Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils
Abstract
:1. Introduction
Research Hypothesis
2. Materials and Methods
2.1. Selected Site for the Experiment
2.2. Climate and Weather
2.3. Soil of the Experiment Field
2.4. Treatments
2.5. Intercultural Operations
2.6. Nutrient Contents and Uptake by Crop
2.7. Geometric Scrutiny
3. Results
3.1. Wheat Growth Parameters
3.2. Accretion of Dry Mass
3.3. Leaf Area Index (LAI)
3.4. Leaf Area Duration
3.5. Crop Growth Rate (CGR) g m−2 day−1
3.6. Relative Growth Rate (RGR) g g−1 day−1
3.7. Net Assimilation Rate (NAR) g g−1 day−1
3.8. Yields and Yield Attributes
3.9. Grain and Straw–Nitrogen (N) Uptake
3.10. Protein Content and Yields in Grain (%)
3.11. Biological Properties and Microbial Biomass Carbon
3.12. Enzymatic Activities
4. Discussion
4.1. Organic Manures Viz-a-Viz Growth Parameters
4.2. Nutrient Dynamics in Crop Biomass
4.3. Enzymatic and Microbial Activity of Soil
4.4. Benefit:Cost Ratio
4.5. Interpretations/Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilgicli, N.; Ibanoglu, S. Effect of wheat germ and wheat bran on the fermentation activity, phytic acid content and color of terhana, a wheat flour-yoghurt mixture. J. Food Eng. 2007, 78, 681–686. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: Highlights (ST/ESA/SER.A/423), 2019. Available online: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html (accessed on 1 June 2022).
- Anonymous. Agriculture Statistics at a Glance; Directorate of Economics and Statistics Department of Agriculture and Cooperation, Ministry of Agriculture Government of India New Delhi: New Delhi, India, 2019. [Google Scholar]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification; IFA/IWMI/IPNI/IPI: Paris, France, 2014; 30p, Chapter 1. [Google Scholar]
- Baloch, M.S.; Shah, I.T.H.; Nadim, M.A.; Khan, M.I.; Khakwani, A.A. Effect of seeding density and planting time on growth and yield attributes of wheat. J. Anim. Plant Sci. 2006, 20, 239–240. [Google Scholar]
- Bakht, J.; Shafi, M.; Jan, M.T.; Shah, Z. Influence of crop residue management, cropping system and N fertilizer on soil N and C dynamics and sustainable wheat (Triticum aestivum L.) production. Soil Tillage Res. 2007, 104, 233–240. [Google Scholar] [CrossRef]
- Bali, S.V.; Mudgal, S.C.; Gupta, R.D. Effect of recycling of organic waste on rice–wheat rotation under alfisol soil condition of North–western H imalayas. Himachal J. Agric. Res. 1986, 12, 98–107. [Google Scholar]
- Sarma, A.; Singh, H.; Nanwal, R.K. Effect of integrated nutrient management on productivity of wheat (Triticum aestivum L.) under limited and adequate irrigation supplies. Indian J. Agron. 2007, 52, 120–123. [Google Scholar]
