Effect of Phosphorus Supply Levels on Nodule Nitrogen Fixation and Nitrogen Accumulation in Soybean (Glycine max L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Site Overview
2.2. Test Materials
2.3. Experimental Design
2.4. Test Treatment
2.5. Sampling and Measurement
2.6. Data Calculations
2.7. Statistical Analyses
3. Results
3.1. Effect of Different Phosphorus Supply Levels on Nodulation and Nitrogen Fixation
3.2. Effect of Different Phosphorus Supply Levels on Soybean Nitrogen Absorption and Distribution
3.2.1. The Effect of Different Phosphorus Supply Levels on the Abundance of 15N in Soybean Plants
3.2.2. Proportion of Nitrogen Sources in Various Organs of Soybean under Different Phosphorus Supply Levels
3.2.3. Nitrogen Accumulation and Nodule Nitrogen Fixation in Different Parts of Soybean under Different Phosphorus Supply Levels
3.3. Comparisons between ARA, RNNF%, and Naccumulation of Nodules
3.4. Correlations Analysis between Different Phosphorus Supply Levels and Soybean ARA, Nitrogen Fixation Rate of Nodules, and Nitrogen Fixation of Nodules
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elser, J.J.; Bracken, M.E.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Y.; Zhuang, Q.; Zhu, S.; Xiao, B.; Liang, C.; Liao, H.; Tian, J. Genome Wide Transcriptome Analysis Reveals Complex Regulatory Mechanisms Underlying Phosphate Homeostasis in Soybean Nodules. Int. J. Mol. Sci. 2018, 19, 2924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulieman, S.; Ha, C.V.; Schulze, J.; Tran, L.P. Growth and nodulation of symbiotic Medicago truncatula at different levels of phosphorus availability. J. Exp. Bot. 2013, 64, 2701–2712. [Google Scholar] [CrossRef] [Green Version]
- Vance, C.P.; Uhde-Stone, C.; Allan, D.L. Phosphorus acquisition and use: Critical adaptations by plantsfor securing a nonrenewable resource. New Phytol. 2010, 157, 423–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.; Hinsinger, P.; Drevon, J.J.; Jaillard, B. Phosphorus Deficiency Impairs Early Nodule Functioning and Enhances Proton Release in Roots of Medicago truncatula L. Ann. Bot. 2001, 88, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cui, Q.Q.; Liang, C.Y.; Sun, L.L.; Tian, J.; Liao, H. Identification of differentially expressed proteins in soybean nodules under phosphorus deficiency through proteomic analysis. Proteomics 2011, 11, 4648–4659. [Google Scholar] [CrossRef]
- Magadlela, A.; Pérez-Fernández, M.A.; Kleinert, A.; Dreyer, L.L.; Valentine, A.J. Source of inorganic N affects the cost of growth in a legume tree species (Virgilia divaricata) from the Mediterrean-type Fynbos ecosystem. J. Plant Ecol. 2016, 9, 752–761. [Google Scholar] [CrossRef] [Green Version]
