Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review
Abstract
:1. Introduction
2. Phosphorus Mobilization in the Plant Rhizosphere
3. Mechanism of P Uptake and Consumption by Plants
4. Inspired Strategies for Managing Phosphorus in Agricultural Soil
4.1. Phosphate Fertilizer Application
4.2. Manure Application
4.3. Mycorrhizal Application
4.4. Plant Growth-Promoting Bacteria Application
4.5. Biosolid Application
4.6. Carrier Application
5. Conclusions
Author Contributions
Funding
Institutional Review Broad Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wahid, F.; Fahad, S.; Danish, S.; Adnan, M.; Yue, Z.; Saud, S.; Siddiqui, M.H.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Sustainable management with mycorrhizae and Phosphate solubilizing bacteria for enhanced Phosphorus uptake in calcareous soils. Agriculture 2020, 10, 334. [Google Scholar] [CrossRef]
- Metson, G.S.; MacDonald, G.K.; Haberman, D.; Nesme, T.; Bennett, E.M. Feeding the Corn Belt: Opportunities for phosphorus recycling in U.S. agriculture. Sci. Total. Environ. 2016, 542, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Muhmood, A.; Lu, J.; Dong, R.; Wu, S. Formation of struvite from agricultural waste waters and its reuse on farmlands: Status and hindrances to closing the nutrient loop. J. Environ. Manag. 2019, 230, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Hummel, C.; Boitt, G.; Santner, J.; Lehto, N.J.; Condron, L.; Wenzel, W.W. Co-occurring increased phosphatase activity and labile P depletion in the rhizosphere of Lupinus angustifolius assessed with a novel, combined 2D-imaging approach. Soil Biol. Biochem. 2021, 153, 107963. [Google Scholar] [CrossRef]
- Nesme, T.; Metson, G.S.; Bennett, E.M. Global phosphorus flows through agricultural trade. Glob. Environ. Chang. 2018, 50, 133–141. [Google Scholar] [CrossRef]
- Wilson, H.; Elliott, J.; Macrae, M.; Glenn, A. Near surface soils as a source of Phosphorus in snow melt runoff from crop land. J. Environ. Qual. 2019, 23, 445–455. [Google Scholar]
- Jiang, B.; Shen, J.; Sun, M.; Hu, Y.; Jiang, W.; Wang, J.; Wu, J. Soil phosphorus availability and rice phosphorus uptake in paddy fields under various agronomic practices. Pedosphere 2021, 31, 103–115. [Google Scholar] [CrossRef]
- Helfenstein, J.; Tamburini, F.; von Sperber, C.; Massey, M.S.; Pistocchi, C.; Chadwick, O.A.; Frossard, E. Combining spectroscopic and isotopic techniques gives a dynamic view of phosphorus cycling in soil. Nat. Commun. 2018, 9, 312–320. [Google Scholar] [CrossRef]
- Scholz, R.W.; Wellmer, F.W. Endangering the integrity of science by misusing unvalidated models and untested assumptions as facts: General considerations and the mineral and phosphorus scarcity fallacy. Sustain. Sci. 2021, 16, 2069–2086. [Google Scholar] [CrossRef]
- Kreueder, A.; Santner, J.; Scharsching, V.; Oburger, E.; Hoefer, C.; Hann, S.; Wenzel, W.W. In situ observation of localized, sub-mm scale changes of phosphorus biogeochemistry in the rhizosphere. Plant Soil 2018, 424, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.; Lu, X.; Chen, Q.; Kuang, X.; Liang, C.; Deng, L.; Lin, D.; Cai, K.; Tian, J. Phosphorus fertilization affects soybean rhizosphere phosphorus dynamics and the bacterial community in karst soils. Plant Soil 2022, 475, 137–152. [Google Scholar] [CrossRef]
- De la Fuente Cantó, C.; Simonin, M.; King, E.; Moulin, L.; Bennett, M.J.; Castrillo, G.; Laplaze, L. An extended root phenotype: The rhizosphere, its formation and impacts on plant fitness. Plant J. 2020, 103, 951–964. [Google Scholar] [CrossRef] [Green Version]
- Kruse, J.; Abraham, M.; Amelung, W.; Baum, C.; Bol, R.; Kühn, O.; Leinweber, P. Innovative methods in soil phosphorus research: A review. J. Plant Nutr. Soil Sci. 2015, 178, 43–88. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.X.; He, S.X.; Li, G.; Teng, H.H.; Ma, L.Q. Application of diffusive gradients in thin-films technique for speciation, bioavailability, modeling and mapping of nutrients and contaminants in soils. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3035–3079. [Google Scholar] [CrossRef]
- Santner, J.; Zhang, H.; Leitner, D.; Schnepf, A.; Prohaska, T.; Puschenreiter, M.; Wenzel, W.W. High-resolution chemical imaging of labile phosphorus in the rhizosphere of Brassica napus L. cultivars. Environ. Exp. Bot. 2012, 77, 219–226. [Google Scholar] [CrossRef]
- Santner, J.; Larsen, M.; Kreuzeder, A.; Glud, R.N. Two decades of chemical imaging of Solutes in sediments and soils—A review. Anal. Chim. Acta 2015, 878, 9–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Yuan, J.-H.; Chen, H.; Zhao, X.; Wang, D.; Wang, S.-Q.; Ding, S.-M. Small-scale interaction of iron and phosphorus in flooded soils with rice growth. Sci. Total Environ. 2019, 660, 911–919. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, H.; Wang, L.; Zhu, W.; Yuan, J.; Jaisi, D.P.; Zhao, X.; Wang, S. Using diffusive gradients in thin films technique for in-situ measurement of labile phosphorus around Oryza sativa L. roots in flooded paddy soils. Pedosphere 2021, 31, 76–82. [Google Scholar] [CrossRef]
