Characterization of Humic Substances from Taiga and Tundra Soils by EPR Spectroscopy
Abstract
:1. Introduction
2. Field Sampling
3. Methods
3.1. Soil Analysis
3.2. Extraction of HSs
3.3. The EPR Measurements of the HSs
3.4. Statistical Analyses
4. Results and Discussion
4.1. The EPR Data of the HSs
4.2. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lehmann, J.; Kleber, M. The Contentious Nature of Soil Organic Matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Gerke, J. Concepts and misconceptions of humic substances as the stable part of soil organic matter: A review. Agronomy 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B.; Swift, R.S. Chapter One—Vindication of Humic Substances as a Key Component of Organic Matter in Soil and Water. Adv. Agron. 2020, 163, 1–37. [Google Scholar] [CrossRef]
- Baveye, P.; Wander, M. The (Bio)Chemistry of Soil Humus and Humic Substances: Why Is the “New View” Still Considered Novel After More Than 80 Years? Front. Environ. Sci. 2019, 7, 27. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Liu, H.; Wu, S. Humic Substances Developed During Organic Waste Composting: Formation Mechanisms, Structural Properties, and Agronomic Functions. Sci. Total Environ. 2019, 662, 501–510. [Google Scholar] [CrossRef] [PubMed]
- Koković, N.; Saljnikov, E.; Eulenstein, F.; Čakmak, D.; Buntić, A.; Sikirić, B.; Ugrenović, V. Changes in Soil Labile Organic Matter as Affected by 50 Years of Fertilization with Increasing Amounts of Nitrogen. Agronomy 2021, 11, 2026. [Google Scholar] [CrossRef]
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification, 1st ed.; Taylor & Francis: London, UK, 1995; 325p. [Google Scholar] [CrossRef]
- Debska, B.; Spychaj-Fabisiak, E.; Szulc, W.; Gaj, R.; Banach-Szott, M. EPR Spectroscopy as a tool to characterize the maturity degree of humic acids. Materials 2021, 14, 3410. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Chukov, S.N. Paramagnetic properties of humus acids of podzolic and bog-podzolic soils. Eurasian Soil Sci. 2007, 40, 726–728. [Google Scholar] [CrossRef]
- Novotny, E.H.; Martin-Neto, L. Effects of humidity and metal ions on the free radicals analysis of peat humus. Geoderma 2002, 106, 305–317. [Google Scholar] [CrossRef]
- Gonzalez-Perez, M.; Martin-Neto, L.; Saab, S.C.; Novotny, E.H.; Milori, D.M.B.P.; Bagnato, V.S.; Colnago, L.A.; Melo, W.J.; Knicker, H. Characterization of humic acids from a brazilian Oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy. Geoderma 2004, 118, 181–190. [Google Scholar] [CrossRef]
- Zykova, M.V.; Schepetkin, I.A.; Belousov, M.V.; Krivoshchekov, S.V.; Logvinova, L.A.; Bratishko, K.A.; Yusubov, M.S.; Romanenko, S.V.; Quinn, M.T. Physicochemical characterization and antioxidant activity of humic acids isolated from peat of various origins. Molecules 2018, 23, 753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manhaes, R.S.T.; Auler, L.T.; Sthel, M.S.; Alexandre, J.; Massunaga, M.S.O.; Carrió, J.G.; Santos, D.R.; Silva, E.C.; Garcia-Quiroz, A.; Vargas, H. Soil characterisation using X-ray diffraction, photoacoustic spectroscopy and electron paramagnetic resonance. Appl. Clay Sci. 2002, 21, 303–311. [Google Scholar] [CrossRef]
