The Effect of Sinapis alba Mustard Seed Meal Extract on Potato Tuber Quality in Organic Potato Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. S. alba Mustard Meal Extract Phytotoxicity Assay
2.3. Field Trials
2.4. Potato Chemical Analysis
2.5. Phenolics and Glycoalkaloids Analysis
2.6. Data Analysis
3. Results
3.1. Plant Damage
3.2. Plant Nutrients
3.3. Potato Phenolics
3.4. Potato Glycoalkaloids
4. Discussion
4.1. Plant Damage
4.2. Plant Nutrients
4.3. Potato Phenolics
4.4. Potato Glycoalkaloids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beals, K.A. Potatoes, Nutrition and Health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Moore, A.; Olsen, N.; Satterwhite, M.; Frazier, M. Organic Potato Production in Idaho: Nutrient Management and Variety Selection; University of Idaho Extension: Moscow, ID, USA, 2013. [Google Scholar]
- Gale, E.S.; Sullivan, D.M.; Cogger, C.G.; Bary, A.I.; Hemphill, D.D.; Myhre, E.A. Estimating Plant-Available Nitrogen Release from Manures, Composts, and Specialty Products. J. Environ. Qual. 2006, 35, 2321–2332. [Google Scholar] [CrossRef] [Green Version]
- Snyder, A.; Morra, M.J.; Johnson-Maynard, J.; Thill, D.C. Seed Meals from Brassicaceae Oilseed Crops as Soil Amendments: Influence on Carrot Growth, Microbial Biomass Nitrogen, and Nitrogen Mineralization. HortScience 2009, 44, 354–361. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, M.; Sadia, H.; Zafar, M.; Sultana, S.; Khan, M.A.; Khan, Z. The Production and Quality Assessment of Mustard Oil Biodiesel: A Cultivated Potential Oil Seed Crop. Energy Sources Part A Recover. Util. Environ. Eff. 2012, 34, 1480–1490. [Google Scholar] [CrossRef]
- Valdes, Y.; Viaene, N.; Moens, M. Effects of Yellow Mustard Amendments on the Soil Nematode Community in a Potato Field with Focus on Globodera Rostochiensis. Appl. Soil Ecol. 2012, 59, 39–47. [Google Scholar] [CrossRef]
- Morra, M.J.; Popova, I.E.; Dubie, J. Method for Using Mustard Meal or an Extract Thereof; U.S. Patent and Trademark Office: Washington, DC, USA, 2020.
- Morra, M.J.; Popova, I.E.; Boydston, R.A. Bioherbicidal Activity of Sinapis alba Seed Meal Extracts. Ind. Crops Prod. 2018, 115, 174–181. [Google Scholar] [CrossRef]
- Temmen, D.; Randall, J.; Popova, I. Utilization of Mustard Seed Meal Extract for Improving Soil Health in a Small-Scale Organic Potato Cropping System. Commun. Soil Sci. Plant Anal. 2022. [Google Scholar] [CrossRef]
- Popova, I.E.; Morra, M.J. Simultaneous Quantification of Sinigrin, Sinalbin, and Anionic Glucosinolate Hydrolysis Products in Brassica juncea and Sinapis alba Seed Extracts Using Ion Chromatography. J. Agric. Food Chem. 2014, 62, 10687–10693. [Google Scholar] [CrossRef]
- Popova, I.E.; Dubie, J.S.; Morra, M.J. Optimization of Hydrolysis Conditions for Release of Biopesticides from Glucosinolates in Brassica juncea and Sinapis alba Seed Meal Extracts. Ind. Crops Prod. 2017, 97, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Popova, I.E.; Morra, M.J. Sinigrin and Sinalbin Quantification in Mustard Seed Using High Performance Liquid Chromatography-Time-of-Flight Mass Spectrometry. J. Food Compos. Anal. 2014, 35, 120–126. [Google Scholar] [CrossRef]
- Dubie, J.; Stancik, A.; Morra, M.; Nindo, C. Antioxidant Extraction from Mustard (Brassica juncea) Seed Meal Using High-Intensity Ultrasound. J. Food Sci. 2013, 78, E542–E548. [Google Scholar] [CrossRef]
- Kozlowska, H.; Rotkiewicz, D.A.; Zadernowski, R. Phenolic Acids in Rapeseed and Mustard. J. Am. Oil Chem. Soc. 1983, 60, 1119–1123. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A. Rapeseed and Its Products—Sources of Bioactive Compounds: A Review of Their Characteristics and Analysis. Crit. Rev. Food Sci. Nutr. 2013, 53, 307–330. [Google Scholar] [CrossRef]
