Effects of Different Carbon Types on the Growth and Chromium Accumulation of Peach Trees under Chromium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatments
2.2. Determination of Plant Physiological Indicators
2.3. Antioxidant Enzyme Activity Assay
2.4. Soil Enzyme Activity Assay
2.5. Determination of Soil Physical and Chemical Properties
2.6. Determination of Heavy Metal Content in Soil
2.7. Determination of Heavy Metal Cr Speciation in Soil
2.8. Analysis of Plants and Determination of the Total Cr Content
2.9. Statistical Analysis
3. Results
3.1. Investigation of Cr Content in Orchard Soils in Different Regions of China
3.2. Effects of Different Carbons on Soil Physicochemical Properties under Cr Stress
3.3. Effects of Different Carbon Types on Soil Enzyme Activities under Cr Stress
3.4. Effects of Different Carbon Types on the Speciation of Cr in Soil
3.5. Effects of Different Carbon Treatments on the Growth and Chlorophyll Fluorescence of Peach Trees under Cr Stress
3.6. Effects of Different Carbon Treatments on the Antioxidant Activity of Peach Leaves under Cr Stress
3.7. Effects of Different Carbon Treatments on the Concentration of Cr in Peach Trees under Cr Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Facchinelli, A.; Sacchi, E.; Mallen, L. Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environ. Pollut. 2001, 114, 313–324. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils-To mobilize or to immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef]
- Choppala, G.; Bolan, N.; Jin, H.P. Chromium Contamination and Its Risk Management in Complex Environmental Settings. Adv. Agron. 2013, 39, 66–72. [Google Scholar]
- Fazila, Y.; Nabeel, K.N.; Irshad, B.; Muhammad, A.; Khalid, H.; Muhammad, S.; Zubair, A.; Safdar, B.; Muhammad, M.H.; Jochen, B. Constructed wetlands as a sustainable technology for wastewater treatment with emphasis on chromium-rich tannery wastewater. J. Hazard. Mater. 2022, 422, 126926. [Google Scholar]
- Strasser, R.J.; Srivastava, A.; Tsimilli-Michael, M. The fluorescence transient as a tool to characterize and screen photosynthetic samples. In Probing Photosynthesis Mechanisms Regulation and Adaptation; CRC Press: Boca Raton, FL, USA, 2000; pp. 443–480. [Google Scholar]
- Zhou, Q.X.; Song, Y.F. Remediation of Contaminated Soils: Principles and Methods; Science Press: Beijing, China, 2004; pp. 317–319. [Google Scholar]
- Shakoor, M.B.; Ali, S.; Farid, M. Heavy metal pollution, a global problem and its remediation by chemically enhanced phytoremediation: A Review. J. Biodivers. Environ. Sci. 2013, 3, 12–20. [Google Scholar]
- Gardea-Torresdey, J.L.; de la Rosa, G.; Peralta-Videa, J.R.; Montes, M.; Cruz-Jimenez, G.; Cano-Aguilera, I. Differential Uptake and Transport of Trivalent and Hexavalent Chromium by Tumbleweed (Salsola kali). Environ. Contam. Toxicol. 2005, 48, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Hellerich, L.A.; Nikolaidis, N.P. Studies of hexavalent chromium attenuation in redox variable soils obtained from a sandy to sub-wetland groundwater environment. Water Res. 2005, 39, 2851–2868. [Google Scholar] [CrossRef]