- Ariese, F.; Assema, S.; Gooijer, C.; Bruccoleri, A.G.; Langford, C.H. Comparison of Laurentian Fulvic Acid luminescence with that of the hydroquinone/quinone model system: Evidence from low temperature fluorescence studies and EPR spectroscopy. Aquat. Sci. 2004, 66, 86–94. [Google Scholar] [CrossRef]
- Knyazev, D.A.; Fokin, A.D.; Ochkin, A.V. Free-radical condensation as a natural mechanism of the formation of humic acids. Eurasian Soil Sci. 2009, 42, 924–988. [Google Scholar] [CrossRef]
- Abakumov, E.; Lodygin, E.; Tomashunas, V. 13C NMR and ESR characterization of humic substances isolated from soils of two Siberian Arctic Islands. Int. J. Ecol. 2015, 2015, 390591. [Google Scholar] [CrossRef] [Green Version]
- Chukov, S.N.; Ejarque, E.; Abakumov, E.V. Characterization of humic acids from tundra soils of Northern Western Siberia by electron paramagnetic resonance spectroscopy. Eurasian Soil Sci. 2017, 50, 30–33. [Google Scholar] [CrossRef]
- Jezierski, A.; Czechowski, F.; Jerzykiewicz, M.; Drozd, J. EPR investigations of structure of humic acids from compost, soil, peat and soft brown coal upon oxidation and metal uptake. Appl. Magn. Reson. 2000, 18, 127–136. [Google Scholar] [CrossRef]
- Kechaikina, I.O.; Ryumin, A.G.; Chukov, S.N. Postagrogenic transformation of organic matter in soddy-podzolic soils. Eurasian Soil Sci. 2011, 44, 1077–1089. [Google Scholar] [CrossRef]
- Polyakov, V.; Loiko, S.; Istigechev, G.; Lapidus, A.; Abakumov, E. Elemental and molecular composition of humic acids isolated from soils of tallgrass temperate rainforests (Chernevaya taiga) by 1H-13C HECTCOR NMR Spectroscopy. Agronomy 2021, 11, 1998. [Google Scholar] [CrossRef]
- Kallas, E.V.; Dergacheva, M.I. Humus profiles of Siberian soils under different forming conditions. Contemp. Probl. Ecol. 2011, 4, 469–474. [Google Scholar] [CrossRef]
- Slepetiene, A.; Kochiieru, M.; Jurgutis, L.; Mankeviciene, A.; Skersiene, A.; Belova, O. The effect of anaerobic digestate on the soil organic carbon and humified carbon fractions in different land-use systems in Lithuania. Land 2022, 11, 133. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A.; Vanchikova, E.V. Functional groups of fulvic acids from gleyic peaty-podzolic soil. Eurasian Soil Sci. 2001, 34, 382–386. [Google Scholar]
- Lodygin, E.; Shamrikova, E. Use of the pK Spectroscopy method in the study of protolytic properties of humic substances and other soil polyelectrolytes. Agronomy 2021, 11, 1051. [Google Scholar] [CrossRef]
- Lodygin, E.; Abakumov, E. The Impact of agricultural use of Retisols on the molecular structure of humic substances. Agronomy 2022, 12, 144. [Google Scholar] [CrossRef]
- World reference base for soil resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; FAO: Rome, Italy, 2015; 203p.
- Vasilevich, R.S.; Beznosikov, V.A.; Lodygin, E.D. Molecular structure of humus substances in permafrost peat mounds in forest-tundra. Eurasian Soil Sci. 2019, 52, 283–295. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Vasilevich, R.S. Molecular-mass distribution of humic substances from Arctic soils according to size exclusion chromatography. Pol. Polar Res. 2020, 41, 271–287. [Google Scholar] [CrossRef]
