Changes in the Physical, Chemical, and Bacterial Community Characteristics of Soil in Response to Short-Term Combined Organic–Inorganic Fertilizers in a Dry Direct-Seeded Paddy Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Soil Sampling
2.3. Soil physical and Chemical Properties
2.4. Soil Enzymes
2.5. PCR Amplification and Sequencing
2.6. Data Analysis
3. Results
3.1. Soil Physical and Chemical Properties
3.2. Relative Abundance of Water-Stable Aggregates
3.3. Particle Size Distribution
3.4. Soil Enzymes
3.5. α-Diversity of Soil Bacteria
3.6. Soil Bacterial Community Composition
3.7. Relationship between Bacterial Community Structure and Soil Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saha, S.; Munda, S.; Singh, S.; Kumar, V.; Jangde, H.K.; Mahapatra, A.; Chauhan, B.S. Crop establishment and weed control options for sustaining dry direct seeded rice production in eastern India. Agronomy 2021, 11, 389. [Google Scholar] [CrossRef]
- Chan, C.C.; Nor, M.A.M. Impacts and implications of direct seeding on irrigation requirement and systems management. Presented at the Workshop on Water and Direct Seeding for Rice, Alor Setar, Malaysia, 14–16 June 1993; pp. 14–16. [Google Scholar]
- Mazher, F.I.; Muzzammil, H.; Abdul, R. Direct seeded rice: Purely a site specific technology. Int. J. Adv. Res. Biol. Sci. 2017, 4, 53–57. [Google Scholar]
- Pathak, H.; Sankhyan, S.; Dubey, D.S.; Bhatia, A.; Jain, N. Dry direct-seeding of rice for mitigating greenhouse gas emission: Field experimentation and simulation. Paddy Water Environ. 2013, 11, 593–601. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Hill, J.E. Direct seeding of rice in Asia: Emerging issues and strategic research needs for the 21st century. In Direct Seeding: Research Strategies and Opportunities, Proceedings of the International Workshop on Direct Seeding in Asian Rice Systems: Strategic Research Issues and Opportunities, Bangkok, Thailand, 25–28 January 2000; Pandey, S., Mortimer, M., Wade, L., Tuong, T.P., Lopez, K., Hardy, B., Eds.; International Rice Research Institute: Los Baños, Philippines, 2002; pp. 15–39. [Google Scholar]
- Kumar, V.; Jat, H.S.; Sharma, P.C.; Singh, B.; Gathala, M.K.; Malik, R.K.; Kamboj, B.R.; Yadav, A.K.; Ladhaa, J.K.; Raman, A.; et al. Can productivity and profitability be enhanced in intensively managed cereal systems while reducing the environmental footprint of production? Assessing sustainable intensification options in the breadbasket of India. Agric. Ecosyst. Environ. 2018, 252, 132–147. [Google Scholar] [CrossRef]
- Chakraborty, D.; Ladha, J.K.; Rana, D.S.; Jat, M.L.; Gathala, M.K.; Yadav, S.; Rao, A.N.; Ramesha, M.S.; Raman, A. A global analysis of alternative tillage and crop establishment practices for economically and environmentally efficient rice production. Sci. Rep. 2017, 7, 9342. [Google Scholar] [CrossRef] [Green Version]