- Kreuzeder, A.; Santner, J.; Prohaska, T.; Wenzel, W.W. Gel for simultaneous chemical imaging of anionic and cationic solutes using diffusive gradients in thin films. Anal. Chem. 2013, 85, 12028–12036. [Google Scholar] [CrossRef]
- Hong, C.; Su, Y.; Lu, S. Phosphorus availability changes in acidic soils amended with biochar, fly ash, and lime determined by diffusive gradients in thin films (DGT) technique. Environ. Sci. Pollut. Res. 2018, 25, 30547–30556. [Google Scholar] [CrossRef]
- Tian, K.; Xing, Z.; Liu, G.; Wang, H.; Jia, M.; Hu, W.; Huang, B. Cadmium phytoavailability under greenhouse vegetable production system measured by diffusive gradients in thin films (DGT) and its implications for the soil threshold. Environ. Pollut. 2018, 241, 412–421. [Google Scholar] [CrossRef]
- Wang, Y.; Lambers, H. Root-released organic anions in response to low phosphorus availability: Recent progress, challenges and future perspectives. Plant Soil 2020, 447, 135–156. [Google Scholar] [CrossRef]
- Penn, C.J.; Camberato, J.J. A Critical Review on Soil Chemical Processes that Control How Soil pH Affects Phosphorus Availability to Plants. Agriculture 2019, 9, 120. [Google Scholar] [CrossRef] [Green Version]
- Darch, T.; Giles, C.D.; Blackwell, M.S.A.; George, T.S.; Brown, L.K.; Menezes Blackburn, D.; Shand, C.A.; Stutter, M.I.; Lumsdon, D.G.; Mezeli, M.M.; et al. Inter and intra specific intercropping of barley cultivars and legume species as affected by soil phosphorus availability. Plant Soil 2018, 427, 125–138. [Google Scholar] [CrossRef]
- Luo, X.; Mahdi, A.-K.; Han, X.-Z.; Chen, X.; Yan, J.; Biswas, A.; Zou, W.-X. Long-term application of fertilizer and manures affect P fractions in Mollisol. Sci. Rep. 2020, 10, 14793. [Google Scholar] [CrossRef]
- Hill, J.O.; Simpson, R.J.; Moore, A.D.; Chapman, D.F. Morphology and response of roots of pasture species to phosphorus and nitrogen nutrition. Plant Soil 2006, 286, 7–19. [Google Scholar] [CrossRef]
- Duque, L.O.; Villordon, A. Root Branching and Nutrient Efficiency: Status and Way Forward in Root and Tuber Crops. Front. Plant Sci. 2019, 10, 237. [Google Scholar] [CrossRef] [Green Version]
- Lyu, Y.; Tang, H.; Li, H.; Zhang, F.; Rengel, Z.; Whalley, W.R.; Shen, J. Major crop species show differential balance between root morphological and physiological responses to variable Phosphorus supply. Front. Plant Sci. 2016, 7, 1939. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yang, L.; Luan, M.; Wang, Y.; Zhang, C.; Zhang, B.; Luan, S. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis. Proc. Natl. Acad. Sci. USA 2015, 112, E6571–E6578. [Google Scholar] [CrossRef] [Green Version]
- Hassler, S.; Jung, B.; Lemke, L.; Novák, O.; Strnad, M.; Martinoia, E.; Neuhaus, H.E. Function of the Golgi-located phosphate transporter PHT4;6 is critical for senescence-associated processes in Arabidopsis. J. Exp. Bot. 2016, 67, 4671–4684. [Google Scholar] [CrossRef] [Green Version]
- Hurley, B.A.; Tran, H.T.; Marty, N.J.; Park, J.; Sneddenn, W.A.; Mullen, R.T.; Plaxton, W.C. The dual-targeted purple acid phosphatase isozyme At-PAP26 is essential for efficient acclimation of Arabidopsis to nutritional phosphate deprivation. Plant Physiol. 2010, 153, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Dellero, Y.; Clouet, V.; Marnet, N.; Pellizzaro, A.; Dechaumet, S.; Niogret, M.-F.; Bouchereau, A. Leaf status and environmental signals jointly regulate proline metabolism in winter oilseed rape. J. Exp. Bot. 2020, 71, 2098–2111. [Google Scholar] [CrossRef] [PubMed]
- Dissanayaka, D.M.S.B.; Ghahremani, M.; Siebers, M.; Wasaki, J.; Plaxton, W.C. Recent Insight into the Metabolic Adaptations of Phosphorus Deprived Plants. J. Exp. Bot. 2020, 72, 199–223. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Welti, R.; Wang, X. Quantitative profiling of Arabidopsis polarglycero lipids in response to phosphorus starvation: Roles of phospholipases Dz1and Dz2 in Phosphatidyl choline hydrolysis and digalactosyl diacylglycerol accumulation in Phosphorus-starved plants. Plant Physiol. 2006, 142, 750–761. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ding, D.; Li, J.; He, L.; Xu, X.; Zhao, Y.; Xu, J. Characterization of genes involved in galactolipids and sulfolipids metabolism in maize and Arabidopsis and their differential responses to phosphate deficiency. Funct. Plant Biol. 2020, 47, 279–292. [Google Scholar] [CrossRef]