- Reyhanitabar, A.; Alidokht, L.; Khataee, A.R.; Oustan, S. Application of stabilized Fe0 nanoparticles forremediation of Cr(VI)-spiked soil. Eur. J. Soil Sci. 2012, 63, 724–732. [Google Scholar] [CrossRef]
- Zayed, A.M.; Terry, N. Chromium in the environment: Factors affecting biological remediation. Plant Soil 2003, 249, 139–156. [Google Scholar] [CrossRef]
- Zhang, W.J.; Lin, M.F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil. Sci. Total Environ. 2020, 733, 139410. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.M.; Duncan, A.L.; Littlejohn, D.; Ure, A.M.; Garden, L.M. A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal. Chim. Acta 1998, 363, 45–55. [Google Scholar] [CrossRef]
- Pempkowiak, J.; Sikora, A.; Biernacka, E. Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 1999, 39, 313–321. [Google Scholar] [CrossRef]
- Mendoza, J.; Garrido, T.; Castillo, G.; Martin, N.S. Metal availability and uptake by sorghum plants grown in soils amended with sludge from different treatments. Chemoshpere 2006, 65, 2304–2312. [Google Scholar] [CrossRef] [PubMed]
- Patnaik, A.R.; Achary, M.M.; Panda, B.B. Chromium(VI)-induced hormesis and genotoxicity are mediated through oxidative stress in root cells of Allium cepa L. Plant Growth Regul. 2013, 71, 157–170. [Google Scholar] [CrossRef]
- Christou, A.; Georgiadou, E.C.; Zissimos, A.M.; Christoforou, I.C.; Christofi, C.; Neocleous, D.; Dalias, P.; Fotopoulos, V. Uptake of hexavalent chromium by Lactuca sativa and Triticum aestivum plants and mediated effects on their performance, linked with associated public health risks. Chemosphere 2021, 267, 128912. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.; Qamar, S.; Nida Khan, F.; Haq, I.; Al-Huqail, A.; Qureshi, M.I. Differential impact of some metal(loid)s on oxidative stress, antioxidant system, sulfur compounds, and protein profile of Indian mustard (Brassica juncea L.). Protoplasma 2020, 257, 1667–1683. [Google Scholar] [CrossRef]
- Shahid, M.; Shamshad, S.; Rafiq, M.; Khalid, S.; Bibi, I.; Niazi, N.K.; Dumat, C.; Rashid, M.I. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere 2017, 178, 513–533. [Google Scholar] [CrossRef] [PubMed]
- Zeng, F.R.; Ali, S.; Qiu, B.Y.; Wu, F.B.; Zhang, G.P. Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes. J. Plant Nutr. Soil Sci. 2010, 173, 135–148. [Google Scholar] [CrossRef]
- Zong, H.; Liu, J.; Wang, F.; Song, N. Root morphological response of six peanut cultivars to chromium (VI) toxicity. Environ. Sci. Pollut. Res. 2020, 27, 18403–18411. [Google Scholar] [CrossRef]
- Fan, W.-J.; Feng, Y.-X.; Li, Y.-H.; Lin, Y.-J.; Yu, X.-Z. Unraveling genes promoting ROS metabolism in subcellular organelles of Oryza sativa in response to trivalent and hexavalent chromium. Sci. Total Environ. 2020, 744, 140951. [Google Scholar] [CrossRef] [PubMed]