- Terpinc, P.; Čeh, B.; Ulrih, N.P.; Abramovič, H. Studies of the Correlation between Antioxidant Properties and the Total Phenolic Content of Different Oil Cake Extracts. Ind. Crops Prod. 2012, 39, 210–217. [Google Scholar] [CrossRef]
- Dandurand, L.-M.; Morra, M.J.; Zasada, I.A.; Phillips, W.S.; Popova, I.; Harder, C. Control of Globodera Spp. Using Brassica juncea Seed Meal and Seed Meal Extract. J. Nematol. 2017, 49, 437–445. [Google Scholar] [CrossRef] [Green Version]
- Popova, I.E.; Morra, M.J. Sinapis alba Seed Meal as a Feedstock for Extracting the Natural Tyrosinase Inhibitor 4-Hydroxybenzyl Alcohol. Ind. Crops Prod. 2018, 124, 505–509. [Google Scholar] [CrossRef]
- Golmohamadi, A.; Morra, M.J.; Popova, I.; Nindo, C.I. Optimizing the Use of Sinapis alba Seed Meal Extracts as a Source of Thiocyanate (SCN-) for the Lactoperoxidase System. LWT Food Sci. Technol. 2016, 72, 416–422. [Google Scholar] [CrossRef] [Green Version]
- Brennan, E.B.; Smith, R.F. Mustard Cover Crop Growth and Weed Suppression in Organic, Strawberry Furrows in California. HortScience 2018, 53, 432–440. [Google Scholar] [CrossRef]
- Björkman, T.; Lowry, C.; Shail, J.W.; Brainard, D.C.; Anderson, D.S.; Masiunas, J.B. Mustard Cover Crops for Biomass Production and Weed Suppression in the Great Lakes Region. Agron. J. 2015, 107, 1235–1249. [Google Scholar] [CrossRef] [Green Version]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Phenolic Content and Antioxidant Activities of Selected Potato Varieties and Their Processing By-Products. J. Funct. Foods 2013, 5, 590–600. [Google Scholar] [CrossRef]
- Navarre, D.A.; Pillai, S.S.; Shakya, R.; Holden, M.J. HPLC Profiling of Phenolics in Diverse Potato Genotypes. Food Chem. 2011, 127, 34–41. [Google Scholar] [CrossRef]
- Shakya, R.; Navarre, D.A. LC-MS Analysis of Solanidane Glycoalkaloid Diversity among Tubers of Four Wild Potato Species and Three Cultivars (Solanum tuberosum). J. Agric. Food Chem. 2008, 56, 6949–6958. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, H.; Cajka, T.; Kind, T.; Ma, Y.; Higgins, B.; Ikeda, K.; Kanazawa, M.; VanderGheynst, J.; Fiehn, O.; Arita, M. MS-DIAL: Data-Independent MS/MS Deconvolution for Comprehensive Metabolome Analysis. Nat. Methods 2015, 12, 523–526. [Google Scholar] [CrossRef] [PubMed]
- Popova, I.; Sell, B.; Pillai, S.; Kuhl, J.; Dandurand, L.-M. High-Performance Liquid Chromatography–Mass Spectrometry Analysis of Glycoalkaloids from Underexploited Solanum Species and Their Acetylcholinesterase Inhibition Activity. Plants 2022, 11, 269. [Google Scholar] [CrossRef]
- Love, J.; Selker, R.; Marsman, M.; Jamil, T.; Dropmann, D.; Verhagen, J.; Ly, A.; Gronau, Q.F.; Šmíra, M.; Epskamp, S.; et al. JASP: Graphical Statistical Software for Common Statistical Designs. J. Stat. Softw. 2019, 88, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.-Y.; Bible, B.B.; Chong, C. Influence of Ionic Thiocyanate on Growth of Cabbage, Bean, and Tobacco. J. Chem. Ecol. 1983, 9, 1255–1262. [Google Scholar] [CrossRef]
- Stiehl, B.; Bible, B.B. Reaction of Crop Species to Thiocyanate Ion Toxicity. HortScience 1989, 24, 99–101. [Google Scholar] [CrossRef]
- Hansson, D.; Morra, M.J.; Borek, V.; Snyder, A.J.; Johnson-Maynard, J.L.; Thill, D.C. Ionic Thiocyanate (SCN−) Production, Fate, and Phytotoxicity in Soil Amended with Brassicaceae Seed Meals. J. Agric. Food Chem. 2008, 56, 3912–3917. [Google Scholar] [CrossRef]