- Mehta, D.; Ghahremani, M.; Pérez-Fernández, M.; Tan, M.; Schläpfer, P.; Plaxton, W.C.; Uhrig, R.G. Phosphate and phosphite differentially impact the proteome and phosphoproteome of Arabidopsis suspension cell cultures. Plant J. 2020, 105, 924–941. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D. Morphological, Physiological, and Biochemical Responses of Zinnia to Drought Stress. Horticulturae 2021, 7, 362. [Google Scholar] [CrossRef]
- Rouached, H.; Arpat, A.B.; Poirier, Y. Regulation of phosphate starvation responses in plants: Signaling players and cross-talks. Mol. Plant 2010, 3, 288–299. [Google Scholar] [CrossRef]
- Matsoukas, I.G. Interplay between sugar and hormone signaling pathways modulate floral signal transduction. Front. Genet. 2014, 5, 218. [Google Scholar] [CrossRef] [Green Version]
- Menezes-Blackburn, D.; Inostroza, N.; Gianfreda, L.; Greiner, R.; Mora, M.L.; Jorquera, M.A. Phytase-producing Bacillus sp. inoculation increases phosphorus availability in Cattle manure. J. Soil. Sci. Plant Nutr. 2016, 16, 200–2010. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Z.; Jiang, S.; Sheng, H.; Liu, X.; Hua, H.; Liu, X.; Zhang, Y. Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environ. Sci. Technol. 2018, 52, 2438–2450. [Google Scholar] [CrossRef]
- Irfan, M.; Aziz, T.; Maqsood, M.A.; Bilal, H.M.; Siddique, K.H.M.; Xu, M. Phosphorus (P) use efficiency in rice is linked to tissue-specific biomass and P allocation patterns. Sci. Rep. 2020, 10, 4278. [Google Scholar] [CrossRef] [Green Version]
- Elgharably, A. Effects of rock phosphate added with farm yard manure or sugar juice residues on wheat growth and uptake of certain nutrients and heavy metals. J. Soils Sediments 2020, 20, 3931–3940. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef] [Green Version]
- Lovio-Fragoso, J.P.; de Jesús-Campos, D.; López-Elías, J.A.; Medina-Juárez, L.Á.; Fimbres-Olivarría, D.; Hayano-Kanashiro, C. Biochemical and molecular aspects of Phosphorus limitation in diatoms and their relationship with biomolecule accumulation. Biology 2021, 10, 565. [Google Scholar] [CrossRef]
- Prüter, J.; Leipe, T.; Michalik, D.; Klysubun, W.; Leinweber, P. Phosphorus speciation in sediments from the Baltic Sea, evaluated by a multi-method approach. J. Soils Sediments 2020, 20, 1676–1691. [Google Scholar] [CrossRef]
- Laconi, A.; Mughini-Gras, L.; Tolosi, R.; Grilli, G.; Trocino, A.; Carraro, L.; Piccirillo, A. Microbial community composition and antimicrobial resistance in agricultural soils fertilized with livestock manure from conventional farming in northern Italy. Sci. Total. Environ. 2021, 760, 143404. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Galligan, D.T.; Ramberg, C.F., Jr.; Ferguson, J.D. Laboratory procedures for characterizing manure phosphorus. J. Environ. Qual. 2000, 29, 508–514. [Google Scholar] [CrossRef]
- Neina, D. The role of soil pH in plant nutrition and soil remediation. Appl. Environ. Soil Sci. 2019, 2019, 5794869. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.A.; Santos, C.; Almeida, M.M.; Elisabete, M.; Costa, V. Hydroxy apatite micro and nanoparticles: Chleation and growth mechanisms in the presence of citrate species. J. Colloid Interface Sci. 2008, 318, 210–216. [Google Scholar] [CrossRef]
- Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Application of Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Borie, F.; Aguilera, P.; Castillo, C.; Valentine, A.; Alex Seguel, A.; José Miguel Barea, J.M.; Cornejo, P. Revisiting the Nature of Phosphorus Pools in Chilean Volcanic Soils as a Basis for Arbuscular Mycorrhizal Management in Plant P Acquisition. A review. J. Soil. Sci. Plant Nutr. 2019, 19, 390–401. [Google Scholar] [CrossRef]
- Teste, F.P.; Jones, M.D.; Dickie, I.A. Dual mycorrhizal plants: Their ecology and relevance. New Phytol. 2019, 225, 1835–1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghobadi, M.; Dehnavi, M.M.; Yadavi, A.R.; Parvizi, K.; Zafari, D.M. Reduced P fertilization improves Fe and Zn uptake in potato when inoculated with AMF in conditions of deficiency of phosphorus, iron and zinc in the soil. Rhizosphere 2020, 15, 100239. [Google Scholar] [CrossRef]
- Tawaraya, K.; Naito, M.; Wagatsuma, T. Solubilization of insoluble inorganic phosphate by hyphal exudates of arbuscular mycorrhizal fungi. J. Plant Nutr. 2006, 29, 657–665. [Google Scholar] [CrossRef]
- Richardson, A.E.; George, T.S.; Jakobsen, I.; Simpson, R.J. Plant utilization of inositol Phosphates. In Inositol Phosphates: Linking Agriculture and the Environment; Turner, B.L., Richardson, A.E., Mullaney, E.J., Eds.; CABI: Wallingford, UK, 2007; pp. 242–260. [Google Scholar]