- Taliman, N.A.; Dong, Q.; Echigo, K.; Raboy, V.; Saneoka, H. Effect of Phosphorus Fertilization on the Growth, Photosynthesis, Nitrogen Fixation, Mineral Accumulation, Seed Yield, and Seed Quality of a Soybean Low-Phytate Line. Plants 2019, 8, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulgarelli, R.G.; De Oliveira, V.H.; de Andrade, S.A.L. Arbuscular mycorrhizal symbiosis alters the expression of PHT1 phosphate transporters in roots and nodules of P-starved soybean plants. Theor. Exp. Plant Physiol. 2020, 32, 243–253. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, J.; Tian, J.; Chen, L.; Sun, Z.; Guo, Y.; Lu, X.; Gu, M.; Xu, G.; Liao, H. The High-Affinity Phosphate Transporter GmPT5 Regulates Phosphate Transport to Nodules and Nodulation in Soybean. Plant Physiol. 2012, 159, 1634–1643. [Google Scholar] [CrossRef]
- Lu, M.; Cheng, Z.; Zhang, X.M.; Huang, P.; Fan, C.; Yu, G.; Chen, F.; Xu, K.; Chen, Q.; Miao, Y. Spatial Divergence of PHR-PHT1 Modules Maintains Phosphorus Homeostasis in Soybean Nodules. Plant Physiol. 2020, 184, 01209–02019. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, M.N.; Kusano, M.; Nguyen, K.H.; Watanabe, Y.; Tran, L. Adaptation of the symbiotic Mesorhizobium chickpea relationship to phosphate deficiency relies on reprogramming of whole plant metabolism. Proc. Natl. Acad. Sci. USA 2016, 113, 4610–4619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, J.P.; Hartwig, U.A.; Frehner, M.; Nösberger, J.; Lüscher, A. Evidence that P deficiency induces N feedback regulation of symbiotic N2 fixation in white clover (Trifolium repens L.). J. Exp. Bot. 2000, 51, 1289–1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sulieman, S.; Schulzec, J.; Trana, L.S. N-feedback regulation is synchronized with nodule carbon alteration in Medicago truncatula under excessive nitrate or low phosphorus conditions. J. Plant Physiol. 2014, 171, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Sa, T.M.; Israel, D.W. Energy status and functioning of phosphorus- deficient soybean nodules. Plant Physiol. 1991, 97, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.J.; Qiao, Y.F.; Han, X.Z.; An, M. Nodule formation and development in soybeans Glycine max L.) in response to phosphorus supply in solution culture. Pedosphere 2007, 17, 36–43. [Google Scholar] [CrossRef]
- Le Roux, M.R.; Khan, S.; Valentine, A.J. Organic acid accumulation may inhibit N2 fixation in phosphorus-stressed lupin nodules. New Phytol. 2008, 177, 956–964. [Google Scholar] [CrossRef]