- Maroušek, J.; Trakal, L. Techno-economic analysis reveals the untapped potential of wood biochar. Chemosphere 2022, 291, 133000. [Google Scholar] [CrossRef] [PubMed]
- Maroušek, J.; Maroušková, A.; Periakaruppan, R.; Gokul, G.M.; Anbukumaran, A.; Bohatá, A.; Kříž, P.; Bárta, J.; Černý, P.; Olšan, P. Silica Nanoparticles from Coir Pith Synthesized by Acidic Sol-Gel Method Improve Germination Economics. Polymers 2022, 14, 266. [Google Scholar] [CrossRef]
- Kumar, V.; Ahlawat, I.P.S. Carry-over effect of biofertilizer and nitrogen applied to wheat (Triticum aestivum) and direct applied N in maize (Zea mays) in wheat maize cropping systems. Indian J. Agron. 2004, 49, 233–236. [Google Scholar]
- Bhardwaj, S.K.; Sharma, S.D.; Kumar, P. Effect of conjoint use of bio-organics and chemical fertilizers on yield, soil properties under French bean–cauliflower-based cropping system. Arch. Agron. Soil Sci. 2011, 58, 759–763. [Google Scholar] [CrossRef]
- Singh, I.D.; Stoskopf, N.C. Harvest Index in Cereals. Agron. J. 1971, 63, 224–226. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists. Methods of Analysis, 9th ed.; Association of Official Agricultural Chemists: Washington, DC, USA, 1960; pp. 15–16. [Google Scholar]
- Rangaswami, G. Agricultural Microbiology; Asia Publishing House: London, UK, 1966; p. 413. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Casida, I.E.; Klein, D.A.; Santore, T. Measurement of dehydrogenase activity by incubating the soil with TTC method. Soil Sci. 1964, 98, 373. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedure for Agriculture Research, 2nd ed.; Jon Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Pong, X.P.; Laty, J. Organic farming: Challenge of timing nitrogen availability to crop N requirements. Soil Sci. Soc. Am. J. 2000, 64, 247–253. [Google Scholar] [CrossRef] [Green Version]
- Noreen, F.; Noreen, S. Effect of different fertilizers on yield of wheat. Int. J. Sci. Res. 2014, 3, 1596–1599. [Google Scholar]
- Knapp, B.A.; Ros, M.; Insam, H. Do composts affect the soil microbial community? In Microbes at Work: From Wastes to Resources; Insam, H., Franke–Whittle, I., Goberna, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 93–114. [Google Scholar]
- Willrich, T.; Jurmer, D.O.; Volk, V.V. Manure Application Guidelines for Pacific Northwest; ASAE Paper No.74-4601; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1974. [Google Scholar]
- Channabasanagowda, N.K.; Patil, B.; Patil, B.N.; Awaknavar, J.S.; Ninganur, B.T.; Hunje, R. Effect of organic manures on growth, seed yield and quality of wheat. Karnataka J. Agric. Sci. 2008, 21, 366–368. [Google Scholar]