- Pavek, M.J.; Thornton, R.E. Planting Depth Influences Potato Plant Morphology and Economic Value. Am. J. Potato Res. 2009, 86, 56–67. [Google Scholar] [CrossRef]
- Essah, S.Y.C.; Delgado, J.A.; Sparks, R.; Dillon, M. Cover Crops Can Improve Potato Tuber Yield and Quality. HortTechnology 2012, 22, 185–190. [Google Scholar] [CrossRef]
- Storey, M.L.; Anderson, P.A. Contributions of White Vegetables to Nutrient Intake: NHANES 2009-2010. Adv. Nutr. 2013, 4, 335S–344S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AbdelGadir, A.H.; Errebhi, M.A.; Al-Sarhan, H.M.; Ibrahim, M. The Effect of Different Levels of Additional Potassium on Yield and Industrial Qualities of Potato (Solanum tuberosum L.) in an Irrigated Arid Region. Am. J. Potato Res. 2003, 80, 219–222. [Google Scholar] [CrossRef]
- Xia, G.; Guo, Z. Effect of Yield Increasing and Quality Promoting of High Starch Potato by Increasing of Potassium Fertilizer Applying in Different Growth Stages. J. Fujian Agric. For. Univ. 2008, 37, 449–452. [Google Scholar]
- Hill, C.R.; Shafaei, A.; Balmer, L.; Lewis, J.R.; Hodgson, J.M.; Millar, A.H.; Blekkenhorst, L.C. Sulfur Compounds: From Plants to Humans and Their Role in Chronic Disease Prevention. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Klikocka, H.; Haneklaus, S.; Bloem, E.; Schnug, E. Influence of Sulfur Fertilization on Infection of Potato Tubers with Rhizoctonia Solani and Streptomyces Scabies. J. Plant Nutr. 2005, 28, 819–833. [Google Scholar] [CrossRef]
- Pavlista, A.D. Early-Season Applications of Sulfur Fertilizers Increase Potato Yield and Reduce Tuber Defects. Agron. J. 2005, 97, 599–603. [Google Scholar] [CrossRef]
- Klikocka, H. The Effect of Sulphur Kind and Dose on Content and Uptake of Micro-Nutrients by Potato Tubers (Solanum tubersosum L.). Acta Sci. Pol. Hortorum Cultus 2011, 10, 137–151. [Google Scholar]
- Shepherd, S.J.; Gibson, P.R. Nutritional Inadequacies of the Gluten-Free Diet in Both Recently-Diagnosed and Long-Term Patients with Coeliac Disease. J. Hum. Nutr. Diet. 2013, 26, 349–358. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.-O.; Smith, N.; Schroeder, D.; Han, J.T.; Lee, C.Y. Daily Consumption of Phenolics and Total Antioxidant Capacity from Fruit and Vegetables in the American Diet. J. Sci. Food Agric. 2005, 85, 1715–1724. [Google Scholar] [CrossRef]
- Mäder, J.; Rawel, H.; Kroh, L.W. Composition of Phenolic Compounds and Glycoalkaloids α-Solanine and α-Chaconine during Commercial Potato Processing. J. Agric. Food Chem. 2009, 57, 6292–6297. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Kim, H.-J.; Choi, S.-H.; Mizuno, M. Glycoalkaloid, Phenolic, and Flavonoid Content and Antioxidative Activities of Conventional Nonorganic and Organic Potato Peel Powders from Commercial Gold, Red, and Russet Potatoes. J. Food Compos. Anal. 2017, 62, 69–75. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Food Phenolics; Technomic Pub. Co.: Lancaster, PA, USA, 1995; ISBN 1566762790. [Google Scholar]
- Akyol, H.; Riciputi, Y.; Capanoglu, E.; Caboni, M.F.; Verardo, V. Phenolic Compounds in the Potato and Its Byproducts: An Overview. Int. J. Mol. Sci. 2016, 17, 835. [Google Scholar] [CrossRef] [PubMed]
- Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and Pharmacological Aspects of Caffeic Acid and Its Activity in Hepatocarcinoma. Front. Oncol. 2019, 9, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, M. Potato Glycoalkaloids and Metabolites: Roles in the Plant and in the Diet. J. Agric. Food Chem. 2006, 54, 8655–8681. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry and Anticarcinogenic Mechanisms of Glycoalkaloids Produced by Eggplants, Potatoes, and Tomatoes. J. Agric. Food Chem. 2015, 63, 3323–3337. [Google Scholar] [CrossRef]