- Samborska, A.; Stepniewska, Z.; Stępniewski, W. Influence of different oxidation states of chromium (VI, III) on soil urease activity. Geoderma 2004, 122, 317–322. [Google Scholar] [CrossRef]
- Huang, S.-H.; Peng, B.; Yang, Z.-H.; Chai, L.-Y.; Zhou, L.-C. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory. Trans. Nonferrous Met. Soc. China 2009, 19, 241–248. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chaia, L.Y.; Liao, Q.; Tang, C.J.; Liao, Y.P.; Peng, B.; Yang, Z.H. Structural and Genetic Diversity of Hexavalent Chromium-Resistant Bacteria in Contaminated Soil. Geomicrobiol. J. 2016, 33, 222–229. [Google Scholar] [CrossRef]
- Rai, V.; Vajpayee, P.; Singh, S.N.; Mehrotra, S. Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L. Plant Sci. 2004, 167, 1159–1169. [Google Scholar] [CrossRef]
- Panda, S.K. Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 2007, 164, 1419–1428. [Google Scholar] [CrossRef]
- Ahmad, R.; Ali, S.; Abid, M.; Rizwan, M.; Ali, B.; Tanveer, A.; Ahmad, I.; Azam, M.; Ghani, M.A. Glycinebetaine alleviates the chromium toxicity in Brassica oleracea L. by suppressing oxidative stress and modulating the plant morphology and photosynthetic attributes. Environ. Sci. Pollut. Res. 2020, 27, 1101–1111. [Google Scholar] [CrossRef]
- Costa, M.; Klein, C.B. Toxicity and Carcinogenicity of Chromium Compounds in Humans. Crit. Rev. Toxicol. 2006, 36, 155. [Google Scholar] [CrossRef]
- Li, S.J.; Li, P.; Li, X.R.; Zhao, L.P.; Ma, M.T.; Zhao, T.K. The influence of concentration of chromium, cadmium in soil-crop system under different fertilizers and fertilization amount. J. Agric. Resour. Environ. 2015, 32, 235–241. [Google Scholar]
- Syed, B.H.; Mottalib, M.A.; Arnob, H.; Noor, M.; Fatema, T.Z. aRemoval of Chromium from Tannery Waste Liquor by Using Lime Liquor in Regarding the Reduction of Environmental Pollution and Reuse It in Leather Production. IOSR J. Environ. Sci. Toxicol. Food Technol. 2018, 12, 1–6. [Google Scholar]
- Macalalad, A.; Ebete, Q.R.; Gutierrez, D. Kinetics and Isotherm Studies on Adsorption of Hexavalent Chromium Using Activated Carbon from Water Hyacinth. Chem. Chem. Technol. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Wang, P.; Li, L.; Pang, X.; Zhang, Y.; Dong, W.-F.; Yan, R. Chitosan-based carbon nanoparticles as a heavy metal indicator and for wastewater treatment. RSC Adv. 2021, 11, 12015–12021. [Google Scholar] [CrossRef]
- Sun, X.H.; Meng, J.; Huo, S.N.; Zhu, J.; Zheng, S.C. Remediation of Heavy Metal Pollution in Soil by Microbial Immobilization with Carbon Microspheres. Int. J. Environ. Sci. Dev. 2020, 11, 43–47. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Song, Z.; Jeyakumar, P.; Shaheen, S.M.; Rinklebe, J.; Ok, Y.S.; Bolan, N.; Wang, H. A critical review on bioremediation technologies for Cr(VI)-contaminated soils and wastewater. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1027–1078. [Google Scholar] [CrossRef]