- Sepat, R.N.; Rai, R.K.; Dhar, S. Planting system and integrated nutrient management for enhanced wheat (Triticum aestivum) productivity. Indian J. Agron. 2010, 55, 114–118. [Google Scholar]
- Singh, Y.; Singh, B.; Ladha, J.K.; Bains, J.S.; Gupta, R.K.; Singh, J.; Balasubramanian, V. On-farm evaluation of leaf color chart for need-based Nitrogen management in irrigated transplanted rice in North Western India. Nutr. Cycl. Agroecosyst. 2007, 78, 167–176. [Google Scholar] [CrossRef]
- Singh, S.P.; Pal, M.S. Effect of integrated nutrient management on productivity, quality, nutrient uptake and economics of mustard (Brassica juncea). Indian J. Agron. 2011, 56, 381–387. [Google Scholar]
- Sekar, A. Studies on the Evaluation of Sugarcane Variety and Production Technologies for Animating Sugarcane Productivity in Coastal Region of Tamil Nadu. Ph.D. Thesis, Annamalai University, Annamalainagar, India, 2003. [Google Scholar]
- Sharma, G.D.; Thakur, R.; Raj, S.; Kauraw, D.L.; Kulhare, P.S. Impact of integrated nutrient management on yield, nutrient uptake, protein content of wheat (Triticum aestivum) and soil fertility in a typic haplustert. Bioscan 2013, 8, 1159–1164. [Google Scholar]
- Hendrix, P.F.; Callaham, M.A., Jr.; James, S.W. Ecology of nearetic earthworms in the Southern USA-I. Charasteristics of diplocardia longa surface casts in grass, hardwood and pinc micro habitats on the lower pied mount of Georgia. Megadrilogica 1994, 5, 45–51. [Google Scholar]
- Martens, D.A.; Johanson, J.B.; Frankenberger, W.T., Jr. Production and persistence of soil enzymes with repeated addition of organic residues. Soil Sci. 1992, 153, 53–61. [Google Scholar] [CrossRef]
- Singh, K.; Srivastava, O.P. Effect of organic manure on soil fertility as showed by nutrition availability and yield response in potato. Proc. Int. Symp. Soil Fertil. Eval. 1970, 1, 815–820. [Google Scholar]
- Dhaka, B.R.; Chawla, N.; Pathan, A.R.K. Integrated nutrient management on performance of wheat (Triticum aestivum L.). Ann. Agric. Res. New Ser. 2012, 33, 214–219. [Google Scholar]
- Gupta, V.; Sharma, R.S. Effect of integrated nutrient management on productivity and balance of rice- wheat cropping system. Annu. Plant Soil Res. 2007, 8, 148–151. [Google Scholar]
- Powon, M.P.; Aguyoh, J.N.; Mwaja, V. Effects of inorganic fertilizers and farmyard manure on growth and tuber yield of potato. Afr. Crop Sci. Conf. Proc. 2005, 7, 1089–1093. [Google Scholar]
- Flaig, W. Specific effect of soil organic matter on the potential of soil productivity. FAO Bull. 1975, 27, 31–69. [Google Scholar]
- Hesse, P.R. Potentials of organic materials for soil improvement. In Organic Matter and Rice; International Rice Research Institute: Losbanos, Philippines, 1984; pp. 35–43. [Google Scholar]