- Mandri, B.; Drevon, J.J.; Bargaz, A.; Oufdou, K.; Faghire, M.; Plassard, C.; Payre, H.; Ghoulam, C. Interactions between common bean genotypes and Rhizobia strains isolated from Morocan soils for growth, phosphatase and phytase activities under phosphorus deficiency conditions. J. Plant Nutr. 2012, 35, 1477–1490. [Google Scholar] [CrossRef]
- Araújo, A.P.; Plassard, C.; Drevon, J.J. Phosphatase and phytase activities in nodules of common bean genotypes at different levels of phosphorus supply. Plant Soil 2008, 312, 129–138. [Google Scholar] [CrossRef]
- Graciano, C.; Goyab, J.F.; Frangi, J.L.; Guiamet, J.J. Fertilization with phosphorus increases soil nitrogen absorption in young plants of Eucalyptus grandis. For. Ecol. Manag. 2006, 236, 202–210. [Google Scholar] [CrossRef]
- Reed, S.C.; Seastedt, T.R.; Mann, C.M.; Suding, K.N.; Townsend, A.R.; Townsend, K.L. Phosphorus fertilization stimulates nitrogen fixation and increases inorganic nitrogen concentrations in a restored prairie. Appl. Soil Ecol. 2007, 36, 238–242. [Google Scholar] [CrossRef]
- Divito, G.A.; Sadras, V.O. How do phosphorus, potassium and sulphur affect plant growth and biological nitrogen fixation in crop and pasture legumes? A Meta-Anal. Field Crops Res. 2014, 156, 161–171. [Google Scholar] [CrossRef]
- Yao, Y.B.; Wu, D.T.; Gong, Z.P.; Zhao, J.K.; Ma, C.M. Variation of nitrogen accumulation and yield in response to phosphorus nutrition of soybean (Glycine max L. Merr.). J. Plant Nutr. 2018, 41, 1138–1147. [Google Scholar] [CrossRef]
- Li, H.Y.; Wang, X.X.; Liang, Q.X.; Lyu, X.C.; Li, S.; Gong, Z.P.; Dong, S.K.; Yan, C.; Ma, C.M. Regulation of phosphorus supply on nodulation and nitrogen fixation in soybean plants with dual-root systems. Agronomy 2021, 11, 2354. [Google Scholar] [CrossRef]
- Gremaud, M.F.; Harper, J.E. Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean. Plant Physiol. 1989, 89, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Le Roux, M.R.; Khan, S.; Valentine, A.J. Nitrogen and carbon costs of soybean and lupin root systems during phosphate starvation. Symbiosis 2008, 48, 102–109. [Google Scholar] [CrossRef]
- Naeem, M.; Khan, M.M.A.; Mohd Idrees, M.; Aftab, T. Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen-fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. Sci. Hortic. 2010, 126, 205–214. [Google Scholar] [CrossRef]