- Azeez, N.A.; Dash, S.S.; Gummadi, S.N.; Deepa, V.S. Nano-remediation of toxic heavy metal contamination: Hexavalent chromium [Cr(VI)]. Chemosphere 2021, 266, 129204. [Google Scholar] [CrossRef]
- Yunusa, U.; Ibrahim, M.B. Equilibrium and Thermodynamic Studies on Adsorption of Hexavalent Chromium from Aqueous Solution onto Low Cost Activated Carbon. Int. J. Eng. Manuf. 2020, 10, 52–70. [Google Scholar]
- Afroosheh, F.; Bakhtiari, S.; Shahrashoub, M. Green Synthesis of Nanoscale Zero-Valent Iron/Activated Carbon Composites and their Application for Copper and Chromium Removal from Aqueous Solutions. J. Nano Res. 2021, 66, 129–142. [Google Scholar] [CrossRef]
- Xu, M.; Silva, E.; Gao, P.; Liao, R.; Long, L. Biochar impact on chromium accumulation by rice through Fe microbial-induced redox transformation. J. Hazard. Mater. 2020, 388, 121807. [Google Scholar] [CrossRef]
- Tan, Z.; Yuan, S.; Hong, M.; Zhang, L.; Huang, Q. Mechanism of negative surface charge formation on biochar and its effect on the fixation of soil Cd. J. Hazard. Mater. 2020, 384, 121370. [Google Scholar] [CrossRef]
- Rana, A.; Sindhu, M.; Kumar, A.; Dhaka, R.K.; Chahar, M.; Singh, S.; Nain, L. Restoration of heavy metal-contaminated soil and water through biosorbents: A review of current understanding and future challenges. Physiol. Plant. 2021, 173, 394–417. [Google Scholar] [CrossRef]
- Georgia, O.; Michael, M.; Strasser, R.J. Sites of Action of Copper in the Photosynthetic Apparatus of Maize Leaves: Kinetic Analysis of Chlorophyll Fluorescence, Oxygen Evolution, Absorption Changes and Thermal Dissipation as Monitored by Photoacoustic Signals. Funct. Plant Biol. 1997, 24, 81–90. [Google Scholar]
- Guan, M.S. Soil Enzymes and Their Research Methods; Agricultural Press: Beijing, China, 1986; pp. 260–360. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Wang, X.H.; Zhang, Y.L.; Liu, N. Determination of heavy metal ions in soil samples by microwave digestion-ICP-MS. Spectrosc. Lab. 2008, 25, 1183–1187. [Google Scholar]
- Liu, Y.H.; Wei, X.Y.; Wang, X.M. Study on Adsorption and Speciation Extraction of Chromium in Soil. J. Hebei Agric. Univ. 2000, 23, 16–20. [Google Scholar]
- Shanker, A.K.; Venkateswarlu, B. Chromium: Environmental Pollution, Health Effects and Mode of Action. In Encyclopedia of Environmental Health; Elsevier: Amsterdam, The Netherlands, 2011; pp. 650–659. [Google Scholar]
- Chen, W.X.; Li, Q.; Wang, Z.; Sun, Z.J. Spatial Distribution Characteristics and Pollution Evaluation of Heavy Metals in Arable Land Soil of China. Environ. Sci. 2020, 6, 2822–2833. [Google Scholar]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Zhong, T.Y.; Liu, L.; Zhang, X.M.; Cheng, M.; Li, X.H.; Jin, J.X. Chromium occurrences in arable soil and its influence on food production in China. Environ. Earth Sci. 2016, 75, 257. [Google Scholar] [CrossRef]
- Li, X.; Zhang, J.; Ma, J.; Liu, Q.; Wu, Y. Status of chromium accumulation in agricultural soils across China (1989–2016). Chemosphere 2020, 256, 127036. [Google Scholar] [CrossRef]
