Rodents in Crop Production Agricultural Systems—Special Issue
1. Introduction
2. Evaluation of Rodent Impacts on Crops and Orchards
3. Rodent Control and Monitoring
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jacob, J.; Manson, P.; Barfknecht, R.; Fredricks, T. Common vole (Microtus arvalis) ecology and management: Implications for risk assessment of plant protection products. Pest Manag. Sci. 2014, 70, 869–878. [Google Scholar] [CrossRef] [PubMed]
- Buckle, A.; Smith, R. Rodent Pests and Their Control, 2nd ed.; CABI International: Wallingford, UK, 2015. [Google Scholar]
- Brown, P.R.; Henry, S. Impacts of House Mice on Sustainable Fodder Storage in Australia. Agronomy 2022, 12, 254. [Google Scholar] [CrossRef]
- Suchomel, J.; Šipoš, J.; Ouředníčková, J.; Skalský, M.; Heroldová, M. Bark Gnawing by Rodents in Orchards during the Growing Season—Can We Detect Relation with Forest Damages? Agronomy 2022, 12, 251. [Google Scholar] [CrossRef]
- Frankova, M.; Kaftanova, B.; Aulicky, R.; Rodl, P.; Frynta, D.; Stejskal, V. Temporal production of coloured faeces in wild roof rats (Rattus rattus) following consumption of fluorescent non-toxic bait and a comparison with wild R. norvegicus and Mus musculus. J. Stored Prod. Res. 2019, 81, 7–10. [Google Scholar] [CrossRef]
- Stejskal, V.; Aulický, R. Field evidence of roof rat (Rattus rattus) faecal contamination of barley grain stored in silos in the Czech Republic. J. Pest Sci. 2014, 87, 117–124. [Google Scholar] [CrossRef]
- Aulicky, R.; Stejskal, V.; Pekar, S. Risk Evaluation of Spatial Distribution of Faecal Mice Contaminants in Simulated Agricultural and Food Store. Pak. J. Zool. 2015, 47, 1037–1043. [Google Scholar]
- Stejskal, V.; Hubert, J.; Kubatova, A.; Váňová, M. Fungi associated with rodent feces in stored grain environment in the Czech Republic. J. Plant Dis. Prot. 2005, 112, 98–102. [Google Scholar]
- Meerburg, B.G.; Singleton, G.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef]
- Vendl, T.; Frankova, M.; Aulicky, R.; Stejskal, V. First record of the development of Sitophilus oryzae on two rodent bait formulations and literature overview of stored product arthropods infestations in rodent baits. J. Stored Prod. Res. 2020, 86, 101557. [Google Scholar] [CrossRef]
- Jones, H.P.; Tershy, B.R.; Zavaleta, E.S.; Croll, D.A.; Keitt, B.S.; Finkelstein, M.E.; Howald, G.R. Severity of the Effects of Invasive Rats on Seabirds: A Global Review. Conserv. Biol. 2008, 22, 16–26. [Google Scholar] [CrossRef]
- Mackenzie, H.R.; Latham, M.C.; Anderson, D.P.; Hartley, S.; Norbury, G.L.; Latham, A.D.M. Detection parameters for managing invasive rats in urban environments. Sci. Rep. 2022, 12, 16520. [Google Scholar] [CrossRef] [PubMed]
- Harris, H.A.L.; Kelly, D.; Innes, J.; Allen, R.B. Invasive species and thermal squeeze: Distribution of two invasive predators and drivers of ship rat (Rattus rattus) invasion in mid-elevation Fuscospora forest. Biol. Invasions 2022, 24, 2547–2559. [Google Scholar] [CrossRef]
- Stejskal, V.; Honěk, A. Is species diversity of various crop “pest taxa” proportionate to efforts paid to their research? A scientometric analysis in the Czech Republic-short note. Plant Prot. Sci. 2015, 51, 191–194. [Google Scholar] [CrossRef] [Green Version]
- Aulicky, R.; Tkadlec, E.; Suchomel, J.; Frankova, M.; Heroldová, M.; Stejskal, V. Management of the Common Vole in the Czech Lands: Historical and Current Perspectives. Agronomy 2022, 12, 1629. [Google Scholar] [CrossRef]
- Best, I.N.; Shaner, P.-J.L.; Pei, K.J.-C.; Kuo, C.-C. Farmers’ Knowledge, Attitudes, and Control Practices of Rodents in an Agricultural Area of Taiwan. Agronomy 2022, 12, 1169. [Google Scholar] [CrossRef]
- Frankova, M.; Aulicky, R.; Stejskal, V. Efficacy of Eight Anticoagulant Food Baits in House Mouse (Mus musculus): Comparison of Choice and No-Choice Laboratory Testing Approaches. Agronomy 2022, 12, 1828. [Google Scholar] [CrossRef]
- Jokić, G.; Blažić, T. Control of Common Vole (Microtus arvalis) in Alfalfa Crops Using Reduced Content of Anticoagulants. Agronomy 2021, 12, 53. [Google Scholar] [CrossRef]
- Wales, K.N.; Meinerz, R.; Baldwin, R.A. Assessing the Attractiveness of Three Baits for Roof Rats in California Citrus Orchards. Agronomy 2021, 11, 2417. [Google Scholar] [CrossRef]
- Witmer, G. Rodents in Agriculture: A Broad Perspective. Agronomy 2022, 12, 1458. [Google Scholar] [CrossRef]