- Martin, R.; Chhun, S.; Yous, S.; Rien, R.; Korn, C.; Srean, P. Survey of weed management practices in direct-seeded rice in north-west Cambodia. Agronomy. 2021, 11, 498. [Google Scholar] [CrossRef]
- Ohno, H.; Banayo, N.P.M.C.; Bueno, C.; Kashiwagi, J.I.; Nakashima, T.; Iwama, K.; Corales, A.M.; Garcia, R.; Kato, Y. On-farm assessment of a new early-maturing drought-tolerant rice cultivar for dry direct seeding in rainfed lowlands. Field Crops Res. 2018, 219, 222–228. [Google Scholar] [CrossRef]
- Sen, S.; Kaur, R.; Das, T.K.; Raj, R.; Shivay, Y.S. Impacts of herbicides on weeds, water productivity, and nutrient-use efficiency in dry direct-seeded rice. Paddy Water Environ. 2021, 19, 227–238. [Google Scholar] [CrossRef]
- Javed, T.; Afzal, I.; Mauro, R.P. Seed Coating in Direct Seeded Rice: An Innovative and Sustainable Approach to Enhance Grain Yield and Weed Management under Submerged Conditions. Sustainability 2021, 13, 2190. [Google Scholar] [CrossRef]
- Mohanty, S.; Nayak, A.K.; Bhaduri, D.; Swain, C.K.; Kumar, A.; Tripathi, R.; Shahid, M.; Behera, K.K.; Pathak, H. Real-time application of neem-coated urea for enhancing N-use efficiency and minimizing the yield gap between aerobic direct-seeded and puddled transplanted rice. Field Crops Res. 2021, 264, 108072. [Google Scholar] [CrossRef]
- Zhao, J.; Li, S.P.; Cheng, S.; Tian, J.Y.; Xing, Z.P.; Tao, Y.; Zhou, L.; Liu, Q.Y.; Hu, Y.J.; Guo, B.W.; et al. Effects of nitrogen fertilizer in whole growth duration applied in the middle and late tillering stage on yield and quality of dry direct seeding rice under “solo-stalk” cultivation mode. Acta Agron. Sin. 2021, 47, 1162–1174. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, H.C. Study on the Scientific Problems of Direct Seeding Rice Planting; China Agricultural Science and Technology Press: Beijing, China, 2009. (In Chinese) [Google Scholar]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Mishra, B.; Shahi, D.K. Long-term fertilization, manure and liming effects on soil organic matter and crop yields. Soil Tillage Res. 2007, 94, 397–409. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, B.; He, L.; Yang, M.Y.; Tan, S.Y. Effects of Bio-organic Fertilizer on Rice Yield and Soil Fertility. Chin. Agri. Sci. Bull. 2020, 36, 1–5. (In Chinese) [Google Scholar]
- Wang, X.L.; Zhu, M.; Yang, F.; Dou, P.; Zhang, J.L.; Ma, X.J.; Yuan, J.C.; Kong, F.L. Effects of reducing nitrogen and applying organic fertilizers on soil microbial biomass carbon and enzyme activity in the hilly area of central Sichuan basin. J. Soil Water Conserv. 2017, 31, 271–276. (In Chinese) [Google Scholar] [CrossRef]
- Kai, T.; Kumano, M.; Tamaki, M. A study on rice growth and soil environments in paddy fields using different organic and chemical fertilizers. J. Agric. Chem. Environ. 2020, 9, 331–342. [Google Scholar] [CrossRef]
- Burger, M.; Jackson, L.E. Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biol. Biochem. 2003, 35, 29–36. [Google Scholar] [CrossRef]