- EFSA Panel on Contaminants in the Food Chain (CONTAM); Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.-C.; Nebbia, C.S.; et al. Risk Assessment of Glycoalkaloids in Feed and Food, in Particular in Potatoes and Potato-Derived Products. EFSA J. 2020, 18, e06222. [Google Scholar] [CrossRef]
Retention Time, min | Glycoalkaloid | Pseudomolecular Ion |
---|---|---|
12.709 | Solanidatetraenol isomer | 862.446 |
12.865 | Solanidadienol | 866.525 |
12.980 | α-Chaconine isomer | 852.509 |
13.047 | Solanidenol | 884.487 |
13.059 | Dehydrochaconine isomer | 850.485 |
13.200 | Solanidatetraenol | 862.446 |
13.320 | Solanidenediol | 884.487 |
13.470 | Solanidatetraenol isomer | 862.446 |
13.592 | Solanidene | 1030.557 |
13.820 | Dehydrochaconine isomer | 850.485 |
13.854 | Solanidenetriol | 916.480 |
13.865 | Solanidadienol isomer | 866.525 |
13.899 | α-Solanine | 868.501 |
14.128 | α-Chaconine | 852.509 |
14.763 | Solanidadienol isomer | 866.525 |
14.790 | Leptinine II | 884.487 |
15.616 | Leptine II | 926.503 |
Control | S. alba Extract | |||
---|---|---|---|---|
1× | 2× | 3× | ||
Starch, g/100 g | 52.0 ± 4.7 a | 53.6 ± 3.1 a | 52.2 ± 5.0 a | 57.1 ± 1.8 a |
Essential nutrients, % | ||||
Nitrogen | 1.52 ± 0.16 bc | 1.73 ± 0.15 a | 1.69 ± 0.10 ab | 1.73 ± 0.14 a |
Phosphorous | 0.34 ± 0.04 a | 0.38 ± 0.03 a | 0.38 ± 0.02 a | 0.36 ± 0.05 a |
Potassium | 2.27 ± 0.15 ab | 2.29 ± 0.10 ab | 2.37 ± 0.13 a | 2.34 ± 0.22 ab |
Sulfur | 0.128 ± 0.010 bc | 0.132 ± 0.007 abc | 0.138 ± 0.007 ab | 0.143 ± 0.012 a |
Calcium | 0.099 ± 0.020 b | 0.112 ± 0.017 ab | 0.112 ± 0.005 ab | 0.124 ± 0.018 a |
Magnesium | 0.136 ± 0.011 a | 0.138 ± 0.008 a | 0.143 ± 0.003 a | 0.144 ± 0.009 a |
Trace mineral, ppm | ||||
Zinc | 20.9 ± 3.0 a | 21.0 ± 1.2 a | 22.4 ± 1.8 a | 24.0 ± 5.7 a |
Iron | 271 ± 122 a | 231 ± 93 a | 319 ± 106 a | 239 ± 135 a |
Manganese | 10.8 ± 1.6 a | 10.0 ± 1.4 a | 11.8 ± 1.6 a | 11.8 ± 2.9 a |
Copper | 8.8 ± 0.9 a | 8.4 ± 0.4 a | 8.5 ± 0.8 a | 8.5 ± 0.9 a |
Boron | 7.7 ± 0.6 a | 7.2 ± 0.3 a | 7.2 ± 0.5 a | 7.2 ± 0.4 a |
Molybdenum | 0.57 ± 0.20 ab | 0.67 ± 0.12 a | 0.54 ± 0.09 ab | 0.43 ± 0.16 b |
Phenolics content, mg/g | ||||
Total phenolics | 0.6 ± 0.1 c | 1.6 ± 0.3 bc | 2.6 ± 0.8 ab | 3.3 ± 0.9 ab |
Caffeic acid | 2.7 ± 0.4 a | 4.1 ± 0.7 a | 4.1 ± 0.5 a | 3.6 ± 2.0 a |
Antinutrients conc., mg/g | ||||
α-Solanine | 0.80 ± 0.02 a | 1.15 ± 0.13 a | 0.78 ± 0.44 a | 1.06 ± 0.43 a |
α-Chaconine | 3.10 ± 0.46 a | 3.52 ± 0.25 a | 3.67 ± 0.26 a | 3.84 ± 0.49 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temmen, D.; Randall, J.; Popova, I. The Effect of Sinapis alba Mustard Seed Meal Extract on Potato Tuber Quality in Organic Potato Production. Agronomy 2022, 12, 2782. https://doi.org/10.3390/agronomy12112782
Temmen D, Randall J, Popova I. The Effect of Sinapis alba Mustard Seed Meal Extract on Potato Tuber Quality in Organic Potato Production. Agronomy. 2022; 12(11):2782. https://doi.org/10.3390/agronomy12112782
Chicago/Turabian StyleTemmen, Daniel, John Randall, and Inna Popova. 2022. "The Effect of Sinapis alba Mustard Seed Meal Extract on Potato Tuber Quality in Organic Potato Production" Agronomy 12, no. 11: 2782. https://doi.org/10.3390/agronomy12112782
APA StyleTemmen, D., Randall, J., & Popova, I. (2022). The Effect of Sinapis alba Mustard Seed Meal Extract on Potato Tuber Quality in Organic Potato Production. Agronomy, 12(11), 2782. https://doi.org/10.3390/agronomy12112782