- Schnephf, A.; Roose, T.; Schweiger, P. Impact of growth and uptake patterns of arbuscular Mycorrhizal fungi on plant phosphorus uptake-a modelling study. Plant Soil 2008, 312, 85–99. [Google Scholar] [CrossRef] [Green Version]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Saxena, J.; Rana, G.; Pandey, M. Impact of addition of biochar along with Bacillus sp. on growth and yield of French beans. Sci. Hortic. 2013, 162, 351–356. [Google Scholar] [CrossRef]
- Etesami, H.; Adl, S.M. Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. In Phyto-Microbiome in Stress Regulation: Environmental and Microbial Biotechnology; Kumar, M., Kumar, V., Prasad, R., Eds.; Springer: Singapore, 2020. [Google Scholar]
- Glick, B.R.; Gamalero, E. Recent Developments in the Study of Plant Microbiomes. Microorganisms 2021, 9, 1533. [Google Scholar] [CrossRef]
- Khatoon, Z.; Huang, S.; Rafique, M.; Fakhar, A.; Kamran, M.A.; Santoyo, G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. J. Environ. Manag. 2020, 273, 111–118. [Google Scholar] [CrossRef]
- Martinez, O.; Crowley, D.; Mora, M.L.; Jorquera, M.A. Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. J. Soil Sci. Plant Nutr. 2015, 15, 153–166. [Google Scholar]
- Hale, L.; Luth, M.; Kenney, R.; Crowley, D. Evaluation of pinewood biochar as a carrier of bacterial strain Enterobacter cloacae UW5 for soil inoculation. Appl. Soil Ecol. 2014, 84, 192–199. [Google Scholar] [CrossRef]
- Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbialco-operation in the rhizosphere. J. Exp. Bot. 2005, 56, 1761–1778. [Google Scholar] [CrossRef] [Green Version]
- Breitkreuz, C.; Buscot, F.; Tarkka, M.; Reitz, T. Shifts between and among Populations of Wheat Rhizosphere Pseudomonas, Streptomyces and Phyllo bacterium Suggest Consistent Phosphate Mobilization at Different Wheat Growth Stages under Abiotic Stress. Front. Microbiol. 2020, 10, 3109. [Google Scholar] [CrossRef]
- Basu, S.; Kumar, G.; Chhabra, S.; Prasad, R. New and Future Developments in Microbial Biotechnology and Bioengineering Phytomicrobiome for Sustainable Agriculture; Elsevier: Amsterdam, The Netherlands, 2021; pp. 149–157. [Google Scholar]
- Nahas, E. Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J. Microbiol. Biotechnol. 2007, 12, 567–572. [Google Scholar] [CrossRef]
- Zheng, B.X.; Ibrahim, M.; Zhang, D.P.; Bi, Q.-F.; Li, H.-Z.; Zhou, G.-W.; Yang, X.-R. Identification and characterization of inorganic-phosphate-solubilizing bacteria from agricultural fields with a rapid isolation method. Appl. Microbiol. Biotechnol. 2018, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Feng, B.; Xiao, C.; Wang, Q.; Chi, R. Phosphate-solubilizing microorganisms to enhance phytoremediation of excess phosphorus pollution in phosphate mining wasteland soil. Biomed. J. 2021, 25, 271–281. [Google Scholar] [CrossRef]
- Amadou, I.; Houben, D.; Faucon, M.P. Unravelling the Role of Rhizosphere Microbiome and Root Traits in Organic Phosphorus Mobilization for Sustainable Phosphorus Fertilization. A Review. Agronomy 2021, 11, 2267. [Google Scholar] [CrossRef]
- Waldrip, H.M.; He, Z.; Erich, M.S. Effects of poultry manure amendment on phosphorus uptake by ryegrass, soil phosphorus fractions and phosphatase activity. Biol. Fertil. Soils 2011, 47, 407–418. [Google Scholar] [CrossRef]
- Rady, M.M.; Semida, W.M.; Hemida, K.A.; Abdelhamid, M.T. The effect of compost on growth and yield of Phaseolus vulgaris plants grown under saline soil. Int. J. Recycl. Org. Waste Agric. 2016, 5, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Silva-Leal, J.A.; Pérez-Vidal, A.; Torres-Lozada, P. Effect of biosolids on the nitrogen and phosphorus contents of soil used for sugarcane cultivation. Heliyon 2021, 7, 63360. [Google Scholar] [CrossRef]
- Shen, Q.; Hedley, M.; Camps Arbestain, M.; Kirschbaum, M.U. Can biochar increase the bioavailability of phosphorus? J. Soil Sci. Plant Nutr. 2016, 16, 268–286. [Google Scholar] [CrossRef] [Green Version]
- Adekiya, A.O.; Olaniran, A.F.; Adenusi, T.T.; Aremu, C.; Ejue, W.S.; Iranloye, Y.M.; Olayanju, A. Effects of cow dung and wood biochars and green manure on soil fertility and tiger nut (Cyperus esculentus L.) performance on a savanna Alfisol. Sci. Rep. 2020, 10, 21021. [Google Scholar] [CrossRef]
- Zaidi, A.; Khan, S. Interactive effect of rhizotrophic microorganisms on growth, yield, and nutrient uptake of Wheat. J. Plant Nutr. 2005, 28, 2079–2092. [Google Scholar] [CrossRef]
- Castanheira, N.L.; Dourado, A.C.; Pais, I.; Semedo, J.; Scotti-Campos, P.; Borges, N.; Carvalho, G.; Crespo, M.T.B.; Fareleira, P. Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbial. Res. 2017, 198, 47–55. [Google Scholar] [CrossRef]
- El Maaloum, S.; Elabeda, A.; El Alaoui-Talibia, Z.; Meddicha, A.; Filali-Maltoufb, A.; Douirac, A.; Ibnsouda-Koraichid, S.; Amire, S.; El Modafar, C. Effect of arbuscular mycorrhizal fungi and Phosphate-solubilizing bacteria consortia associated with Phospho-compost on Phosphorus solubilization and growth of tomato seedlings (Solanum lycopersicum L.). Commun. Soil Sci. Plant Anal. 2019, 51, 622–634. [Google Scholar] [CrossRef]