- Mitra, S.; Roy, A.; Saha, A.R.; Maitra, D.N.; Sinha, M.K.; Mahapatra, B.S.; Saha, S. Effect of integrated nutrient management on fiber yield, nutrient uptake and soil fertility in jute (Corchorus olitorius). Indian J. Agric. Sci. 2010, 80, 801–804. [Google Scholar]
- Kumar, P.; Pannu, R.K. Effect of different sources of nutrition and irrigation levels on yield, nutrient uptake and nutrient use efficiency of wheat. Int. J. Life Sci. Pharma Res. 2012, 1, 187–192. [Google Scholar]
- Frankenberger, W.T.; Dick, W.A. Relationships between enzyme activities and microbial growth and activity indices in soil. Soc. Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Goyal, S.; Mishra, M.M.; Dhankar, S.S.; Kapoor, K.K.; Batra, R. Microbial biomass turnover and enzyme activities following the application of farmyard manure to field soils with and without previous long term applications. Biol. Fertil. Soils 1993, 15, 60–64. [Google Scholar] [CrossRef]
- Ramesh, P.; Panwar, N.R.; Singh, A.B.; Ramana, S. Effect of organic manures on productivity, soil fertility and economics of soyabean (Glycine max)—Durum Wheat (Triticum durum) cropping system under organic farming in vertisols. Indian J. Agric. Sci. 2008, 78, 1033–1037. [Google Scholar]
- Khursheed, S.; Arora, S.; Ali, T. Effect of different organic sources on biochemical properties in typical inceptisols of Jammu. Progress. Agric. 2012, 12, 348–353. [Google Scholar]
- Meena, M.C.; Dwivedi, B.S.; Singh, D.; Sharma, B.M.; Kumar, K.; Singh, R.V.; Kumar, P.; Rana, D.S. Effect of integrated nutrient management on productivity and soil health in pigeonpea (Cajanus cajan)-wheat (Triticum aestivum) cropping system. Indian J. Agron. 2012, 57, 333–337. [Google Scholar]
- Meena, B.P.; Kumar, A.; Lal, B.; Sinha, N.K.; Tiwari, P.K.; Dotaniya, M.L.; Jat, N.K.; Meena, V.D. Soil microbial, chemical properties and crop productivity as affected by organic manure application in popcorn (Zea mays L. var. everta). Afr. J. Microbiol. Res. 2015, 9, 1402–1408. [Google Scholar]
- Mubarak, T.; Singh, K.N. Nutrient management and productivity of wheat (Triticum aestivum) based cropping system in temperate zone. Indian J. Agron. 2011, 56, 176–181. [Google Scholar]
- Verma, G.; Mathur, A.K.; Bhandari, S.C.; Kanthaliya, P.C. Long term effect of integrated nutrient management on properties of a typic haplustept under maize-wheat cropping system. J. Indian Soc. Soil Sci. 2010, 58, 299–302. [Google Scholar]
- Pandey, A.K.; Singh, S.K.; Prasad, R. Long term effect of organic and inorganic fertilizer on yield of rice and wheat. Environ. Ecol. 2009, 27, 1292–1295. [Google Scholar]