- Magadlela, A.; Vardien, W.; Kleinert, A.; Dreyer, L.; Valentine, A.J. The role of phosphorus deficiency in nodule microbial composition, and carbon and nitrogen nutrition of a native legume tree in the Cape fynbos ecosystem. Aust. J. Bot. 2015, 63, 379–386. [Google Scholar] [CrossRef]
- Jemo, M.; Sulieman, S.; Bekkaoui, F.; Olomide, O.A.K.; Hashem, A.; Abd Allah, E.F.; Alqarawi, A.A.; Tran, L.P. Comparative Analysis of the Combined Effects of Different Water and Phosphate Levels on Growth and Biological Nitrogen Fixation of Nine Cowpea Varieties. Front. Plant Sci. 2017, 8, 2111. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wang, J.; Li, Y.; Chen, D.; Ao, J.; Zhou, W.; Shen, D.; Li, Q.; Huang, Z.; Jiang, Y. Influence of nitrogen and phosphorus additions on N2-fixation activity, abundance, and composition of diazotrophic communities in a Chinese fir plantation. Sci. Total Environ. 2018, 619, 1530–1537. [Google Scholar] [CrossRef]
- Qiao, Y.F.; Tang, C.X.; Han, X.Z.; Miao, S.J. Phosphorus deficiency delays the onset of nodule function in soybean. J. Plant Nutr. 2007, 30, 1341–1353. [Google Scholar] [CrossRef]
- Pérez-Fernández, M.; Míguez-Montero, Á.; Valentine, A. Phosphorus and Nitrogen Modulate Plant Performance in Shrubby Legumes from the Iberian Peninsula. Plants 2019, 8, 334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazali, M.; Zaman-Allah, M.; Amencm, L.; Ounane, G.; Abadie, J.; Drevon, J. A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris–rhizobia symbiosis under phosphorus deficiency. Planta 2013, 238, 317–324. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.J.; Han, X.Z.; Liu, X.B.; Qiao, Y.F. Seedling treatments and phosphorus solution concentrations affect nodulation and nodule functions in soybean (Glycine max L.). Plant Soil Environ. 2007, 53, 65–71. [Google Scholar] [CrossRef] [Green Version]
- Tsvetkova, G.E.; Georgiev, G.I. Effect of phosphorus nutrition on the nodulation, nitrogen fixation and nutrient use efficiency of bradyrhizobium japonicum soybean(Glycine max L. merr.) symbiosis. Bulg. J. Plant Physiol. 2003, 3, 331–335. [Google Scholar]
- Raji, S.G.; Tzanakakis, V.; Dörsch, P. Bradyrhizobial inoculation and P application effects on haricot and mung beans in the Ethiopian Rift Valley. Plant Soil 2019, 442, 271–284. [Google Scholar] [CrossRef]
- Schulze, J.; Temple, G.; Temple, S.J.; Beschow, H.; Vance, C.P. Nitrogen fixation by white lupin under phosphorus deficiency. Ann. Bot. 2006, 98, 731–740. [Google Scholar] [CrossRef] [Green Version]
- Cavard, X.; Augusto, F.; Saur, E.; Trichet, P. Field effect of P fertilization on N2 fixation rate of Ulex europaeus. Ann. For. Sci. 2007, 64, 875–881. [Google Scholar] [CrossRef]