- Lodygin, E.D.; Beznosikov, V.A. The 13C NMR study of the molecular structure of humus acids from podzolic and bog-podzolic soils. Eurasian Soil Sci. 2003, 36, 967–975. [Google Scholar]
- Lodygin, E.; Vasilevich, R. Environmental aspects of molecular composition of humic substances from soils of northeastern European Russia. Pol. Polar Res. 2020, 41, 115–135. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3 Chemical Methods, 5.3; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1018–1020. [Google Scholar] [CrossRef]
- Forsyth, W.G. Studies on the more soluble complexes of soil organic matter; A method of fractionation. Biochem. J. 1947, 41, 176–181. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.D.; Beznosikov, V.A. 13C NMR and ESR study of structural and functional group characteristics of macromolecular compounds of soils. Russ. J. Appl. Chem. 2006, 79, 1478–1484. [Google Scholar] [CrossRef]
- Szajdak, L.W.; Jezierski, A.; Wegner, K.; Meysner, T.; Szczepański, M. Influence of drainage on peat organic matter: Implications for development, stability and transformation. Molecules 2020, 25, 2587. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Perez, M.; Martin-Neto, L.; Colnago, L.A.; Milori, D.M.B.P.; Camargo, O.A.; Berton, R.; Bettiol, W. Characterization of humic acids extracted from sewage sludge-amended oxisols by electron paramagnetic resonance. Soil Tillage Res. 2006, 91, 95–100. [Google Scholar] [CrossRef]
- Bazarova, O.; Zhdanov, V.; Bubnovskaya, L. Electronic and molecular structures of a range of sapropelic and humic coals. Fuel 1991, 70, 113–118. [Google Scholar] [CrossRef]
- Pambuk, C.I.A.; Muhammad, F.M. Free radicals: The types generated in biological system. MOJ Cell Sci. Rep. 2018, 5, 72–73. [Google Scholar] [CrossRef] [Green Version]
- Lodygin, E.D.; Beznosikov, V.A.; Vasilevich, R.S. Molecular composition of humic substances in tundra soils (13C-NMR spectroscopic study). Eurasian Soil Sci. 2014, 47, 400–406. [Google Scholar] [CrossRef]
- Kononova, M.M. Organic matter and soil fertility. Sov. Soil Sci. 1984, 16, 71–86. [Google Scholar]
- Likhanova, N.V.; Bobkova, K.S. Pools and carbon fluxes in felling ecosystems spruce forests of the middle taiga of the Komi Republic. Theor. Appl. Ecol. 2019, 2019, 91–100. [Google Scholar] [CrossRef]
- Kovaleva, N.O.; Kovalev, I.V. Transformation of lignin in surface and buried soils of mountainous landscapes. Eurasian Soil Sci. 2009, 42, 1270–1281. [Google Scholar] [CrossRef]
- Zavarzina, A.G.; Romankevich, E.A.; Peresypkin, V.I.; Ulyantzev, A.S.; Belyaev, N.A.; Zavarzin, A.A. Lignin phenols derivatives in lichens. Dokl. Biochem. Biophys. 2015, 465, 394–397. [Google Scholar] [CrossRef]
- Tsypanova, A.M. Mobile manganese in superficially gleyey tundra soils. Sov. Soil Sci. 1980, 12, 538–544. [Google Scholar]
- Neto, L.M.; Enrique, A.A.; Gomes, T.D. Effects of cultivation on ESR spectra of organic matter from soil size fractions of Mollisol. Soil Sci. 1994, 157, 365–372. [Google Scholar] [CrossRef]
- Chukov, S.N.; Ryumin, A.G.; Golubkov, M.S. Intrahorizon differentiation of the structural-functional parameters of the humic acids from a typical chernozem. Eurasian Soil Sci. 2010, 43, 1255–1262. [Google Scholar] [CrossRef]