- Bowles, T.M.; Acosta-Martnez, V.; Calderón, F. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol. Biochem. 2014, 68, 252–262. [Google Scholar] [CrossRef]
- Wang, D.; Wei, W.; Liang, D.L. Transformation of Copper and Chromium in Co-contaminated Soil and Its Influence on Bioavailability for Pakchoi (Brassica chinensis). Environ. Sci. 2011, 32, 3113. [Google Scholar]
- Singh, S.K.; Singh, R.P.; Bohra, J.S. Effect of organic and inorganic sources of nutrients on heavy metals content and microbial population in soil under rice cultivation. Environ. Ecol. 2014, 32, 907–910. [Google Scholar]
- Lin, Y. Effects of lime and activated carbon on remedying chromium contaminated soil. Acta Pedol. Sin. 2012, 49, 518–525. [Google Scholar]
- Wu, J.; Zhang, J.; Xiao, C. Focus on factors affecting pH, flow of Cr and transformation between Cr(VI) and Cr(III) in the soil with different electrolytes. Electrochim. Acta 2016, 211, 652–662. [Google Scholar] [CrossRef]
- Reijonen, I.; Hartikainen, H. Oxidation mechanisms and chemical bioavailability of chromium in agricultural soil-pH as the master variable. Appl. Geochem. 2016, 74, 84–93. [Google Scholar] [CrossRef]
- Choppala, G.; Kunhikrishnan, A.; Seshadri, B.; Park, J.H.; Bush, R.; Bolan, N. Comparative sorption of chromium species as influenced by pH, surface charge and organic matter content in contaminated soils. J. Geochem. Explor. 2018, 184, 255–260. [Google Scholar] [CrossRef]
- Xu, T.; Nan, F.; Jiang, X.; Tang, Y.; Zeng, Y.; Zhang, W.; Shi, B. Effect of soil pH on the transport, fractionation, and oxidation of chromium(III). Ecotoxicol. Environ. Saf. 2020, 195, 110459. [Google Scholar] [CrossRef] [PubMed]
- Sahika, S.B.; Özge, K. Hexavalent chromium adsorption on superparamagnetic multi-wall carbon nanotubes and activated carbon composites. Chem. Eng. Res. Des. 2014, 92, 2725–2733. [Google Scholar]
- Zhang, S.H.; Cao, Z.P.; Hu, C.J. Effect of added straw carbon on soil microbe and protozoa abundance. Chin. J. Eco-Agric. 2011, 19, 1283–1288. [Google Scholar] [CrossRef]
- Dhal, B.; Thatoi, H.N.; Das, N.N. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. J. Hazard. Mater. 2013, 30, 272–291. [Google Scholar] [CrossRef]
- Dong, X.; Ma, L.Q.; Li, Y. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. J. Hazard. Mater. 2011, 190, 909–915. [Google Scholar] [CrossRef]
- Qasim, B.; Razzak, A.A.; Rasheed, R.T. Effect of biochar amendment on mobility and plant uptake of Zn, Pb and Cd in contaminated soil. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012082. [Google Scholar] [CrossRef]
- Liu, N.; Zhang, Y.; Xu, C. Removal mechanisms of aqueous Cr(VI) using apple wood biochar: A spectroscopic study. J. Hazard. Mater. 2019, 384, 121371. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, C.; Wang, X. Selenium alleviated chromium stress in Chinese cabbage (Brassica campestris L. ssp. Pekinensis) by regulating root morphology and metal element uptake. Ecotoxicol. Environ. Saf. 2019, 173, 314–321. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.J.; Li, J.Y.; Yuan, J.H. Adsorption of Cu(II) by biochars generated from three crop straws. Chem. Eng. J. 2011, 172, 828–834. [Google Scholar] [CrossRef]