Treatments | R1 | R3 | R5 | |
---|---|---|---|---|
Nodule Number (Per Plant) | P1 | 66 ± 8.25 c | 70 ± 10.53 c | 48 ± 2.65 c |
P11 | 67 ± 7.17 c | 79 ± 9.02 bc | 57 ± 0.88 c | |
P21 | 70 ± 0.88 bc | 92 ± 13.97 bc | 66 ± 10.09 c | |
P31 | 85 ± 4.63 b | 124 ± 13.92 bc | 120 ± 7.22 b | |
P41 | 120 ± 2.89 a | 142 ± 7.22 ab | 191 ± 5.49 a | |
P51 | 124 ± 2.03 a | 197 ± 17.59 a | 207 ± 10.39 a | |
Nodule Weight (g/Plant) | P1 | 0.10 ± 0.01 e | 0.12 ± 0.07 d | 0.13 ± 0.01 c |
P11 | 0.10 ± 0.01 e | 0.18 ± 0.01 d | 0.26 ± 0.06 c | |
P21 | 0.15 ± 0.01 d | 0.52 ± 0.01 c | 0.72 ± 0.02 b | |
P31 | 0.25 ± 0.01 c | 0.69 ± 0.15 bc | 1.02 ± 0.19 b | |
P41 | 0.26 ± 0.01 b | 0.77 ± 0.05 ab | 1.41 ± 0.16 a | |
P51 | 0.28 ± 0.01 a | 0.88 ± 0.07 a | 1.42 ± 0.06 a |
Treatments | R1 | R3 | R5 | |
---|---|---|---|---|
SNA(C2H4 µmol g−1 Nodule Dry Mass h−1) | P1 | 27.62 ± 1.81 d | 13.96 ± 0.82 e | 7.83 ± 0.23 d |
P11 | 45.63 ± 6.85 c | 31.72 ± 1.04 d | 22.25 ± 2.17 c | |
P21 | 78.82 ± 3.97 ab | 33.74 ± 0.10 d | 33.08 ± 0.22 ab | |
P31 | 92.04 ± 8.50 a | 42.01 ± 0.14 c | 34.97 ± 0.05 a | |
P41 | 73.28 ± 3.43 b | 51.27 ± 6.39 b | 32.79 ± 0.40 ab | |
P51 | 71.12 ± 1.51 b | 76.36 ± 0.62 a | 31.06 ± 1.80 b | |
ARA(C2H4 umol h−1 Plant−1) | P1 | 3.00 ± 0.29 d | 1.35 ± 0.12 d | 0.86 ± 0.02 d |
P11 | 3.70 ± 0.50 d | 5.67 ± 0.39 d | 5.44 ± 0.55 d | |
P21 | 11.96 ± 0.74 c | 17.60 ± 0.16 cd | 23.92 ± 0.77 c | |
P31 | 22.63 ± 2.49 a | 29.13 ± 2.07 bc | 35.82 ± 0.47 b | |
P41 | 18.79 ± 0.09 b | 39.80 ± 7.47 b | 46.07 ± 4.92 a | |
P51 | 19.82 ± 0.43 ab | 66.89 ± 13.61 a | 44.30 ± 4.52 ab |
Stages | Treatments | Shoot | Root | Nodule |
---|---|---|---|---|
R1 | P1 | 2.27 ± 0.01 b | 2.41 ± 0.01 b | 1.12 ± 0.03 a |
P11 | 2.33 ± 0.01 a | 2.54 ± 0.01 a | 1.15 ± 0.04 a | |
P21 | 2.07 ± 0.01 c | 2.31 ± 0.01 c | 0.96 ± 0.03 b | |
P31 | 1.97 ± 0.01 d | 2.28 ± 0.01 d | 0.94 ± 0.09 b | |
P41 | 1.55 ± 0.01 f | 1.96 ± 0.01 f | 0.78 ± 0.02 c | |
P51 | 1.65 ± 0.01 e | 1.97 ± 0.01 e | 0.87 ± 0.03 bc | |
R3 | P1 | 1.89 ± 0.01 c | 2.07 ± 0.01 c | 0.87 ± 0.01 abc |
P11 | 1.99 ± 0.01 a | 2.17 ± 0.01 a | 0.92 ± 0.01 a | |
P21 | 1.91 ± 0.01 b | 2.14 ± 0.01 b | 0.90 ± 0.01 ab | |
P31 | 1.74 ± 0.01 d | 2.04 ± 0.01 d | 0.81 ± 0.03 bc | |
P41 | 1.74 ± 0.01 d | 2.04 ± 0.01 d | 0.83 ± 0.04 abc | |
P51 | 1.50 ± 0.01 e | 1.86 ± 0.01 e | 0.77 ± 0.06 c | |
R5 | P1 | 1.38 ± 0.01 c | 1.39 ± 0.01 b | 0.67 ± 0.02 ab |
P11 | 1.46 ± 0.01 a | 1.45 ± 0.02 a | 0.69 ± 0.01 ab | |
P21 | 1.41 ± 0.01 b | 1.33 ± 0.01 c | 0.68 ± 0.01 a | |
P31 | 1.25 ± 0.01 d | 1.26 ± 0.01 d | 0.62 ± 0.01 b | |
P41 | 1.19 ± 0.01 e | 1.18 ± 0.01 e | 0.65 ± 0.05 ab | |