- Gattinger, A.; Muller, A.; Haeni, M.; Skinner, C.; Fliessbach, A.; Buchmann, N.; Mader, P.; Stolze, M.; Smith, P.; Scialabba, N.E.; et al. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. USA 2012, 109, 18226–18231. [Google Scholar] [CrossRef] [Green Version]
- Li, G.H.; Guo, J.M.; Jiang, H.M.; Zhang, J.F. Partal substitution of urea and maize straw with manure and straw biochar decrease net greenhouse effect in black soil. J. Plant Nutr. Fertil. 2018, 24, 1566–1573. (In Chinese) [Google Scholar] [CrossRef]
- Bu, R.Y.; Li, M.; Han, S.; Cheng, W.L.; Wang, H.; Sun, Z.X.; Tang, S.; Wu, J. Comprehensive effects of combined application of organic and inorganic fertilizer on yield, greenhouse gas emissions, and soil nutrient in double-cropping rice systems. Chin. J. Appl. Ecol. 2021, 32, 145–153. (In Chinese) [Google Scholar] [CrossRef]
- Geng, Y.J.; Yuan, Y.M.; Miao, Y.C.; Zhi, J.Z.; Huang, M.Y.; Zhang, Y.H.; Wang, H.; Shen, Q.R.; Zou, J.W.; Li, S.Q. Decreased nitrous oxide emissions associated with functional microbial genes under bio-organic fertilizer application in vegetable fields. Pedosphere 2021, 31, 279–288. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Manjusha, A. Short-term incorporation of organic manures and biofertilizers influences biochemical and microbial characteristics of soils under an annual crop [Turmeric (Curcuma longa L.)]. Bioresour. Technol. 2010, 101, 4697–4702. [Google Scholar] [CrossRef] [PubMed]
- Lori, M.; Symnaczik, S.; Mäder, P.; Deyn, G.D.; Gattinger, A. Organic farming enhances soil microbial abundance and activity: A meta-analysis and meta-regression. PLoS ONE 2017, 12, e180442. [Google Scholar] [CrossRef] [PubMed]
- Tao, L.; Chu, G.X.; Liu, T.; Tang, C.; Li, J.H.; Liang, Y.C. Impacts of organic manure partial substitution for chemical fertilizer on cotton yield, soil microbial community and enzyme activities in mono-cropping system in drip irrigation condition. Acta Ecol. Sin. 2014, 34, 6137–6146. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.Y.; Huang, Q.W.; Zhang, R.F.; Li, R.; Shen, B.; Shen, Q.R. Effects of organic-inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice-wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. A review. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.H.; Sun, D.Y.; Niu, Z.R.; Yan, J.X.; Zhou, X.L.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Yang, Q.L.; Zheng, F.X.; Jia, X.C.; Liu, P.; Zhao, B. The combined application of organic and inorganic fertilizers increases soil organic matter and improves soil microenvironment in wheat-maize field. J. Soil Sediment. 2020, 20, 2395–2404. [Google Scholar] [CrossRef]
- Guo, X.H.; Liu, J.J.; Xu, L.Q.; Sun, F.J.; Ma, Y.H.; Yin, D.W.; Gao, Q.; Zheng, G.P.; Lv, Y.D. Combined organic and inorganic fertilization can enhance dry direct-seeded rice yield by improving soil fungal community and structure. Agronomy 2022, 12, 1213. [Google Scholar] [CrossRef]