- Xu, X.; Zhao, Y.; Sima, J.; Zhao, L.; MaEk, O.; Cao, X. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresour. Technol. 2017, 241, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Liviana, L.; Margon, A.; Sinicco, T.; Mondini, C. Glucose promotes the reduction of hexavalent chromium in soil. Geoderma 2011, 164, 122–127. [Google Scholar]
- Tripathi, D.K.; Singh, V.P.; Kumar, D. Impact of exogenous silicon addition on chromium uptake, growth, mineral elements, oxidative stress, antioxidant capacity, and leaf and root structures in rice seedlings exposed to hexavalent chromium. Acta Physiol. Plant. 2012, 34, 279–289. [Google Scholar] [CrossRef]
- Maharana, R.; Panda, S.; Basu, A.; Dhal, N.K. Effects of Biochar on growth and physiological activities of Wheat (Triticum aestivum L.) grown on Chromium (VI) contaminated soil. Res. J. Chem. Environ. 2018, 22, 1–9. [Google Scholar]
- Behera, J.K.; Sharma, P.K.; Behera, T.; Koka, R.K.; Vind, A. Remediation of Chromium Toxicity by Biochar, Poultry Manure and Sewage Sludge in Rice (Oryza sativa) Crop. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 2294–2306. [Google Scholar] [CrossRef]
- Bashir, M.A.; Wang, X.; Naveed, M.; Mustafa, A.; Jamil, M. Biochar Mediated-Alleviation of Chromium Stress and Growth Improvement of Different Maize Cultivars in Tannery Polluted Soils. Int. J. Environ. Res. Public Health 2021, 8, 4461. [Google Scholar] [CrossRef]
- Ma, J.; Lv, C.; Xu, M.; Chen, G.; Lv, C.; Gao, Z. Photosynthesis performance, antioxidant enzymes, and ultrastructural analyses of rice seedlings under chromium stress. Environ. Sci. Pollut. Res. 2015, 23, 1768–1778. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.X.; Xiao, Y.F.; Zhou, Y.; Zeng, T.; Xing, M.Y.; Zhang, J.L. A structural engineering-inspired CdS based composite for photocatalytic remediation of organic pollutant and hexavalent chromium. Catal. Today 2019, 335, 101–109. [Google Scholar] [CrossRef]
- Uchimiya, M.; Wartelle, L.H.; Klasson, K.T. Influence of Pyrolysis Temperature on Biochar Property and Function as a Heavy Metal Sorbent in Soil. J. Agric. Food Chem. 2011, 59, 2501–2510. [Google Scholar] [CrossRef] [PubMed]
- Zheng, R.; Chen, Z.; Cai, C.; Wang, X.H.; Huang, Y.Z. Effect of Biochars from Rice Husk, Bran, and Straw on Heavy Metal Uptake by Pot-Grown Wheat Seedling in a Historically Contaminated Soil. Bioresources 2013, 8, 5965–5982. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Chi, H.; Bi, L.J. Effects of biochar application on growth and typical metal accumulation of rape in mining contaminated soil. Ecol. Environ. Sci. 2014, 6, 1057–1063. [Google Scholar]