P51 | 1.18 ± 0.01 e | 1.15 ± 0.01 e | 0.66 ± 0.03 ab | |
R8 | P1 | 2.41 ± 0.04 a | 2.42 ± 0.02 a | - |
P11 | 2.53 ± 0.04 a | 2.49 ± 0.04 a | - | |
P21 | 2.22 ± 0.05 b | 2.13 ± 0.01 b | - | |
P31 | 1.95 ± 0.10 c | 1.94 ± 0.09 b | - | |
P41 | 2.15 ± 0.05 b | 2.01 ± 0.17 b | - | |
P51 | 2.11 ± 0.01 bc | 1.96 ± 0.05 b | - |
Stages | Treatments | Shoot | Root | Nodule | |||
---|---|---|---|---|---|---|---|
Nitrogen Derived from the Fertilizer | Nitrogen Derived from Atmosphere | Nitrogen Derived from the Fertilizer | Nitrogen Derived from Atmosphere | Nitrogen Derived from the Fertilizer | Nitrogen Derived from Atmosphere | ||
R1 | P1 | 63.58 ± 0.14 b | 36.42 ± 0.14 e | 68.11 ± 0.16 b | 31.89 ± 0.16 e | 25.21 ± 0.16 a | 74.79 ± 0.09 c |
P11 | 65.52 ± 0.25 a | 34.48 ± 0.25 f | 72.47 ± 0.06 a | 27.53 ± 0.06 f | 26.04 ± 1.25 a | 73.95 ± 1.25 c | |
P21 | 56.90 ± 0.20 c | 43.10 ± 0.20 d | 64.88 ± 0.03 c | 35.12 ± 0.03 d | 19.89 ± 0.88 b | 80.11 ± 0.88 b | |
P31 | 53.58 ± 0.02 d | 46.42 ± 0.02 c | 64.03 ± 0.19 d | 35.97 ± 0.19 c | 18.94 ± 2.97 b | 81.06 ± 2.97 b | |
P41 | 39.57 ± 0.15 f | 60.43 ± 0.15 a | 53.01 ± 0.13 f | 46.99 ± 0.13 a | 13.84 ± 0.69 d | 86.16 ± 0.69 a | |
P51 | 42.67 ± 0.10 e | 57.33 ± 0.10 b | 53.50 ± 0.02 e | 46.50 ± 0.02 b | 16.70 ± 1.09 bc | 83.30 ± 1.09 ab | |
R3 | P1 | 50.80 ± 0.30 c | 49.20 ± 0.30c | 56.78 ± 0.07 c | 43.22 ± 0.07 c | 16.75 ± 0.38 abc | 83.25 ± 0.38 abc |
P11 | 54.21 ± 0.38 a | 45.79 ± 0.38 e | 60.36 ± 0.06 a | 39.64 ± 0.06 e | 18.43 ± 0.27 a | 81.57 ± 0.27 c | |
P21 | 51.51 ± 0.16 b | 48.49 ± 0.16 d | 59.10 ± 0.16 b | 40.90 ± 0.16 d | 17.58 ± 0.40 ab | 82.42 ± 0.40 bc | |
P31 | 45.72 ± 0.05 d | 54.28 ± 0.05 b | 55.74 ± 0.27 d | 44.26 ± 0.27 b | 14.67 ± 0.84 bc | 85.33 ± 0.84 ab | |
P41 | 45.85 ± 0.07 d | 54.15 ± 0.07 b | 55.85 ± 0.35 d | 44.15 ± 0.35 b | 15.53 ± 1.24 abc | 84.47 ± 1.24 abc | |
P51 | 37.91 ± 0.04 e | 62.09 ± 0.04 a | 49.99 ± 0.08 e | 50.01 ± 0.08 a | 13.53 ± 1.94 c | 86.47 ± 1.94 a | |
R5 | P1 | 34.03 ± 0.12 c | 65.97 ± 0.12 c | 34.00 ± 0.12 b | 66.00 ± 0.10 d | 9.89 ± 0.58 ab | 90.11 ± 0.59 ab |
P11 | 36.50 ± 0.22 a | 63.50 ± 0.22 e | 36.04 ± 0.69 a | 63.96 ± 0.69 e | 10.78 ± 0.45 a | 89.22 ± 0.45 b | |
P21 | 34.88 ± 0.07 b | 65.12 ± 0.07 d | 32.15 ± 0.17 c | 67.85 ± 0.17 c | 10.38 ± 0.26 ab | 89.62 ± 0.26 ab | |
P31 | 29.30 ± 0.19 d | 70.70 ± 0.19 b | 29.91 ± 0.22 d | 70.09 ± 0.22 b | 8.37 ± 0.28 b | 91.63 ± 0.28 a | |
P41 | 27.42 ± 0.15 e | 72.58 ± 0.15 a | 27.10 ± 0.14 e | 72.89 ± 0.80 a | 9.33 ± 1.83 ab | 90.67 ± 1.83 ab | |