- Yasmeen, T.; Arif, M.S.; Shahzad, S.M.; Riaz, M.; Tufail, M.A.; Mubarik, M.S.; Ahmad, A.; Ali, S.; Albasher, G.; Shakoor, A. Abandoned agriculture soil can be recultivated by promoting biological phosphorus fertility when amended with nano-rock phosphate and suitable bacterial inoculant. Ecotoxicol. Environ. Saf. 2022, 234, 113385. [Google Scholar] [CrossRef]
- Soumare, A.; Boubekri, K.; Lyamlouli, K.; Hafidi, M.; Ouhdouch, Y.; Kouisni, L. Efficacy of phosphate solubilizing Actinobacteria to improve rock phosphate agronomic effectiveness and plant growth promotion. Rhizosphere 2020, 17, 100284. [Google Scholar] [CrossRef]
- Rosa, P.A.L.; Mortinho, E.S.; Jalal, A.; Galindo, F.S.; Buzetti, S.; Fernandes, G.C.; Teixeira Filho, M.C.M. Inoculation with growth-promoting bacteria associated with the reduction of phosphate fertilization in Sugarcane. Front. Environ. Sci. 2020, 8, 32. [Google Scholar] [CrossRef]
- Richardson, A.E.; George, T.S.; Hens, M.; Simpson, R.J. Utilization of soil organic phosphorus by higher plants. In Organic Phosphorus in the Environment; Turner, B.L., Frossard, E., Baldwin, D.S., Eds.; CABI: Wallingford, UK, 2005; pp. 165–184. [Google Scholar]
- Msimbira, L.A.; Smith, D.L. The Roles of Plant Growth Promoting Microbes in Enhancing Plant Tolerance to Acidity and Alkalinity Stresses. Front. Sustain. Food Syst. 2020, 4, 106. [Google Scholar] [CrossRef]
- Raymond, N.S.; Gómez-Muñoz, B.; van der Bom, F.J.T.; Nybroe, O.; Stoumann Jensen, L.; Müller-Stöver, D.S.; Richardson, A.E. Phosphate solubilising microorganisms for improved crop productivity: A critical assessment. New Phytol. 2021, 229, 1268–1277. [Google Scholar] [CrossRef] [PubMed]
- Oberson, A.; Joner, E.J. Microbial turnover of phosphorus in soil. In Organic Phosphorus in the Environment; Turner, B.L., Frossard, E., Baldwin, D.S., Eds.; CABI: Wallingford, UK, 2005; pp. 133–164. [Google Scholar]
- Brimecombe, M.J.; De Leij, F.A.A.M.; Lynch, J.M. Rhizodeposition and microbial populations. In The Rhizosphere Biochemistry and Organic Substances at the Soil-Plant Interface; Pinton, R., Varanini, Z., Nannipieri, P., Eds.; CRC Press: Boca Raton, FL, USA, 2007; pp. 73–109. [Google Scholar]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Owen, D.; Williams, A.P.; Griffith, G.W.; Withers, P.J.A. Use of commercial bio-inoculants to increase agricultural production through improved phosphorus acquisition. Appl. Soil Ecol. 2015, 86, 41–54. [Google Scholar] [CrossRef]
- Maharana, R.; Basu, A.; Dhal, N.K.; Adak, T. Biosolubilization of rock phosphate by Pleurotus ostreatus with brewery sludge and its effect on the growth of maize (Zea mays L.). J. Plant Nutr. 2020, 44, 395–410. [Google Scholar] [CrossRef]
- Martinez-Viveros, O.; Jorquera, M.; Crowley, D.; Gajardo, G.; Mora, M.L. Mechanisms and practicalconsiderations involved in plant growth promotion by rhizobacteria. J. Soil Sci. Plant Nutr. 2010, 10, 293–319. [Google Scholar] [CrossRef] [Green Version]
- Menezes-Blackburn, D.; Jorquera, M.A.; Gianfreda, L.; Greiner, R.; Mora, M.L. A novel phosphorus biofertilization strategy using cattle manure treated with phytase-nanoclay complexes. Biol. Fertil. Soils 2014, 50, 583–592. [Google Scholar] [CrossRef]
- Irshad, U.; Brauman, A.; Villenave, C.; Plassard, C. Phosphorus acquisition from phytate depends on efficient bacterial grazing, irrespective of the mycorrhizal status of Pinus pinaster. Plant Soil 2012, 358, 155–168. [Google Scholar] [CrossRef]
- Islam, M.K.; Sano, A.; Majumder, M.S.; Hossain, M.A.; Sakagami, J.I. Isolation and molecular characterization of phosphate solubilizing filamentous fungi from subtropical soils in Okinawa. Appl. Ecol. Environ. Res. 2019, 1, 9145–9157. [Google Scholar] [CrossRef]
- Joy, J.M.; Ravinder, J.; Rakesh, S.; Somashekar, G. A review article on integrated nutrient management in wheat crop. Int. J. Chem. Stud. 2018, 6, 697–700. [Google Scholar]
- Babalola, O.O.; Glick, B.R. The use of microbial inoculants in African agriculture: Current practice and future prospects. Agric. Environ. 2012, 10, 540–549. [Google Scholar]
- Billah, M.; Khan, M.; Bano, A.; Hassan, T.U.; Munir, A.; Gurmani, A.R. Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiol. J. 2019, 36, 904–916. [Google Scholar] [CrossRef]
- Demirbas, A.; Edris, G.; Alalayah, W.M. Sludge production from municipal wastewater treatment in sewage treatment plant. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 999–1006. [Google Scholar] [CrossRef]
- Lu, Q.; He, Z.L.; Stoffella, P.J. Land application of biosolids in the USA: A review. Appl. Environ. Soil Sci. 2012, 2012, 201462. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Chambers, B.J.; Nicholson, F.A.; Aitken, M.; Cartmell, E.; Rowlands, C. Benefits of biosolids to soil quality and fertility. Water Environ. J. 2003, 17, 162–167. [Google Scholar] [CrossRef]