- Chen, D.; Guo, H.; Li, R.Y.; Li, L.Q.; Pan, G.X.; Chang, A.; Joseph, S.D. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice-A field study over four rice seasons in Hunan, China. Sci. Total Environ. 2016, 541, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Pescatore, A.; Grassi, C.; Rizzo, A.M.; Orlandini, S.; Napoli, M. Effects of biochar on berseem clover (Trifolium alexandrinum, L.) growth and heavy metal (Cd, Cr, Cu, Ni, Pb, and Zn) accumulation. Chemosphere 2020, 287, 131986. [Google Scholar] [CrossRef]
Treatment | pH | Organic Matter (g/kg) | Olsen-P (mg/kg) | Available K (mg/kg) | Available N (mg/kg) |
---|---|---|---|---|---|
Cr0CK | 6.68 b | 14.85 ± 0.11 d | 59.75 ± 2.37 a | 109.15 ± 4.05 b | 64.28 ± 2.96 a |
Cr0BC | 6.90 a | 16.86 ± 0.09 a | 61.39 ± 1.95 a | 119.01 ± 5.36 a | 60.24 ± 2.11 a |
Cr0AC | 6.59 b | 16.21 ± 0.06 b | 58.60 ± 2.34 a | 101.91 ± 3.58 b | 61.94 ± 2.42 a |
Cr0NC | 6.98 a | 15.98 ± 0.14 c | 58.03 ± 2.06 a | 100.91 ± 5.09 b | 59.68 ± 2.18 a |
Cr100CK | 6.89 b | 14.96 ± 0.09 c | 47.93 ± 1.40 d | 109.98 ± 4.44 b | 57.31 ± 2.73 b |
Cr100BC | 6.89 b | 16.29 ± 0.07 a | 66.58 ± 1.09 a | 122.63 ± 5.75 a | 62.78 ± 2.17 a |
Cr100AC | 6.81 b | 15.64 ± 0.10 b | 60.43 ± 2.44 b | 118.14 ± 3.04 ab | 61.88 ± 1.59 a |
Cr100NC | 7.15 a | 15.62 ± 0.11 b | 56.39 ± 2.01 c | 119.73 ± 5.72 a | 63.32 ± 1.11 a |
Cr150CK | 7.36 a | 14.94 ± 0.08 c | 42.05 ± 2.10 c | 110.42 ± 3.20 b | 54.77 ± 1.35 c |
Cr150BC | 6.99 b | 16.75 ± 0.08 a | 60.26 ± 2.99 a | 125.54 ± 5.09 a | 61.71 ± 1.65 a |
Cr150AC | 7.03 b | 15.84 ± 0.08 b | 55.75 ± 1.42 b | 121.46 ± 2.69 a | 58.81 ± 1.10 b |
Cr150NC | 7.08 b | 15.74 ± 0.09 b | 54.42 ± 1.95 b | 122.37 ± 3.82 a | 58.13 ± 1.60 b |
Treatment | EXE (mg/kg) | CARB (mg/kg) | FeMnO (mg/kg) | Pre (mg/kg) | Org (mg/kg) | Res (mg/kg) |
---|---|---|---|---|---|---|
Cr0CK | 0.382 a | 1.634 a | 0.554 c | 8.758 c | 4.534 d | 21.620 a |
Cr0BC | 0.099 c | 0.396 b | 0.794 ab | 9.595 a | 6.533 a | 20.245 b |
Cr0AC | 0.094 b | 0.384 b | 0.804 a | 9.515 a | 6.289 b | 20.516 b |
Cr0NC | 0.091 b | 0.388 b | 0.783 b | 9.313 b | 5.993 c | 20.750 b |
Cr100CK | 1.629 a | 6.685 a | 1.542 b | 53.771 c | 5.153 d | 30.614 b |
Cr100BC | 0.256 c | 3.113 bc | 2.101 a | 57.020 a | 7.736 a | 31.627 a |
Cr100AC | 0.271 b | 3.048 c | 2.164 a | 55.834 ab | 7.449 b | 31.350 a |
Cr100NC | 0.277 b | 3.261 b | 2.105 a | 55.519 b | 7.162 c | 30.708 b |
Cr150CK | 3.196 a | 14.358 a | 2.759 c | 70.321 c | 7.259 d | 52.152 b |
Cr150BC | 0.789 c | 7.375 d | 3.702 a | 74.313 a | 13.506 a | 53.853 a |
Cr150AC | 0.788 c | 7.670 c | 3.620 a | 73.223 ab | 12.557 b | 53.005 ab |
Cr150NC | 0.860 b | 8.041 b | 3.494 b | 72.939 b | 11.979 c | 52.278 b |
Treatments | Chlorophyll Content (mg/g) | Static Photosynthetic Rate (nmmol/m2/s) | Growth of Girth of Trunk (mm) | Shoot Growth (cm) | ||||
---|---|---|---|---|---|---|---|---|
6.15 | 7.15 | 8.15 | 6.15 | 7.15 | 8.15 | 6.1–8.1 | 6.1–8.1 | |
Cr0CK | 2.77 a | 3.25 a | 2.07 c | 10.37 a | 11.69 b | 8.77 b | 3.14 a | 9.33 d |
Cr0BC | 2.78 a | 3.27 a | 2.22 a | 10.74 a | 12.02 a | 9.06 a | 3.20 a | 11.85 a |
Cr0AC | 2.75 a | 3.21 ab | 2.16 b | 10.57 a | 11.75 ab | 8.80 b | 3.11 a | 10.53 c |