- Lu, R.K. Methods of Soil and Agro-Chemical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Hou, Q.; Wang, W.; Yang, Y.; Hu, J.; Bian, C.S.; Jin, L.P.; Li, G.C.; Xiong, X.Y. Rhizosphere microbial diversity and community dynamics during potato cultivation. Eur. J. Soil Biol. 2020, 98, 103176. [Google Scholar] [CrossRef]
- Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [Green Version]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, W.; Wang, H.Y.; Yu, J.; Liao, S.; Song, L.J. Effects of agricultural fertilizer and chemical fertilizer on nitrogen cycle and balance in black soil farmland ecosystem. J. Soil Water Conser. 2010, 24, 155–158. (In Chinese) [Google Scholar] [CrossRef]
- Gai, X.P.; Liu, H.B.; Zhai, L.M.; Yang, B.; Ren, T.Z.; Wang, H.Y.; Wu, S.X.; Lei, Q.L. Effect of long-term application of organic fertilizer/straw mulching on soil nitrogen leaching risk. Chin. Agric. Sci. 2018, 51, 2336–2347. (In Chinese) [Google Scholar] [CrossRef]
- Gong, X.J.; Qin, L.; Liu, F.; Liu, D.N.; Ma, W.W.; Zhang, T.; Liu, X.; Luo, F. Effects of organic manure on soil nutrient content: A review. Chin. J. Appl. Ecol. 2020, 31, 1403–1416. (In Chinese) [Google Scholar] [CrossRef]
- Zuo, X.W.; Qiu, S.; Han, X.Z.; Hao, X.X.; Liu, X.J.; Lu, X.C.; Yan, J.; Chen, X. Effects of long-term manure application on black soil fertility and maize yield. Soils Crops 2020, 9, 407–418. (In Chinese) [Google Scholar] [CrossRef]
- Li, H.; Ge, W.J.; Ma, X.X.; Li, Q.H.; Ren, W.D.; Yang, X.Y.; Zhang, S.L. Effect of long-term fertilization on carbon and nitrogen and enzyme activities of soil microbial biomass under winter wheat and summer maize rotation system. Plant Nutr. Fertil. Sci. 2011, 17, 1140–1146. (In Chinese) [Google Scholar]
- Tisdall, J.M.; Oades, J. Organic matter and water-stable aggregates in soils. Eur. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Luan, H.A.; Gao, W.; Tang, J.W.; Li, R.N.; Li, M.Y.; Zhang, H.Z.; Chen, X.P.; Dainius, M.; Huang, S.W. Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China. J. Integr. Agr. 2020, 19, 2530–2548. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Sun, J.; Wang, X.; He, P. Distribution of soil nutrients, extracellular enzyme activities and microbial communities across particle-size fractions in a long-term fertilizer experiment. Appl. Soil Ecol. 2015, 94, 59–71. [Google Scholar] [CrossRef]
- Jiang, C.L.; He, Y.Q.; Liu, X.L.; Chen, P.B.; Wang, Y.L.; Li, H.X. Effect of long-term application of organic manure on structure and stability of aggregate in upland red soil. Acta Pedol. Sini. 2010, 47, 715–722. (In Chinese) [Google Scholar] [CrossRef]
- Wu, T.Y.; Schoenau, J.J.; Li, F.M.; Qian, P.Y.; Wang, F.; Malhi, S.S. Soil particle size fractionation with centrifugation method. Chin. J. Appl. Ecol. 2004, 15, 477–481. (In Chinese) [Google Scholar]
- Christensen, B.T. Physical fractionation of soil and organic matter in primary particle size and density separates. Soil Sci. 1992, 20, 1–90. [Google Scholar] [CrossRef]