- Barancikova, G.; Senesi, N.; Brunetti, G. Chemical and spectroscopic characterization of humic acids isolated from different Slovak soil types. Geoderma 1997, 78, 251–266. [Google Scholar] [CrossRef]
- Rivero, C.; Senesi, N.; Paolini, J.; D’Orazio, V. Characteristics of humic acids of some Venezuelan soils. Geoderma 1998, 81, 227–239. [Google Scholar] [CrossRef]
- Rosa, A.H.; Simoes, M.L.; Oliveira, L.C.; Rocha, J.C.; Martin-Neto, L.; Milori, D.M.B.P. Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region. Geoderma 2005, 127, 1–10. [Google Scholar] [CrossRef]
- Saab, S.C.; Martin-Neto, L. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances. J. Braz. Chem. Soc. 2004, 15, 34–37. [Google Scholar] [CrossRef] [Green Version]
- Abakumov, E.; Alekseev, I. Stability of soil organic matter in Cryosols of the maritime Antarctic: Insights from 13C NMR and electron spin resonance spectroscopy. Solid Earth 2018, 9, 1329–1339. [Google Scholar] [CrossRef]
Soil Name | Vegetation Type | Coordinates |
---|---|---|
Taiga zone | ||
virgin Eutric Albic Histic Retisol | Haircap—sphagnum birch—spruce woodland | 61°40′ N, 50°41′ E |
virgin Eutric Albic Retisol | Bilberry—green-moss birch—spruce woodland | 61°40′ N, 50°41′ E |
arable Eutric Albic Retisol | Pea and oat mixture | 61°39′ N, 50°44′ E |
Tundra zone | ||
virgin Histic Cryosol | Moss and lichen tundra | 67°35′ N, 64°09′ E |
virgin Gleyic Stagnosol | Willow—dwarf birch moss tundra | 67°31′ N, 64°07′ E |
arable Gleyic Stagnosol | Bluegrass and foxtail meadow | 67°31′ N, 64°07′ E |
Horizon | Depth, cm | Soil Horizon Description | pH H2O | TOC, % | Sum of Particles < 0.01 mm, % |
---|---|---|---|---|---|
Taiga zone | |||||
virgin Eutric Albic Histic Retisol | |||||
He | 0–8 | undercomposed with fresh organic remnants | 4.2 | 34.3 ± 1.2 | n.d. |
Eh | 12–20 | loamy, friable, penetrated by vertical cracks with brown humus impregnation of the walls | 4.8 | 0.77 ± 0.18 | 18.9 |
E | 20–28 | loamy, dense, structureless | 5.0 | 0.35 ± 0.07 | 32.6 |
E | 28–37 | loamy, dense, structureless | 5.1 | 0.23 ± 0.05 | 25.7 |
virgin Eutric Albic Retisol | |||||
Oe | 0–5 | friable organic material without histic features | 5.3 | 35.4 ± 1.2 | n.d. |
Eh | 5–7 | loamy, friable, contains many roots and humus cutans | 4.1 | 1.8 ± 0.4 | 19.0 |
E | 7–13 | loamy, friable | 5.1 | 0.46 ± 0.09 | 20.6 |
E | 13–35 | loamy, slightly compacted, few roots | 5.1 | 0.35 ± 0.07 | 24.2 |
arable Eutric Albic Retisol | |||||
Ap | 0–15 | light loamy, inclusions of peat, small concretions, loose-cloddy, many roots | 6.6 | 1.9 ± 0.4 | 25.4 |
Tundra zone | |||||
virgin Histic Cryosol | |||||
Hi | 0–10 | histic undercomposed material | 3.7 | 27.9 ± 2.8 | n.d. |
He | 10–20 | histic slightly composed material | 3.8 | 31.3 ± 1.1 | n.d. |
Bfg | 28–41 | overmoisted loamy | 4.0 | 0.46 ± 0.09 | 35.6 |
virgin Gleyic Stagnosol | |||||
Oe | 0–5 | undercomposed litter | 5.6 | 18.4 ± 1.8 | n.d. |
Bh | 5–10 | loamy, contain roots | 5.0 | 0.50 ± 0.10 | 25.0 |
Bg | 10–30 | loamy, structureless | 5.3 | 0.29 ± 0.06 | 31.1 |
arable Gleyic Stagnosol | |||||
Ap | 0–5 | slightly decomposed plant material on the soil surface (0–2 cm), loam in the lower part of the horizon (2–5 cm). The structure is lumpy-powdery, root interlacing | 5.3 | 27.3 ± 2.7 | n.d. |