- Buckle, A.; Eason, C. Control Methods: Chemical. In Rodent Pests and Their Control, 2nd ed.; Buckle, A., Smith, R., Eds.; CABI International: Wallingford, UK, 2015; pp. 123–154. [Google Scholar]
- Stejskal, V.; Vendl, T.; Aulicky, R.; Athanassiou, C. Synthetic and Natural Insecticides: Gas, Liquid, Gel and Solid Formulations for Stored-Product and Food-Industry Pest Control. Insects 2021, 12, 590. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Suppression of food intake by house mouse (Mus musculus) following ingestion of brodifacoum-based rodenticide bait. Crop Prot. 2017, 100, 134–137. [Google Scholar] [CrossRef]
- Frankova, M.; Stejskal, V.; Aulicky, R. Efficacy of rodenticide baits with decreased concentrations of brodifacoum: Validation of the impact of the new EU anticoagulant regulation. Sci. Rep. 2019, 9, 16779. [Google Scholar] [CrossRef] [PubMed]
- Kappes, P.; Siers, S. Relative acceptance of brodifacoum pellets and soft bait sachets by Polynesian rats (Rattus exulans) on Wake Atoll. Manag. Biol. Invasions 2021, 12, 685–699. [Google Scholar] [CrossRef]
- Hohenberger, J.; Friesen, A.; Wieck, S.; Kümmerer, K. In search of the Holy Grail of Rodent control: Step-by-step implementation of safe and sustainable-by-design principles on the example of rodenticides. Sustain. Chem. Pharm. 2022, 25, 100602. [Google Scholar] [CrossRef]
- Shah, J.A.; Vendl, T.; Aulicky, R.; Frankova, M.; Stejskal, V. Gel Carriers for Plant Extracts and Synthetic Pesticides in Rodent and Arthropod Pest Control: An Overview. Gels 2022, 8, 522. [Google Scholar] [CrossRef]
- Villalobos, A.; Schlyter, F.; Birgersson, G.; Koteja, P.; Löf, M. Fear effects on bank voles (Rodentia: Arvicolinae): Testing for repellent candidates from predator volatiles. Pest Manag. Sci. 2022, 78, 1677–1685. [Google Scholar] [CrossRef]
- Sked, S.; Abbar, S.; Cooper, R.; Corrigan, R.; Pan, X.; Ranabhat, S.; Wang, C. Monitoring and Controlling House Mouse, Mus musculus domesticus, Infestations in Low-Income Multi-Family Dwellings. Animals 2021, 11, 648. [Google Scholar] [CrossRef]
- Jacob, J.; Imholt, C.; Caminero-Saldaña, C.; Couval, G.; Giraudoux, P.; Herrero-Cófreces, S.; Horváth, G.; Luque-Larena, J.J.; Tkadlec, E.; Wymenga, E. Europe-wide outbreaks of common voles in 2019. J. Pest Sci. 2020, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Luque-Larena, J.J.; Mougeot, F.; Viñuela, J.; Jareño, D.; Arroyo, L.; Lambin, X.; Arroyo, B. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 2013, 14, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Stojak, J.; Borowik, T.; Górny, M.; McDevitt, A.D.; Wójcik, J.M. Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Res. 2019, 64, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Royer, A.; Montuire, S.; Legendre, S.; Discamps, E.; Jeannet, M.; Lécuyer, C. Investigating the Influence of Climate Changes on Rodent Communities at a Regional-Scale (MIS 1-3, Southwestern France). PLoS ONE 2016, 11, e0145600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baca, M.; Popović, D.; Baca, K.; Lemanik, A.; Doan, K.; Horáček, I.; López-García, J.M.; Bañuls-Cardona, S.; Pazonyi, P.; Desclaux, E.; et al. Diverse responses of common vole (Microtus arvalis) populations to Late Glacial and Early Holocene climate changes—Evidence from ancient DNA. Quat. Sci. Rev. 2020, 233, 106239. [Google Scholar] [CrossRef]
- Jeske, K.; Emirhar, D.; García, J.T.; González-Barrio, D.; Olea, P.P.; Fons, F.R.; Schulz, J.; Mayer-Scholl, A.; Heckel, G.; Ulrich, R.G. Frequent Leptospira spp. Detection but Absence of Tula Orthohantavirus in Microtus spp. Voles, Northwestern Spain. J. Wildl. Dis. 2021, 57, 733–742. [Google Scholar] [CrossRef] [PubMed]
- Leivesley, J.A.; Stewart, R.A.; Paterson, V.; McCafferty, D.J. Potential importance of urban areas for water voles: Arvicola amphibius. Eur. J. Wildl. Res. 2021, 67, 15. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aulicky, R. Rodents in Crop Production Agricultural Systems—Special Issue. Agronomy 2022, 12, 2813. https://doi.org/10.3390/agronomy12112813
Aulicky R. Rodents in Crop Production Agricultural Systems—Special Issue. Agronomy. 2022; 12(11):2813. https://doi.org/10.3390/agronomy12112813
Chicago/Turabian StyleAulicky, Radek. 2022. "Rodents in Crop Production Agricultural Systems—Special Issue" Agronomy 12, no. 11: 2813. https://doi.org/10.3390/agronomy12112813
APA StyleAulicky, R. (2022). Rodents in Crop Production Agricultural Systems—Special Issue. Agronomy, 12(11), 2813. https://doi.org/10.3390/agronomy12112813