- Mandal, N.; Dwivedi, B.S.; Meena, M.C.; Singh, D.; Datta, S.P.; Tomar, R.K.; Sharma, B.M. Effect of induced defoliation in pigeonpea, farmyard manure and sulphitation pressmud on soil organic carbon fractions, mineral nitrogen and crop yields in a pigeonpea-wheat cropping system. Field Crops Res. 2013, 154, 178–187. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.P.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Zheng, H.F.; Liu, Y.; Zhang, J.; Chen, Y.M.; Yang, L.; Li, H.J.; Wang, L.F. Factors influencing soil enzyme activity in China’s forest ecosystems. Plant Ecol. 2018, 219, 31–44. [Google Scholar] [CrossRef]
- Tadano, T.; Ozawa, K.; Sakai, H.; Osaki, M.; Matsui, H. Secretion of acid phosphatase by the roots of crop plants under phosphorus-deficient conditions and some properties of the enzyme secreted by lupin roots. Plant Soil. 1993, 155, 95–98. [Google Scholar] [CrossRef]
- Gao, R.; Lu, J.L. Study on the enzyme activities and fertility change of soils by a long-term located utilization of different fertilizers. Chin. J. Eco-Agri. 2005, 13, 143–145. (In Chinese) [Google Scholar]
- Lin, Y.B.; Ye, Y.M.; Hu, Y.M.; Shi, H.K. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotox. Environ. Safe. 2019, 180, 557–564. [Google Scholar] [CrossRef]
- Li, P.; Wu, J.Q.; Sha, C.Y.; Ye, C.M.; Huang, S.F. Effects of manure and organic fertilizer application on soil microbial community diversity in paddy fields. Environ. Sci. 2020, 41, 4262–4272. (In Chinese) [Google Scholar] [CrossRef]
- Hou, J.; Wu, L.; Liu, W.; Ge, Y.; Christie, P. Biogeography and diversity patterns of abundant and rare bacterial communities in rice paddy soils across China. Sci. Total Environ. 2020, 730, 139116. [Google Scholar] [CrossRef]
- Chaudhry, V.; Rehman, A.; Mishra, A.; Chauhan, A.; Nautiyal, P.S.; Shekhar, C. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb. Ecol. 2012, 64, 450–460. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, J.; Yang, F.; Raza, W.; Huang, Q.; Shen, Q. Application of bioorganic fertilizer significantly increased apple yields and shaped bacterial community structure in orchard soil. Microb. Ecol. 2016, 73, 404–416. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Bradford, M.A.; Jackson, R.B. Toward an ecological classification of soil bacteria. Ecology 2007, 88, 1354–1364. [Google Scholar] [CrossRef] [PubMed]
- Bardhan, S.; Jose, S.; Jenkins, M.A.; Webster, C.R.; Udawatta, R.P.; Stehn, S.E. Microbial community diversity and composition across a gradient of soil acidity in spruce–fir forests of the southern Appalachian mountains. Appl. Soil Ecol. 2012, 61, 60–68. [Google Scholar] [CrossRef]
- Li, X.; Zhang, H.H.; Sun, M.L.; Xu, N.; Sun, G.Y.; Zhao, M.C. Land use change from upland to paddy field in mollisols drives soil aggregation and associated microbial communities. Appl. Soil Ecol. 2020, 146, 103351. [Google Scholar] [CrossRef]