- Choudhary, S.; Yadav, L.R.; Yadav, S.S.; Sharma, O.P.; Keshwa, G.L. Integrated use of fertilizers and manures with foliar application of iron in barley (Hordeum vulgare). Indian J. Agron. 2013, 58, 363–367. [Google Scholar]
- Singh, V.K.; Shukla, A.K.; Singh, M.P.; Majumdar, K.; Mishra, R.P.; Rani, M.; Singh, S.K. Effect of site-specific nutrient management on yield, profit and apparent nutrient balance under pre-dominant cropping systems of Upper Gangetic Plains. Indian J. Agric. Sci. 2015, 85, 335–343. [Google Scholar]
a) | Statistical Design | : | Randomised Block Design |
b) | No. of treatments | : | 14 |
c) | No. of replication | : | 03 |
d) | No. of plot (Total) | : | 42 |
e) | Gross plotsize | : | 4.0 m × 3.0 m = 12.0 m2 |
f) | Net plot size | : | 3.0 m × 1.8 m = 5.4 m2 |
g) | Row spacing | : | 20 cm |
h) | Total number of rows | : | 15 |
i) | Variety | : | DBW-71 |
j) | Seed rate | : | 125 kg/ha |
k) | Recommended NPK dose | : | 80:60:40 (kg/ha) |
Symbol | Leaf Area Duration | Crop Growth Rate (g m−2 L and Area d−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
30–60 DAS | 60–90 DAS | 30–60 DAS | 60–90 DAS | 90-At Harvest | ||||||
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
T1 | 29.3 | 29.8 | 75.9 | 76.9 | 1.99 | 2.06 | 0.33 | 0.28 | 0.01 | 0.01 |
T2 | 32.4 | 33.1 | 86.8 | 88.3 | 2.28 | 2.34 | 0.34 | 0.26 | 0.02 | 0.02 |
T3 | 32.8 | 33.3 | 87.2 | 88.9 | 2.33 | 2.37 | 0.34 | 0.30 | 0.02 | 0.02 |
T4 | 34.9 | 35.2 | 92.2 | 93.0 | 2.71 | 2.77 | 0.46 | 0.49 | 0.02 | 0.02 |
T5 | 34.4 | 34.7 | 91.5 | 92.0 | 2.60 | 2.72 | 0.39 | 0.41 | 0.02 | 0.02 |
T6 | 34.3 | 34.4 | 90.4 | 91.5 | 2.57 | 2.69 | 0.39 | 0.40 | 0.02 | 0.01 |
T7 | 35.5 | 35.7 | 93.5 | 94.0 | 2.96 | 2.99 | 0.54 | 0.58 | 0.04 | 0.02 |
T8 | 32.9 | 33.4 | 88.1 | 89.1 | 2.42 | 2.50 | 0.35 | 0.36 | 0.02 | 0.01 |
T9 | 35.2 | 35.4 | 92.9 | 93.3 | 2.84 | 2.88 | 0.51 | 0.49 | 0.02 | 0.02 |
T10 | 33.5 | 34.0 | 89.8 | 90.3 | 2.51 | 2.59 | 0.38 | 0.37 | 0.03 | 0.02 |
T11 | 33.3 | 33.7 | 89.1 | 90.1 | 2.46 | 2.55 | 0.36 | 0.35 | 0.01 | 0.03 |
T12 | 36.0 | 36.2 | 94.6 | 94.9 | 3.10 | 3.16 | 0.60 | 0.58 | 0.03 | 0.02 |
T13 | 36.2 | 36.6 | 95.4 | 97.8 | 3.13 | 3.21 | 0.64 | 0.59 | 0.03 | 0.03 |
T14 | 37.8 | 38.1 | 100.5 | 103.5 | 3.27 | 3.28 | 0.64 | 0.68 | 0.05 | 0.04 |
SEM (±) | 1.27 | 1.28 | 3.37 | 3.41 | 0.10 | 0.10 | 0.02 | 0.02 | 0.01 | 0.01 |
C.D. (p = 0.05) | 3.63 | 3.67 | 9.61 | 9.74 | 0.29 | 0.30 | 0.05 | 0.05 | 0.03 | 0.03 |
Symbol | Relative Growth Rate (g g−1 day−1) | Net Assimilation Rate (g m−2 Leaf Area day−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
30–60 DAS | 60–90 DAS | 90-At Harvest | 30–60 DAS | 60–90 DAS | ||||||
