
- David, R.; Wei, S. Nitrapyrin-based nitrification inhibitors shaped the soil microbial community via controls on soil pH and inorganic N composition. Appl. Soil Ecol. 2022, 170, 104295. [Google Scholar]
- Antonio, C.H.; Jesus, G.L.; Antonio, V.; Eulogio, J.B. Effect of urease and nitrification inhibitors on ammonia volatilization and abundance of N-cycling genes in an agricultural soil. J. Plant Nutr. Soil Sci. 2020, 183, 99–109. [Google Scholar]
- Ouyang, Y.; Evans, S.E.; Friesen, M.L.; Tiemann, L.K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 2018, 127, 71–78. [Google Scholar] [CrossRef]
Types | pH (H2O) | Total P (g kg−1) | Total N (g kg−1) | Total K (g kg−1) | Available N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | Organic Carbon (g kg−1) |
---|---|---|---|---|---|---|---|---|
Soil | 6.8 | 0.59 | 1.49 | 16.8 | 91.1 | 14.7 | 90.7 | 12.2 |
Manure | 7.2 | 6.9 | 22.35 | 16.7 | - | - | - | 2.54 |
Variable Factors | NPK | NPK + DMPP | Manure | Manure + DMPP | ||||
---|---|---|---|---|---|---|---|---|
R2 | P | R2 | P | R2 | P | R2 | P | |
DEA | 0.121 | 0.532 | 0.247 | 0.064 | 0.178 | 0.074 | 0.674 | 0.421 |
NH4+-N | 0.378 | 0.126 | 0.498 | 0.079 | 0.452 | 0.145 | 0.546 | 0.178 |
NO3−-N | 0.236 | 0.214 | 0.216 | 0.142 | 0.312 | 0.126 | 0.201 | 0.097 |
pH | 0.145 | 0.145 | 0.347 | 0.078 | 0.147 | 0.245 | 0.394 | 0.076 |
Carbon availability | 0.189 | 0.321 | 0.421 | 0.231 | 0.325 | 0.365 | 0.414 | 0.069 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Wang, W.; Wang, W.; Li, Y. The Ability of Nitrification Inhibitors to Decrease Denitrification Rates in an Arable Soil. Agronomy 2022, 12, 2749. https://doi.org/10.3390/agronomy12112749
Li J, Wang W, Wang W, Li Y. The Ability of Nitrification Inhibitors to Decrease Denitrification Rates in an Arable Soil. Agronomy. 2022; 12(11):2749. https://doi.org/10.3390/agronomy12112749
Chicago/Turabian StyleLi, Jie, Wenyu Wang, Wei Wang, and Yaqun Li. 2022. "The Ability of Nitrification Inhibitors to Decrease Denitrification Rates in an Arable Soil" Agronomy 12, no. 11: 2749. https://doi.org/10.3390/agronomy12112749
APA StyleLi, J., Wang, W., Wang, W., & Li, Y. (2022). The Ability of Nitrification Inhibitors to Decrease Denitrification Rates in an Arable Soil. Agronomy, 12(11), 2749. https://doi.org/10.3390/agronomy12112749