- Pold, G.; Conlon, E.M.; Huntemann, M.; Pillay, M.; Deangelis, K.M. Genome sequence of Verrucomicrobium sp. Strain GAS474, a novel bacterium isolated from soil. Genome Announc. 2018, 6, e01451-17. [Google Scholar] [CrossRef] [Green Version]
- He, S.M.; Stevens, S.L.R.; Chan, L.K.; Bertilsson, S.; Rio, T.G.D.; Tringe, S.G.; Malmstrom, R.R.; Mcmahon, K.D. Ecophysiology of freshwater verrucomicrobia inferred from metagenome-assembled genomes. Msphere 2017, 2, e00277-17. [Google Scholar] [CrossRef] [Green Version]
- Podosokorskaya, O.A.; Bonch-Osmolovskaya, E.A.; Novikov, A.A.; Kolganova, T.V.; Kublanov, I.V. Ornatilinea apprima gen. nov. sp. nov. a cellulolytic representative of the class Anaerolineae. Int. J. Syst. Evol. 2013, 63, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Biester, H.; Cortizas, A.M.; Keppler, F. Chapter 19 Occurrence and fate of halogens in mires. Dev. Earth Surf. Processes 2006, 9, 449–464. [Google Scholar] [CrossRef]
- Luecker, S.; Wagner, R.; Maixner, R.; Pelletier, E.; Koch, H.; Vacherie, B.; Rattei, T.; Damste, J.S.S.; Spieck, E.; Paslier, D.L.; et al. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proc. Natl. Acad. Sci. USA 2010, 107, 13479–13484. [Google Scholar] [CrossRef]
Soil Layer Depth | Treatment | BD g·cm−3 | pH | SOM g·kg−1 | TN g·kg−1 | TP g·kg−1 | TK g·kg−1 | AHN mg·g−1 | AP mg·g−1 | AK mg g−1 |
---|---|---|---|---|---|---|---|---|---|---|
0–10 cm | NPK | 1.6 ± 0.05 a,c | 6.6 ± 0.21 a | 21.3 ± 0.64 a | 1.1 ± 0.08 a | 0.9 ± 0.02 a | 19.2 ± 0.3 b | 110.5 ± 8.3 b | 37.7 ± 5.5 a | 235.7 ± 20.6 c |
OF1 + NPK | 1.4 ± 0.01 b | 6.0 ± 0.10 b | 21.8 ± 1.10 a | 1.2 ± 0.03 a | 0.9 ± 0.02 a | 20.0 ± 0.5 a | 116.8 ± 2.6 a,b | 41.2 ± 4.9 a | 269.0 ± 8.2 b | |
OF2 + NPK | 1.4 ± 0.06 b | 5.9 ± 0.03 b | 21.4 ± 0.29 a | 1.1 ± 0.04 a | 1.0 ± 0.03 a | 19.6 ± 0.1 a,b | 123.0 ± 1.5 a | 43.7 ± 4.1 a | 304.6 ± 18.8 a | |
OF3 + NPK | 1.4 ± 0.05 b | 5.9 ± 0.21 b | 22.4 ± 0.02 a | 1.1 ± 0.02 a | 1.0 ± 0.08 a | 20.1 ± 0.3 a | 118.3 ± 4.7 a,b | 45.9 ± 2.5 a | 295.6 ± 1.6 a,b | |
10–20 cm | NPK | 1.6 ± 0.04 a | 6.6 ± 0.03 a | 19.4 ± 1.21 a | 1.0 ± 0.06 a | 0.8 ± 0.02 b | 17.5 ± 0.9 a | 100.8 ± 6.3 b | 32.9 ± 3.3 a | 208.1 ± 4.3 b |
OF1 + NPK | 1.5 ± 0.1 a | 6.4 ± 0.09 b | 20.03 ± 1.47 a | 1.1 ± 0.01 a | 0.9 ± 0.01 a,b | 18.0 ± 0.9 a | 111.5 ± 5.7 a,b | 34.4 ± 1.7 a | 214.6 ± 29.6 b | |
OF2 + NPK | 1.5 ± 0.02 a | 6.2 ± 0.09 c | 19.9 ± 0.47 a | 1.1 ± .03 a | 0.9 ± 0.03 a,b | 18.4 ± 0.7 a | 115.8 ± 5.6 a | 35.7 ± 1.6 a | 262.2 ± 15.8 a | |
OF3 + NPK | 1.5 ± 0.04 a | 6.4 ± 0.03 b | 21.5 ± 2.18 a | 1.1 ± 0.01 a | 0.9 ± 0.06 a | 18.4 ± 0.2 a | 113.5 ± 1.7 a | 37.6 ± 5.2 a | 240.2 ± 5.1 a,b |
Treatment | Proportion of Different Soil Water-Stable Aggregate Size Fraction (%) | |||||
---|---|---|---|---|---|---|
>5 mm | 2–5 mm | 1–2 mm | 0.5–1 mm | 0.25–0.5 mm | <0.25 mm | |
NPK | 27.80 ± 5.55 b | 7.73 ± 0.06 b | 7.34 ± 2.64 a | 9.24 ± 0.75 b | 7.26 ± 0.28 a | 40.63 ± 6.18 a |