- Tian, H.Q.; Lu, C.; Jerry, L.; Melillo, J.; Ren, W.; Huang, Y.; Xu, X.; Liu, M.; Zhang, C.; Chen, G.; et al. Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ. Res. Lett. 2012, 7, 044020. [Google Scholar] [CrossRef]
- Ali, M.; Ahmed, T.; Abu-Dieyeh, M.; Al-Ghouti, M. Environmental Impacts of Using Municipal Biosolids on Soil, Plant and Groundwater Qualities. Sustainability 2021, 13, 8368. [Google Scholar] [CrossRef]
- He, Z.; Zhang, H.; Toor, G.S.; Dou, Z.; Honeycutt, C.W.; Haggard, B.E.; Reiter, M.S. Phosphorus distribution in sequentially extracted fractions of biosolids, poultry litter, and granulated products. Soil Sci. 2010, 175, 154–161. [Google Scholar] [CrossRef] [Green Version]
- Torri, S.I.; Alberti, C. Characterization of organic compounds from biosolids of Buenos Aires City. J. Soil Sci. Plant Nutr. 2012, 12, 143–152. [Google Scholar] [CrossRef] [Green Version]
- White, J.W.; Coale, F.J.; Sims, J.T.; Shober, A.L. Phosphorus runoff from waste water treatment biosolids and poultry litter applied to agricultural soils. J. Environ. Qual. 2010, 39, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Codling, E.E. Long-term effects of biosolid-amended soils on phosphorus, copper, manganese and zinc uptake by wheat. Soil Sci. 2014, 179, 21–27. [Google Scholar] [CrossRef]
- Shaheen, S.; Tsadilas, C. Phosphorus sorption and availability to canola grown in an Alfisol amended with various soil amendments. Commun. Soil Sci. Plant Anal. 2013, 44, 89–103. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Barbarick, K.A.; Norvell, K.L. Biosolids impact soil phosphorus accountability fractionation, and potential environmental risk. J. Environ. Qual. 2007, 36, 764–772. [Google Scholar] [CrossRef] [PubMed]
- Haney, C.H.; Samuel, B.S.; Bush, J.; Ausubel, F.M. Associations with rhizosphere bacteria can confer an adaptive advantage to plants. Nat. Plants 2015, 1, 15051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandt, R.C.; Elliott, H.A.; O’Connor, G.A. Water-extractable phosphorus in biosolids: Implications for land-based recycling. Water Environ. Res. 2004, 76, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.G.; Delvaux, J.C.; Magela, M.L.M.; Pereira, V.J.; de Carmargo, R.; Lana, R.M.Q. Chemical changes in soil with use of pelletized organomineral fertilizer made from biosolids and sugarcane filter cake. Aust. J. Crop Sci. 2021, 15, 67–72. [Google Scholar] [CrossRef]
- Scharenbroch, B.C.; Meza, E.N.; Catania, M.; Fite, K. Biochar and biosolids increase tree growth and improve soil quality for urban landscapes. J. Environ. Qual. 2013, 42, 1372–1385. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Renella, G.; Puglisi, E.; Ceccanti, B.; Masciandaro, G.; Fornasier, F.; Marinari, S. Soil enzymology: Classical and molecular approaches. Biol. Fertil. Soils 2012, 48, 743–762. [Google Scholar] [CrossRef]
- Arif, M.S.; Shahzad, S.M.; Yasmeen, T.; Riaz, M.; Ashraf, M.; Ashraf, M.A.; Kausar, R. Improving plant Phosphorus (P) acquisition by phosphate-solubilizing Bacteria. In Essential Plant Nutrients; Springer: Cham, Switzerland, 2017; pp. 513–556. [Google Scholar] [CrossRef]
- Renella, G.; Szukics, U.; Landi, L.; Nannipieri, P. Quantitative assessment of hydrolase production andpersistence in soil. Biol. Fertil. Soils 2007, 44, 321–329. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Peñuelas, J. The effect of global change on soil phosphatase activity. Glob. Chang. Biol. 2021, 27, 5989–6003. [Google Scholar] [CrossRef]
- Dodor, D.E.; Tabatabai, M.A. Effect of cropping systems on phosphatases in soils. J. Plant Nutr. Soil Sci. 2003, 66, 7–13. [Google Scholar] [CrossRef]
- Asemaninejad, A.; Langley, S.; Mackinnon, T.; Spiers, G.; Beckett, P.; Mykytczuk, N.; Basiliko, N. Blended municipal compost and biosolids materials for mine reclamation: Long-term field studies to explore metal mobility, soil fertility and microbial communities. Sci. Total Environ. 2020, 760, 143393. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Yu, D.; Yao, X.; Han, J.; Cheng, R.; Cui, H.G.; Zhang, X.; Zhu, G. Garbage enzymes effectively regulated the succession of enzymatic activities and the bacterial community during sewage sludge composting. Bioresour. Technol. 2021, 327, 124792. [Google Scholar] [CrossRef]
- Moorhead, D.L.; Sinsabaugh, R.L. Simulated patterns of litter decay predict patterns of extracellular enzyme activities. Appl. Soil Ecol. 2000, 14, 71–79. [Google Scholar] [CrossRef]
- IFA. IFASTAT. Consumption Database. International Fertilizer Association. 2021. Available online: https://www.ifastat.org/databases/plant-nutrition (accessed on 11 October 2021).