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
T1 | 0.0441 | 0.0445 | 0.0040 | 0.0040 | 0.0002 | 0.0001 | 7.23 | 7.31 | 0.48 | 0.36 |
T2 | 0.0437 | 0.0438 | 0.0039 | 0.0040 | 0.0001 | 0.0002 | 7.87 | 7.98 | 0.49 | 0.41 |
T3 | 0.0436 | 0.0440 | 0.0048 | 0.0043 | 0.0002 | 0.0003 | 7.86 | 8.06 | 0.50 | 0.43 |
T4 | 0.0444 | 0.0438 | 0.0031 | 0.0026 | 0.0002 | 0.0002 | 8.54 | 8.55 | 0.71 | 0.67 |
T5 | 0.0444 | 0.0447 | 0.0035 | 0.0032 | 0.0002 | 0.0002 | 8.26 | 8.36 | 0.63 | 0.67 |
T6 | 0.0439 | 0.0440 | 0.0046 | 0.0048 | 0.0002 | 0.0001 | 8.08 | 8.38 | 0.60 | 0.61 |
T7 | 0.0451 | 0.0453 | 0.0031 | 0.0023 | 0.0001 | 0.0003 | 9.19 | 9.28 | 0.74 | 0.78 |
T8 | 0.0429 | 0.0433 | 0.0038 | 0.0039 | 0.0002 | 0.0001 | 7.99 | 8.18 | 0.52 | 0.50 |
T9 | 0.0447 | 0.0458 | 0.0032 | 0.0027 | 0.0002 | 0.0002 | 8.85 | 8.87 | 0.58 | 0.82 |
T10 | 0.0439 | 0.0440 | 0.0033 | 0.0032 | 0.0001 | 0.0001 | 8.06 | 8.27 | 0.57 | 0.57 |
T11 | 0.0430 | 0.0437 | 0.0045 | 0.0043 | 0.0003 | 0.0002 | 7.97 | 8.27 | 0.55 | 0.51 |
T12 | 0.0459 | 0.0463 | 0.0043 | 0.0040 | 0.0002 | 0.0002 | 9.42 | 9.30 | 0.81 | 0.78 |
T13 | 0.0460 | 0.0467 | 0.0038 | 0.0039 | 0.0002 | 0.0002 | 7.96 | 12.06 | 0.87 | 0.79 |
T14 | 0.0464 | 0.0461 | 0.0042 | 0.0045 | 0.0003 | 0.0001 | 9.25 | 18.71 | 0.85 | 0.88 |
SEM (±) | 0.02 | 0.02 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.31 | 0.37 | 0.03 | 0.03 |
C.D. (p = 0.05) | NS | NS | 0.0003 | 0.0004 | 0.0002 | 0.0002 | 0.88 | 1.06 | 0.07 | 0.07 |
Symbol | Yield (kg/ha) | |||||||
---|---|---|---|---|---|---|---|---|
Grain | Straw | Biological | Harvest Index (%) | |||||
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
T1 | 2634 | 2654 | 4214 | 4299 | 6848 | 6953 | 38.5 | 38.2 |
T2 | 3214 | 3226 | 4821 | 5162 | 8035 | 8388 | 40.0 | 38.5 |
T3 | 3420 | 3428 | 5062 | 5416 | 8482 | 8844 | 40.3 | 38.8 |
T4 | 3958 | 3967 | 5581 | 5831 | 9539 | 9798 | 41.5 | 40.5 |
T5 | 3862 | 3878 | 5484 | 5778 | 9346 | 9656 | 41.3 | 40.2 |
T6 | 3716 | 3721 | 5314 | 5622 | 9030 | 9343 | 41.2 | 39.8 |
T7 | 4110 | 4124 | 5722 | 5939 | 9832 | 10063 | 41.8 | 41.0 |
T8 | 3562 | 3575 | 5236 | 5613 | 8798 | 9188 | 40.5 | 38.9 |
T9 | 4087 | 4096 | 5672 | 5856 | 9759 | 9952 | 41.9 | 41.2 |
T10 | 3631 | 3657 | 5274 | 5619 | 8905 | 9276 | 40.8 | 39.4 |
T11 | 3612 | 3627 | 5229 | 5595 | 8841 | 9222 | 40.9 | 39.3 |
T12 | 4172 | 4183 | 5674 | 5856 | 9846 | 10,039 | 42.4 | 41.7 |
T13 | 4463 | 4477 | 6025 | 6178 | 10,488 | 10,655 | 42.6 | 42.0 |
T14 | 4751 | 4764 | 6319 | 6479 | 11,070 | 11,243 | 42.9 | 42.4 |
SEM (±) | 145.0 | 145.5 | 203.1 | 212.0 | 348.1 | 357.4 | 1.52 | 1.48 |
C.D. (p = 0.05) | 414.2 | 415.5 | 580.2 | 605.6 | 994.1 | 1020.8 | NS | NS |