P51 | 27.18 ± 0.08 e | 72.81 ± 0.08 a | 26.14 ± 0.26 e | 73.86 ± 0.26 a | 9.57 ± 1.16 ab | 90.43 ± 1.16 ab | |
R8 | P1 | 68.22 ± 1.30 a | 31.78 ± 1.30 c | 68.68 ± 0.67 a | 31.32 ± 0.67 b | - | - |
P11 | 72.35 ± 1.38 a | 27.65 ± 1.38 c | 70.74 ± 1.33 a | 29.26 ± 1.33 b | - | - | |
P21 | 61.77 ± 1.57 b | 38.23 ± 1.57 b | 58.73 ± 0.36 b | 41.27 ± 0.36 a | - | - | |
P31 | 52.68 ± 3.43 c | 47.32 ± 3.43 a | 52.41 ± 3.00 b | 47.59 ± 3.00 a | - | - | |
P41 | 59.69 ± 1.62 b | 40.31 ± 1.62 b | 54.95 ± 5.70 b | 45.05 ± 5.70 a | - | - | |
P51 | 58.28 ± 0.42 bc | 41.71 ± 0.42 ab | 53.20 ± 1.71 b | 46.80 ± 1.71 a | - | - |
Stages | Treatments | Shoot | Root | Nodule | |||
---|---|---|---|---|---|---|---|
Nitrogen Accumulation | Nodule Nitrogen Fixation | Nitrogen Accumulation | Nodule Nitrogen Fixation | Nitrogen Accumulation | Nodule Nitrogen Fixation | ||
R1 | P1 | 115.89 ± 4.40 c | 42.20 ± 1.46 d | 47.57 ± 2.39 a | 15.18 ± 0.80 b | 2.88 ± 0.23 d | 2.15 ± 0.17 c |
P11 | 130.85 ± 9.18 c | 45.16 ± 3.46 d | 30.62 ± 0.81 c | 8.43 ± 0.23 d | 3.47 ± 0.30 d | 2.57 ± 0.26 c | |
P21 | 160.71 ± 5.04 b | 69.24 ± 1.87 c | 36.78 ± 1.98 b | 12.92 ± 0.71 c | 6.29 ± 0.26 c | 5.03 ± 0.16 b | |
P31 | 228.20 ± 12.27 a | 105.93 ± 5.65 b | 48.60 ± 0.31 a | 17.48 ± 0.14 a | 10.19 ± 0.34 b | 8.28 ± 0.55 a | |
P41 | 224.62 ± 6.12 a | 135.74 ± 3.86 a | 36.55 ± 1.63 b | 17.17 ± 0.79 a | 10.50 ± 0.66 ab | 9.05 ± 0.61 a | |
P51 | 209.76 ± 15.56 a | 120.28 ± 9.10 b | 31.38 ± 0.69 c | 14.59 ± 0.32 bc | 11.58 ± 0.54 a | 9.65 ± 0.56 a | |
R3 | P1 | 215.25 ± 5.93 b | 109.03 ± 3.14 d | 70.37 ± 3.62 b | 30.41 ± 1.52 c | 4.96 ± 0.33 d | 4.13 ± 0.26 d |
P11 | 342.50 ± 19.47 b | 156.84 ± 9.11 cd | 70.60 ± 1.10 b | 27.98 ± 0.46 c | 7.56 ± 0.30 d | 6.17 ± 0.23 d | |
P21 | 523.62 ± 51.90 a | 253.83 ± 24.76 bc | 84.30 ± 3.28 a | 34.48 ± 1.42 b | 23.75 ± 0.69 c | 19.57 ± 0.53 c | |
P31 | 543.99 ± 91.92 a | 295.34 ± 50.67 ab | 89.23 ± 3.65 a | 39.48 ± 1.48 a | 30.06 ± 6.79 bc | 25.68 ± 5.94 bc | |
P41 | 580.62 ± 31.39 a | 314.44 ± 17.18 ab | 85.69 ± 2.36 a | 37.82 ± 0.76 ab | 37.60 ± 2.11 ab | 31.72 ± 1.37 ab | |
P51 | 620.71 ± 86.00 a | 385.32 ± 53.19 a | 71.36 ± 0.66 b | 35.68 ± 0.33 b | 42.92 ± 2.61 a | 37.01 ± 1.41 a | |
R5 | P1 | 352.59 ± 17.24 d | 232.64 ± 11.78 e | 90.12 ± 8.83 b | 59.48 ± 5.84 c | 6.65 ± 0.52 c | 5.97 ± 0.43 c |
P11 | 709.27 ± 28.87 c | 450.28 ± 17.11 d | 98.52 ± 6.85 ab | 63.07 ± 4.83 c | 12.45 ± 2.47 c | 11.13 ± 2.27 c | |
P21 | 919.26 ± 91.54 b | 598.51 ± 59.18 c | 105.06 ± 9.12 ab | 71.27 ± 6.06 bc | 37.87 ± 1.75 b | 33.93 ± 1.51 b | |