OF1 + NPK | 28.51 ± 2.97 b | 7.91 ± 0.10 b | 11.09 ± 2.37 a | 16.46 ± 1.09 a | 10.38 ± 2.18 a | 25.65 ± 2.03 b |
OF2 + NPK | 54.85 ± 10.94 a | 9.10 ± 0.45 a,b | 11.76 ± 3.64 a | 11.40 ± 4.40 a,b | 10.020.76 a | 2.86 ± 0.39 c |
OF3 + NPK | 53.04 ± 1.33 a | 11.08 ± 2.50 a | 10.91 ± 2.55 a | 11.01 ± 3.93 a,b | 9.87 ± 0.76 a | 4.09 ± 1.60 c |
Treatment | Soil Layers | Clay Content (%) | Silt Content (%) | Sand Content (%) |
---|---|---|---|---|
NPK | 0–10cm | 6.98 ± 0.29 a | 73.42 ± 1.47 b | 19.59 ± 1.73 a |
OF1 + NPK | 7.12 ± 0.11 a | 78.12 ± 0.19 a | 14.76 ± 0.11 b | |
OF2 + NPK | 7.05 ± 0.21 a | 77.26 ± 0.47 a | 15.69 ± 0.68 b | |
OF3 + NPK | 7.43 ± 0.27 a | 77.33 ± 0.40 a | 15.24 ± 0.30 b | |
NPK | 10–20cm | 7.46 ± 0.39 a | 72.45 ± 0.28 b | 20.09 ± 0.37 a |
OF1 + NPK | 7.58 ± 0.18 a | 77.54 ± 0.17 a | 14.88 ± 0.23 b | |
OF2 + NPK | 7.52 ± 0.16 a | 76.47 ± 0.53 a | 16.01 ± 0.46 b | |
OF3 + NPK | 7.69 ± 0.09 a | 76.74 ± 0.99 a | 15.57 ± 1.02 b |
Treatment | Urease U·g−1 | Neutral Phosphatase U·g−1 | Invertase U·g−1 | Catalase U·g−1 |
---|---|---|---|---|
NPK | 270.73 ± 5.43 b | 20,225.00 ± 925.68 b | 25.45 ± 0.46 c | 10.32 ± 0.14 b |
OF1 + NPK | 294.55 ± 7.73 a | 22,041.67 ± 880.81 a | 31.96 ± 2.70 a,b | 10.79 ± 0.40 b |
OF2 + NPK | 297.54 ± 13.26 a | 22,666.67 ± 118.15 a | 29.73 ± 0.85 b | 10.93 ± 0.28 b |
OF3 + NPK | 287.74 ± 2.58 a | 21,908.33 ± 398.70 a | 33.76 ± 0.74 a | 12.06 ± 0.38 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, X.; Zou, B.; Xu, L.; Zhang, J.; Zheng, G.; Wang, H.; Yin, D.; Li, H.; Zhang, W.; Lv, Y.; et al. Changes in the Physical, Chemical, and Bacterial Community Characteristics of Soil in Response to Short-Term Combined Organic–Inorganic Fertilizers in a Dry Direct-Seeded Paddy Field. Agronomy 2022, 12, 2808. https://doi.org/10.3390/agronomy12112808
Guo X, Zou B, Xu L, Zhang J, Zheng G, Wang H, Yin D, Li H, Zhang W, Lv Y, et al. Changes in the Physical, Chemical, and Bacterial Community Characteristics of Soil in Response to Short-Term Combined Organic–Inorganic Fertilizers in a Dry Direct-Seeded Paddy Field. Agronomy. 2022; 12(11):2808. https://doi.org/10.3390/agronomy12112808
Chicago/Turabian StyleGuo, Xiaohong, Bing Zou, Lingqi Xu, Jianing Zhang, Guiping Zheng, Haize Wang, Dawei Yin, Hongyu Li, Wenzhong Zhang, Yandong Lv, and et al. 2022. "Changes in the Physical, Chemical, and Bacterial Community Characteristics of Soil in Response to Short-Term Combined Organic–Inorganic Fertilizers in a Dry Direct-Seeded Paddy Field" Agronomy 12, no. 11: 2808. https://doi.org/10.3390/agronomy12112808
APA StyleGuo, X., Zou, B., Xu, L., Zhang, J., Zheng, G., Wang, H., Yin, D., Li, H., Zhang, W., Lv, Y., & Zhao, M. (2022). Changes in the Physical, Chemical, and Bacterial Community Characteristics of Soil in Response to Short-Term Combined Organic–Inorganic Fertilizers in a Dry Direct-Seeded Paddy Field. Agronomy, 12(11), 2808. https://doi.org/10.3390/agronomy12112808