Symbol | N Content in Grain (%) | N Content in Straw (%) | N Uptake in Grain (kg/ha) | N Uptake in Straw (kg/ha) | Protein (%) | Protein Yield (kg/ha) | Bacteria (105 CFU g−1) | Fungi (104 CFU g−1) | Actinomycetes (10 6 CFU g−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
T1 | 1.18 | 1.20 | 0.21 | 0.23 | 31.1 | 31.9 | 8.85 | 9.89 | 7.38 | 7.47 | 194 | 198 | 0.67 | 0.68 | 0.47 | 0.49 | 0.43 | 0.45 |
T2 | 1.36 | 1.37 | 0.29 | 0.30 | 43.7 | 44.2 | 14.0 | 15.5 | 8.47 | 8.54 | 272 | 276 | 0.70 | 0.71 | 0.51 | 0.52 | 0.47 | 0.48 |
T3 | 1.37 | 1.37 | 0.31 | 0.32 | 46.9 | 47.0 | 15.7 | 17.3 | 8.53 | 8.57 | 292 | 294 | 0.72 | 0.72 | 0.52 | 0.53 | 0.48 | 0.49 |
T4 | 1.50 | 1.53 | 0.47 | 0.48 | 59.4 | 60.7 | 26.2 | 28.0 | 9.58 | 9.90 | 379 | 393 | 0.72 | 0.73 | 0.53 | 0.54 | 0.49 | 0.50 |
T5 | 1.49 | 1.51 | 0.45 | 0.45 | 57.5 | 58.6 | 24.7 | 26.0 | 9.47 | 9.66 | 366 | 375 | 0.73 | 0.74 | 0.57 | 0.57 | 0.53 | 0.53 |
T6 | 1.47 | 1.50 | 0.42 | 0.43 | 54.6 | 55.8 | 22.3 | 24.2 | 9.38 | 9.58 | 349 | 356 | 0.73 | 0.74 | 0.57 | 0.58 | 0.53 | 0.54 |
T7 | 1.53 | 1.58 | 0.50 | 0.52 | 62.9 | 65.2 | 28.6 | 30.9 | 9.33 | 9.45 | 383 | 390 | 0.76 | 0.77 | 0.58 | 0.59 | 0.54 | 0.55 |
T8 | 1.39 | 1.40 | 0.33 | 0.34 | 49.5 | 50.1 | 17.3 | 19.1 | 9.18 | 9.29 | 327 | 332 | 0.76 | 0.77 | 0.59 | 0.59 | 0.55 | 0.55 |
T9 | 1.52 | 1.55 | 0.49 | 0.50 | 62.1 | 63.5 | 27.8 | 29.3 | 9.16 | 9.34 | 374 | 383 | 0.79 | 0.79 | 0.61 | 0.62 | 0.57 | 0.58 |
T10 | 1.47 | 1.49 | 0.41 | 0.43 | 53.4 | 54.5 | 21.6 | 24.2 | 9.09 | 9.18 | 330 | 336 | 0.80 | 0.81 | 0.63 | 0.64 | 0.59 | 0.60 |
T11 | 1.46 | 1.47 | 0.38 | 0.39 | 52.7 | 53.3 | 19.9 | 21.8 | 8.69 | 8.76 | 314 | 318 | 0.82 | 0.83 | 0.64 | 0.66 | 0.60 | 0.62 |
T12 | 1.56 | 1.60 | 0.51 | 0.52 | 65.1 | 66.9 | 28.9 | 30.5 | 9.77 | 9.98 | 408 | 417 | 0.83 | 0.84 | 0.65 | 0.67 | 0.61 | 0.63 |
T13 | 1.57 | 1.61 | 0.52 | 0.53 | 70.7 | 72.1 | 31.3 | 32.7 | 9.81 | 10.03 | 438 | 449 | 0.83 | 0.84 | 0.65 | 0.68 | 0.62 | 0.64 |
T14 | 1.62 | 1.64 | 0.56 | 0.59 | 77.0 | 78.1 | 35.4 | 38.2 | 10.13 | 10.24 | 481 | 488 | 0.87 | 0.88 | 0.68 | 0.70 | 0.64 | 0.66 |
SEM (±) | 0.05 | 0.06 | 0.02 | 0.02 | 2.19 | 2.24 | 0.94 | 1.01 | 0.34 | 0.35 | 13.7 | 14.0 | 0.03 | 0.03 | 0.02 | 0.02 | 0.02 | 0.02 |
C.D. (p = 0.05) | 0.16 | 0.16 | 0.05 | 0.05 | 6.26 | 6.40 | 2.69 | 2.88 | 0.98 | 0.99 | 39.2 | 40.0 | 0.08 | 0.08 | 0.06 | 0.06 | 0.06 | 0.06 |
Symbol | Soil Biological Properties | Nutrient Use Efficiency | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Microbial-C (ug/g 1soil) | Microbial-N (ug/g 1soil) | Dehydrogenase Activity (ug TPF/g 1soil day−1) | Agronomic NPK-Use Efficiency | Physiological NPK-Use Efficiency | Apparent Recovery Efficiency | |||||||