P31 | 1046.43 ± 9.18 b | 739.81 ± 6.68 b | 119.72 ± 7.01 a | 83.94 ± 5.10 ab | 48.97 ± 7.83 b | 44.83 ± 7.08 b | |
P41 | 1412.70 ± 68.32 a | 1025.37 ± 49.56 a | 123.97 ± 6.26 a | 90.37 ± 4.23a | 69.74 ± 8.22 a | 63.16 ± 7.09 a | |
P51 | 1425.14 ± 78.06 a | 1037.73 ± 56.37 a | 102.40 ± 7.08 ab | 75.65 ± 5.34 abc | 77.19 ± 5.54 a | 69.76 ± 4.70 a | |
R8 | P1 | 365.04 ± 6.40 e | 115.86 ± 2.70 d | 80.63 ± 1.64 c | 25.27 ± 1.03 c | - | - |
P11 | 912.96 ± 54.74 d | 253.77 ± 26.37 d | 94.43 ± 2.10 bc | 27.64 ± 1.56 c | - | - | |
P21 | 1388.97 ± 63.41 c | 532.34 ± 42.69 c | 113.47 ± 7.86 abc | 46.77 ± 2.86 b | - | - | |
P31 | 1949.42 ± 160.16 ab | 927.12 ± 123.85 a | 145.47 ± 7.13 a | 69.06 ± 4.48 a | - | - | |
P41 | 2022.57 ± 70.08 a | 815.01 ± 41.46 ab | 125.81 ± 16.35 ab | 55.20 ± 5.60 ab | - | - | |
P51 | 1711.01 ± 73.11 b | 713.99 ± 33.22 b | 106.95 ± 23.99 ab | 49.28 ± 9.24 b | - | - |
Stages | Phosphorus Supply Level | ARA | Whole Nodule Nitrogen Fixation Rate | |
---|---|---|---|---|
R1 | nodule nitrogen fixation amount | 0.913 ** | 0.876 ** | 0.966 ** |
whole nodule nitrogen fixation rate | 0.902 ** | 0.791 ** | - | |
ARA | 0.978 ** | - | - | |
R3 | nodule nitrogen fixation amount | 0.987 ** | 0.930 ** | 0.847 ** |
whole nodule nitrogen fixation rate | 0.883 ** | 0.977 ** | - | |
ARA | 0.966 ** | - | - | |
R5 | nodule nitrogen fixation amount | 0.992 ** | 0.981 ** | 0.875 ** |
whole nodule nitrogen fixation rate | 0.847 ** | 0.837 ** | - | |
ARA | 0.971 ** | - | - | |
R8 | nodule nitrogen fixation amount | 0.952 ** | - | 0.725 * |
whole nodule nitrogen fixation rate | 0.803 ** | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, L.; Zhang, Z.; Yang, A.; Liu, D. Effect of Phosphorus Supply Levels on Nodule Nitrogen Fixation and Nitrogen Accumulation in Soybean (Glycine max L.). Agronomy 2022, 12, 2802. https://doi.org/10.3390/agronomy12112802
Li H, Wang L, Zhang Z, Yang A, Liu D. Effect of Phosphorus Supply Levels on Nodule Nitrogen Fixation and Nitrogen Accumulation in Soybean (Glycine max L.). Agronomy. 2022; 12(11):2802. https://doi.org/10.3390/agronomy12112802
Chicago/Turabian StyleLi, Hongyu, Lihong Wang, Zuowei Zhang, Aizheng Yang, and Deping Liu. 2022. "Effect of Phosphorus Supply Levels on Nodule Nitrogen Fixation and Nitrogen Accumulation in Soybean (Glycine max L.)" Agronomy 12, no. 11: 2802. https://doi.org/10.3390/agronomy12112802
APA StyleLi, H., Wang, L., Zhang, Z., Yang, A., & Liu, D. (2022). Effect of Phosphorus Supply Levels on Nodule Nitrogen Fixation and Nitrogen Accumulation in Soybean (Glycine max L.). Agronomy, 12(11), 2802. https://doi.org/10.3390/agronomy12112802