- Lu, R.K. Effect of long-term fertilization on soil properties. In Soil-Plant Nutrients Principles and Fertilization; Lu, R.K., Xie, J.C., Cai, G.X., Eds.; Chemical Industry Press: Beijing, China, 1998; pp. 102–110. (In Chinese) [Google Scholar]
- Wang, Y.; Zhao, X.; Wang, L.; Wang, Y.; Li, W.; Wang, X.; Xing, G. The regime and availability of omitting P fertilizer application for rice in rice/wheat rotation in the Taihu lake region of southern China. J. Soils Sediments 2015, 15, 844–853. [Google Scholar] [CrossRef]
- Vanden Nest, T.; Amery, F.; Fryda, L.; Boogaerts, C.; Bilbao, J.; Vandecasteele, B. Renewable P sources: P use efficiency of digestate, processed animal manure, compost, biochar and struvite. Sci. Total Environ. 2020, 750, 141699. [Google Scholar] [CrossRef]
- Ibrahim, M.; Li, G.; Chan, F.K.S.; Kay, P.; Liu, X.; Firebank, L.; Xu, Y. Biochar effects potentially toxic elements and antioxidant enzymes in Lactuca sativa L. grown in multi-metals contaminated soil. Environ. Technol. Innov. 2019, 15, 100427. [Google Scholar] [CrossRef]
- Choudhary, T.K.; Khan, K.S.; Hussain, Q.; Ashfaq, M. Nutrient Availability to Maize Crop (Zea mays L.) in Biochar Amended Alkaline Subtropical Soil. J. Soil Sci. Plant Nutr. 2021, 21, 1293–1306. [Google Scholar] [CrossRef]
- Melaku, T.; Ambaw, G.; Nigussie, A.; Woldekirstos, A.N.; Bekele, E.; Ahmed, M. Short-term application of biochar increases the amount of fertilizer required to obtain potential yield and reduces marginal agronomic efficiency in high phosphorus-fixing soils. Biochar 2020, 2, 503–511. [Google Scholar] [CrossRef]
- Santos-Torres, M.; Romero-Perdomo, F.; Mendoza-Labrador, J.; Guti´errez, A.Y.; Vargas, C.; Castro-Rincon, E.; Caro-Quintero, A.; Uribe-Velez, D.; Estrada-Bonilla, G.A. Genomic and phenotypic analysis of rock phosphate-solubilizing rhizobacteria. Rhizosphere 2021, 17, 100290. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient leaching in a Colombian savanna oxisol amended with biochar. J. Environ. Qual. 2012, 41, 1076. [Google Scholar] [CrossRef]
- Balla Kovács, A.; Kremper, R.; Kátai, J.; Vágó, I.; Buzetzky, D.; Kovács, E.M.; Kónya, J.; Nagy, N.M. Characterisation of soil phosphorus forms in the soil-plant system using radio isotopic tracer method. Plant Soil Environ. 2021, 67, 367–375. [Google Scholar] [CrossRef]
- Nunes, R.d.S.; de Sousa, D.M.G.; Goedert, W.J.; de Oliveira, L.E.Z.; Pavinato, P.S.; Pinheiro, T.D. Distribution of Soil Phosphorus Fractions as a Function of Long-Term Soil Tillage and Phosphate Fertilization Management. Front. Earth Sci. 2020, 8, 350. [Google Scholar] [CrossRef]
- Pereira, S.I.A.; Abreu, D.; Moreira, H.; Vega, A.; Castro, P.M.L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions. Heliyon 2020, 6, e05106. [Google Scholar] [CrossRef]
- Ajeng, A.A.; Abdullah, R.; Ling, T.C.; Ismail, S.; Lau, B.F.; Ong, H.C.; Chang, J.-S. Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environ. Technol. Innov. 2020, 20, 101168. [Google Scholar] [CrossRef]
- Albareda, M.; Rodríguez-Navarro, D.N.; Camacho, M.; Temprano, F.J. Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biol. Biochem. 2008, 40, 2771–2779. [Google Scholar] [CrossRef]
- Pagnani, G.; Galieni, A.; Stagnari, F.; Pellegrini, M.; DelGallo, M.; Pisante, M. Open field inoculation with PGPR as a strategy to manage fertilization of ancient Triticum aestivum genotypes. Biol. Fertil. Soils 2020, 56, 111–124. [Google Scholar] [CrossRef]
- Saranya, K.; Krishnan, P.S.; Kumutha, K.; French, J. Potential for biochar as an alternate carrier to lignite for the preparation of biofertilizers in India. Int. J. Agric. Environ. Biotechnol. 2011, 4, 167–172. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single-solution method for the determination of phosphorus in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