ABg | 5–20 | loamy, foliose structure, grass roots | 5.4 | 2.9 ± 0.6 | 33.8 |
Bg | 20–35 | loamy, ferruginous concretions | 5.3 | 0.48 ± 0.10 | 30.7 |
Horizon | Depth, cm | Humic Acids | Fulvic Acids | ||
---|---|---|---|---|---|
Free Radical Concentration, ×1015 Spin/g | g-Factor | Free Radical Concentration, ×1015 Spin/g | g-Factor | ||
Taiga zone | |||||
virgin Eutric Albic Histic Retisol | |||||
He | 0–8 | 7.75 ± 0.47 | 2.0057 | 1.34 ± 0.08 | 2.0059 |
Eh | 12–20 | 8.02 ± 0.48 | 2.0057 | 3.07 ± 0.18 | 2.0060 |
E | 20–28 | 6.83 ± 0.41 | 2.0051 | 2.75 ± 0.17 | 2.0056 |
E | 28–37 | 6.43 ± 0.39 | 2.0052 | 2.84 ± 0.17 | 2.0055 |
virgin Eutric Albic Retisol | |||||
Oe | 0–5 | 3.24 ± 0.19 | 2.0053 | 2.17 ± 0.13 | 2.0063 |
Eh | 5–7 | 5.26 ± 0.32 | 2.0051 | 1.05 ± 0.06 | 2.0055 |
E | 7–13 | 4.06 ± 0.24 | 2.0049 | 0.96 ± 0.06 | 2.0056 |
E | 13–35 | 3.74 ± 0.22 | 2.0050 | 0.80 ± 0.05 | 2.0055 |
arable Eutric Albic Retisol | |||||
Ap | 0–15 | 4.05 ± 0.22 | 2.0055 | 0.50 ± 0.03 | 2.0062 |
Tundra zone | |||||
virgin Histic Cryosol | |||||
Hi | 0–10 | 2.60 ± 0.13 | 2.0052 | 0.48 ± 0.03 | 2.0065 |
He | 10–20 | 1.61 ± 0.10 | 2.0059 | 0.26 ± 0.02 | 2.0055 |
Bfg | 28–41 | 3.90 ± 0.20 | 2.0053 | 0.98 ± 0.06 | 2.0059 |
virgin Gleyic Stagnosol | |||||
Oe | 0–5 | 3.42 ± 0.17 | 2.0052 | 2.21 ± 0.11 | 2.0050 |
Bh | 5–10 | 2.73 ± 0.14 | 2.0049 | 0.56 ± 0.03 | 2.0054 |
Bg | 10–30 | 5.92 ± 0.30 | 2.0050 | 1.50 ± 0.08 | 2.0053 |
arable Gleyic Stagnosol | |||||
Ap | 0–5 | 0.49 ± 0.03 | 2.0059 | 0.18 ± 0.02 | 2.0057 |
ABg | 5–20 | 2.40 ± 0.12 | 2.0057 | 1.11 ± 0.06 | 2.0057 |
Bg | 20–35 | 6.20 ± 0.31 | 2.0055 | 1.78 ± 0.10 | 2.0057 |
Principal Components | Eigenvalues | % of Total Variance | Cumulative Eigenvalues | Cumulative % of Variance |
---|---|---|---|---|
Taiga soils | ||||
Humic acids | ||||
PC1 | 7.52 | 53.68 | 7.52 | 53.68 |
PC2 | 3.46 | 24.72 | 10.98 | 78.40 |
PC3 | 1.78 | 12.75 | 12.76 | 91.14 |
Fulvic acids | ||||
PC1 | 7.80 | 55.68 | 7.80 | 55.68 |
PC2 | 3.93 | 28.08 | 11.73 | 83.76 |
PC3 | 2.27 | 16.24 | 14.00 | 100.00 |
Tundra soils | ||||
Humic acids | ||||
PC1 | 5.98 | 42.73 | 5.98 | 42.73 |
PC2 | 3.52 | 25.12 | 9.50 | 67.86 |
PC3 | 2.90 | 20.75 | 12.40 | 88.60 |
Fulvic acids | ||||
PC1 | 5.92 | 53.84 | 5.92 | 53.84 |
PC2 | 2.47 | 22.45 | 8.39 | 76.28 |
PC3 | 1.81 | 16.46 | 10.20 | 92.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodygin, E.; Vasilevich, R.; Abakumov, E. Characterization of Humic Substances from Taiga and Tundra Soils by EPR Spectroscopy. Agronomy 2022, 12, 2806. https://doi.org/10.3390/agronomy12112806
Lodygin E, Vasilevich R, Abakumov E. Characterization of Humic Substances from Taiga and Tundra Soils by EPR Spectroscopy. Agronomy. 2022; 12(11):2806. https://doi.org/10.3390/agronomy12112806
Chicago/Turabian StyleLodygin, Evgeny, Roman Vasilevich, and Evgeny Abakumov. 2022. "Characterization of Humic Substances from Taiga and Tundra Soils by EPR Spectroscopy" Agronomy 12, no. 11: 2806. https://doi.org/10.3390/agronomy12112806
APA StyleLodygin, E., Vasilevich, R., & Abakumov, E. (2022). Characterization of Humic Substances from Taiga and Tundra Soils by EPR Spectroscopy. Agronomy, 12(11), 2806. https://doi.org/10.3390/agronomy12112806