Cr0NC | 2.78 a | 3.17 b | 2.16 b | 10.66 a | 11.52 b | 8.76 b | 3.14 a | 11.05 b |
Cr100CK | 2.22 b | 2.91 b | 1.72 b | 7.33 b | 8.36 c | 7.02 b | 1.88 b | 4.67 d |
Cr100BC | 2.47 a | 3.08 a | 1.81 a | 8.78 a | 9.37 a | 8.35 a | 2.08 a | 6.90 a |
Cr100AC | 2.43 a | 3.09 a | 1.76 ab | 8.75 a | 9.14 b | 8.23 a | 2.05 a | 6.05 b |
Cr100NC | 2.42 a | 3.08 a | 1.79 a | 8.60 a | 9.11 b | 8.31 a | 1.93 b | 5.75 c |
Cr150CK | 2.15 c | 2.73 b | 1.61 b | 5.77 c | 7.36 c | 5.03 c | 1.72 b | 2.04 d |
Cr150BC | 2.41 a | 2.85 a | 1.69 a | 7.16 a | 8.02 a | 6.25 a | 1.88 a | 3.40 a |
Cr150AC | 2.38 ab | 2.83 a | 1.70 a | 6.95 b | 7.69 b | 5.96 b | 1.82 a | 2.75 b |
Cr150NC | 2.35 b | 2.80 ab | 1.71 a | 6.96 b | 7.71 b | 5.99 b | 1.85 a | 2.44 c |
Treatment | Leaf (mg/kg) | New Branch Phloem (mg/kg) | New Branch Xylem (mg/kg) | Trunk Phloem (mg/kg) | Trunk Xylem (mg/kg) | Coarse Root (mg/kg) | Fine Root (mg/kg) |
---|---|---|---|---|---|---|---|
Cr0CK | 3.038 d | 6.642 a | 5.831 a | 25.371 a | 8.028 a | 10.757 a | 53.812 a |
Cr0BC | 4.645 b | 4.356 b | 2.395 d | 20.692 b | 6.194 c | 8.461 c | 45.606 c |
Cr0AC | 4.895 a | 4.488 b | 2.588 c | 18.724 c | 4.505 d | 10.587 a | 48.887 b |
Cr0NC | 4.029 c | 3.808 c | 3.079 b | 21.001 b | 6.752 b | 8.962 b | 46.362 c |
Cr100CK | 63.037 a | 44.713 a | 21.426 a | 264.354 a | 94.822 a | 543.215 a | 626.183 a |
Cr100BC | 37.789 c | 26.869 d | 11.167 d | 156.280 d | 65.985 c | 282.904 d | 331.069 d |
Cr100AC | 47.883 b | 34.371 c | 13.927 c | 176.192 c | 75.514 b | 330.849 c | 390.916 b |
Cr100NC | 50.924 b | 37.799 b | 15.967 b | 189.551 b | 76.727 b | 361.797 b | 356.545 c |
Cr150CK | ---- | 106.155 a | 73.792 a | 875.618 a | 225.038 a | 736.881 a | 951.911 a |
Cr150BC | 86.856 | 84.613 d | 33.472 c | 372.397 d | 181.677 c | 430.132 c | 562.478 c |
Cr150AC | ---- | 89.154 c | 34.549 bc | 387.716 c | 179.954 c | 464.695 b | 594.519 c |
Cr150NC | ---- | 96.376 b | 36.530 b | 484.010 b | 198.847 b | 435.219 c | 658.880 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, H.; Yang, X.; Wang, N.; Sun, M.; Xiao, Y.; Peng, F. Effects of Different Carbon Types on the Growth and Chromium Accumulation of Peach Trees under Chromium Stress. Agronomy 2022, 12, 2814. https://doi.org/10.3390/agronomy12112814
Gao H, Yang X, Wang N, Sun M, Xiao Y, Peng F. Effects of Different Carbon Types on the Growth and Chromium Accumulation of Peach Trees under Chromium Stress. Agronomy. 2022; 12(11):2814. https://doi.org/10.3390/agronomy12112814
Chicago/Turabian StyleGao, Huaifeng, Xiaoqing Yang, Nana Wang, Maoxiang Sun, Yuansong Xiao, and Futian Peng. 2022. "Effects of Different Carbon Types on the Growth and Chromium Accumulation of Peach Trees under Chromium Stress" Agronomy 12, no. 11: 2814. https://doi.org/10.3390/agronomy12112814
APA StyleGao, H., Yang, X., Wang, N., Sun, M., Xiao, Y., & Peng, F. (2022). Effects of Different Carbon Types on the Growth and Chromium Accumulation of Peach Trees under Chromium Stress. Agronomy, 12(11), 2814. https://doi.org/10.3390/agronomy12112814