Soil | Plant Species | References |
---|---|---|
Low-P soil | Brassica napus L. | [15] |
Soils and sediments | Zea mays L., Zostera marina L. | [16] |
High- and low-P soils | Orayza sativa L. | [17] |
Flooded paddy soils | Orayza sativa L. | [18] |
Soils and sediments | Zea mays L. | [19] |
Calcareous and non-calcareous soil | Triticum aestivum L., Lupinus albus L., Fagopyrum esculentum L. | [10] |
High- and low-P soil | Brassica napus L. | [13] |
Paddy soil | Zea mays L. | [20] |
Halosols and Cambosols | Orayza sativa L. (grain) | [21] |
Amendment | Soil pH | Available P | Total P | Amendment/ Inoculation | Plant Species | References |
---|---|---|---|---|---|---|
Pig manure | 6.54 | 28.07 | 810 | 15,000 kg ha−1 | Oryza sativa L. | [28] |
Poultry manure | 5.20 | 45.03 | 975 | 42 Mg ha−1 | Lolium perenne L. | [73] |
Compost | 7.79 | 12.20 | 98 | 20 t ha−1 | Phaseolus vulgaris L. | [74] |
Biosolids | 7.40 | 25.21 | 7600 | 100 kg ha−1 | Saccharum officinarum | [75] |
Willow and pine biochar | 6.20 | 33.31 | 1981 | 10 t ha−1 | Lotus pedunculatus L. | [76] |
Cow-dung biochar | 5.61 | 10.61 | 265 | 10 t ha−1 | Cyperus esculentus L. | [77] |
PSM | 7.20 | 17.41 | 145 | 3 × 10−4 per seed | Triticum aestivum L. | [78] |
PSM | 7.80 | 39.15 | 9500 | 4 × 10−5 per seed | Lolium perenne L. | [79] |
AMF and PSM | 8.50 | 8.00 | 183 | 20 g kg−1 | Solanum lycopersicum L. | [80] |
Nano-rock phosphate and PSB | 8.39 | ND | 296.23 | 250 kg ha−1, 250 mL seeds kg−1 | Zea mays L. | [81] |
PSB | ND | 7.00 | ND | 1 × 107 C.F.U.ml−1 | Zea mays L. | [82] |
PSB and P2 O5 | 4.70 | 8.11 | ND | 180 kg ha,−1 2 × 10−8 C.F.U.ml−1 | Saccharum officinarum | [83] |
Parameters | 0.5 M NaHCO3 Extractable | 0.1 M NaOH Extractable | 1 M HCl | P Residual | P Total | Extraction | ||
---|---|---|---|---|---|---|---|---|
Pi | Po | Pi | Po | Pi | Efficiency (%) | |||
CK | 0.58 ± 0.03 a | 0.32 ± 0.08 a | 0.63 ± 0.09 a | 1.72 ± 0.20 a | 1.46 ± 0.14 a | 0.88 ± 0.15 a | 5.59 ± 0.51 a | 99 |
RSB | 0.69 ± 0.08 b | 0.77 ± 0.15 b | 0.67 ± 0.04 a | 1.20 ± 0.15 b | 2.49 ± 0.27 b | 1.21 ± 0.23 b | 6.98 ± 0.96 c | 100 |
SSB | 0.94 ± 0.09 c | 0.64 ± 0.16 b | 0.71 ± 0.12 a | 0.96 ± 0.15 b | 2.99 ± 0.36 c | 1.41 ± 0.34 c | 7.61 ± 1.06 c | 100 |
RHB | 0.66 ± 0.12 b | 0.27 ± 0.08 a | 0.64 ± 0.08 a | 1.46 ± 0.23 a | 2.08 ± 0.23 b | 1.62 ± 0.35 c | 6.83 ± 0.19 b | 98 |
PNB | 0.70 ± 0.06 b | 1.03 ± 0.27 c | 0.69 ± 0.14 a | 0.73 ± 0.15 b | 2.00 ± 0.29 b | 1.53 ± 0.26 b | 7.01 ± 0.98 bc | 95 |
WB | 0.65 ± 0.02 b | 0.48 ± 0.29 b | 0.62 ± 0.05 a | 1.29 ± 0.23 a | 2.20 ± 0.26 b | 1.43 ± 0.28 b | 7.11 ± 0.18 b | 93 |
CCB | 0.73 ± 0.05 b | 0.35 ± 0.08 a | 0.61 ± 0.09 a | 0.96 ± 0.18 b | 2.43 ± 0.34 b | 1.42 ± 0.24 b | 6.65 ± 0.19 b | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibrahim, M.; Iqbal, M.; Tang, Y.-T.; Khan, S.; Guan, D.-X.; Li, G. Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review. Agronomy 2022, 12, 2539. https://doi.org/10.3390/agronomy12102539
Ibrahim M, Iqbal M, Tang Y-T, Khan S, Guan D-X, Li G. Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review. Agronomy. 2022; 12(10):2539. https://doi.org/10.3390/agronomy12102539
Chicago/Turabian StyleIbrahim, Muhammad, Muhammad Iqbal, Yu-Ting Tang, Sardar Khan, Dong-Xing Guan, and Gang Li. 2022. "Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review" Agronomy 12, no. 10: 2539. https://doi.org/10.3390/agronomy12102539
APA StyleIbrahim, M., Iqbal, M., Tang, Y. -T., Khan, S., Guan, D. -X., & Li, G. (2022). Phosphorus Mobilization in Plant–Soil Environments and Inspired Strategies for Managing Phosphorus: A Review. Agronomy, 12(10), 2539. https://doi.org/10.3390/agronomy12102539