2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | 2017–2018 | 2018–2019 | |
T1 | 133.7 | 134.7 | 18.6 | 18.9 | 0.42 | 0.43 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
T2 | 142.7 | 144.6 | 20.3 | 20.8 | 0.46 | 0.47 | 3.22 | 3.18 | 14.6 | 13.5 | 0.22 | 0.24 |
T3 | 144.6 | 145.4 | 20.5 | 21.1 | 0.47 | 0.48 | 3.24 | 3.19 | 18.1 | 16.8 | 0.21 | 0.22 |
T4 | 152.4 | 153.2 | 22.4 | 22.4 | 0.51 | 0.52 | 7.36 | 7.29 | 12.9 | 13.1 | 0.52 | 0.53 |
T5 | 149.3 | 150.1 | 22.2 | 22.3 | 0.50 | 0.52 | 6.82 | 6.80 | 15.4 | 14.2 | 0.48 | 0.50 |
T6 | 147.1 | 148.3 | 22.0 | 22.2 | 0.49 | 0.50 | 5.90 | 5.82 | 12.7 | 15.7 | 0.41 | 0.43 |
T7 | 156.7 | 157.7 | 23.0 | 23.1 | 0.52 | 0.53 | 6.09 | 6.06 | 11.3 | 11.6 | 0.45 | 0.47 |
T8 | 145.6 | 146.3 | 21.1 | 21.3 | 0.47 | 0.48 | 3.28 | 3.26 | 10.9 | 10.7 | 0.21 | 0.22 |
T9 | 155.6 | 156.3 | 22.8 | 22.9 | 0.51 | 0.53 | 6.32 | 6.27 | 11.6 | 11.7 | 0.46 | 0.47 |
T10 | 147.2 | 147.9 | 21.6 | 21.9 | 0.48 | 0.49 | 3.71 | 3.73 | 13.4 | 14.2 | 0.26 | 0.28 |
T11 | 146.9 | 147.2 | 21.4 | 21.8 | 0.48 | 0.48 | 3.88 | 3.86 | 4.08 | 5.12 | 0.26 | 0.28 |
T12 | 157.2 | 158.1 | 23.2 | 23.3 | 0.53 | 0.54 | 5.44 | 5.41 | 11.2 | 11.3 | 0.41 | 0.42 |
T13 | 157.3 | 159.0 | 23.4 | 23.7 | 0.53 | 0.54 | 7.25 | 7.23 | 12.5 | 12.0 | 0.55 | 0.57 |
T14 | 162.7 | 163.6 | 25.1 | 25.6 | 0.57 | 0.58 | 7.87 | 7.84 | 15.0 | 14.8 | 0.59 | 0.61 |
SEM (±) | 5.57 | 5.60 | 0.82 | 0.83 | 0.02 | 0.02 | 0.22 | 0.21 | 0.80 | 0.48 | 0.02 | 0.02 |
C.D. (p = 0.05) | 15.9 | 16.0 | 2.34 | 2.37 | 0.05 | 0.05 | 0.63 | 0.61 | 2.34 | 1.40 | 0.06 | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jat, L.; Naresh, R.K.; Bhatt, R.; Chandra, M.S.; Singh, S.; Gupta, S.K.; Alataway, A.; Dewidar, A.Z.; Mattar, M.A. Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils. Agronomy 2022, 12, 2807. https://doi.org/10.3390/agronomy12112807
Jat L, Naresh RK, Bhatt R, Chandra MS, Singh S, Gupta SK, Alataway A, Dewidar AZ, Mattar MA. Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils. Agronomy. 2022; 12(11):2807. https://doi.org/10.3390/agronomy12112807
Chicago/Turabian StyleJat, Lali, Rama Krishna Naresh, Rajan Bhatt, Mandapelli Sharath Chandra, Sanskriti Singh, S. K. Gupta, Abed Alataway, Ahmed Z. Dewidar, and Mohamed A. Mattar. 2022. "Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils" Agronomy 12, no. 11: 2807. https://doi.org/10.3390/agronomy12112807
APA StyleJat, L., Naresh, R. K., Bhatt, R., Chandra, M. S., Singh, S., Gupta, S. K., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2022). Wheat Nutrient Management Strategies to Increase Productivity, Profitability and Quality on Sandy Loam Soils. Agronomy, 12(11), 2807. https://doi.org/10.3390/agronomy12112807