Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Treatment
2.1.1. Experiment I
2.1.2. Experiment II
2.1.3. Experiment III
2.2. Sampling and Measurement Methods
2.2.1. Germination Experiment
2.2.2. Seedling Experiment
2.2.3. Adult Experiment
2.2.4. Soluble Protein Content
2.2.5. Determination of Yield
2.3. Data Statistics and Analysis
3. Results
3.1. Evaluation of Drought Tolerance in 69 Rice during Germination Stage
3.2. Effect of Drought Stress on Various Agronomic Traits at Seedling Stage
3.3. Effects of Drought on Antioxidant Activity of Rice under Dry Cultivation
3.4. Effects of Drought on Photosynthetic Parameters of Rice under Dry Cultivation
3.5. Differences in Yield and Yield Components of Different Drought-Resistant Varieties
4. Discussion
4.1. Whole Growing Period Screens for Drought Resistance Is a Necessary Process for Classifying Varieties for Resistance
4.2. Varietal Differences in Drought Resistance Are a Combination of Physiological and Metabolic Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, Q.; Ma, X.P.; Lv, T.; Bai, M.; Wang, Z.L.; Niu, J.R. Effects of Water Stress on Fluorescence Parameters and Photosynthetic Characteristics of Drip Irrigation in Rice. Water 2020, 12, 289. [Google Scholar] [CrossRef] [Green Version]
- Zubaer, M.A.; Chowdhury, A.K.M.M.B.; Islam, M.Z.; Ahmed, T.; Hasan, M.A. Effects of water stress on growth and yield attributes of aman rice genotypes. Int. J. Sustain. Crop Prod. 2007, 2, 25–30. [Google Scholar]
- Liu, M.; Shan, L.; Dan, N.M.; Tao, Y.; Cai, X. Do water-saving ground cover rice production systems increase grain yields at regional scales? Field Crops Res. 2013, 150, 19–28. [Google Scholar] [CrossRef]
- Yang, X.L.; Cheng, J.P.; Wang, B.F.; Li, Y.; Zhang, Z.S.; Li, J.L.; Li, P. Effect of drought stress at grain filling stage on rice physiological characteristics and yield. Chin. J. Rice Sci. 2020, 35, 38–46. [Google Scholar]
- Jiang, H.; Thobakgale, T.; Li, Y.; Liu, L.; Wu, Z. Construction of dominant rice population under dry cultivation by seeding rate and nitrogen rate interaction. Sci. Rep. 2021, 11, 7189. [Google Scholar] [CrossRef] [PubMed]
- Bhat, J.A.; Deshmukh, R.; Zhao, T.J.; Patil, G.; Deokar, A.; Shinde, S.; Chaudhary, J. Harnessing high-throughput phenotyping and genotyping for enhanced drought tolerance in crop plants. J. Biotechnol. 2020, 324, 248–260. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Cano-Delgado, A.I. The physiology of plant responses to drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Yang, X.L.; Wang, B.F.; Chen, L.; Li, P.; Cougui, C. The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Sci. Rep. 2019, 9, 3742. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.S.; Xie, Z.M.; Wu, X.D.; Wang, Z.J.; Ye, C.X.; Zhang, G.L. Identification of drought tolerance of rice germplasm during germination period. Agric. Res. Arid. Areas 2015, 33, 173–180. [Google Scholar]
- Lu, J.J.; Zhang, J.; Ji, J.H.; Wang, H.C.; Ding, Z.Q.; Zhang, C.J.; Yao, Y.Q.; Li, Z.F. Study on drought-resistance identification methods and evaluation index of dry-land rice—Experiment of drought- resistance evaluation of whole growth period. Agric. Res. Arid. Areas 2005, 4, 129–133. [Google Scholar]
- Li, Y.; Ma, J.; Zhang, R.P.; Li, X.Y.; Wang, R.Q. Screening indexes of drought resistance during seedling stage in rice. Acta Agron. Sin. 2007, 9, 1523–1529. [Google Scholar]
- Sukhov, V. Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth. Res. 2016, 130, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Du, T.T.; Huang, J.L.; Peng, S.B.; Xiong, D.L. Leaf hydraulic vulnerability triggers the decline in stomatal and mesophyll conductance during drought in rice. J. Exp. Bot. 2018, 69, 4033–4045. [Google Scholar] [CrossRef] [PubMed]
- Abdelaal, K.; AlKahtani, M.; Attia, K.; Hafez, Y.; Király, L.; Künstler, A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. Biology 2021, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- AlKahtani, M.D.F.; Yaser, M.H.; Kotb, A.; Emadeldeen, R.; Latifa, A.H.; Hussah, I.M.A.; Khaled, A.A.A. Evaluation of Silicon and Proline Application on the Oxidative Machinery in Drought-Stressed Sugar Beet. Antioxidants 2021, 10, 398. [Google Scholar] [CrossRef]
- Abdelaal, K.; Mazrou, Y.; Hafez, Y. Silicon Foliar Application Mitigates Salt Stress in Sweet Pepper Plants by Enhancing Water Status, Photosynthesis, Antioxidant Enzyme Activity and Fruit Yield. Plants 2020, 9, 733. [Google Scholar] [CrossRef]
- Bian, J.L.; Jiang, Y.L.; Liu, Y.Y.; Feng, Y.F.; Liu, H.; Xia, S.M.; Liu, L.J. Effects of alternate wetting and drying lrrigation on grain yield in rice cultivars with different drought resistance and its physiological mechanism. Chin. J. Rice Sci. 2007, 31, 379–390. [Google Scholar]
- Wu, L.L.; Yu, Y.J.; Tian, C.; Zhang, L.; Huang, J.; Zhu, L.F.; Zhu, C.Q.; Kong, L.Y.; Zhang, J.H.; Cao, X.C. Effects of different nitrogen application regimes on translocation of rice photosynthetic products and nitrogen under alternate wetting and drying irrigation. Chin. J. Rice Sci. 2022, 36, 295–307. [Google Scholar] [CrossRef]
- Lan, X.; Gu, Z.D.; Ding, Y.F.; Wang, K.; Jiang, Q.; Zhu, C. Spikelet of rice during flowering stage. Chin. J. Rice Sci. 2016, 30, 637–646. [Google Scholar]
- Xu, C.; Ling, F.L.; Xu, K.Z.; Wu, Z.H.; Liu, X.L.; An, J.H.; Zhao, L.B. Effect of salt stress on photosynthetic characteristics and physiological and biochemical traits of different rice varieties. Chin. J. Rice Sci. 2003, 27, 280–286. [Google Scholar]
- Torrion, J.A.; Stougaard, R.N. Impacts and Limits of Irrigation Water Management on Wheat Yield and Quality. Crop Sci. 2017, 57, 3239. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Di, H.; Cheng, W.; Ren, G.; Zhang, Y.; Ma, J.; Ma, W.; Yang, J.; Lian, H.; Li, X.; et al. Effect of the Number of Dark Days and Planting Density on the Health-Promoting Phytochemicals and Antioxidant Capacity of Mustard (Brassica juncea) Sprouts. Plants 2022, 11, 2515. [Google Scholar] [CrossRef] [PubMed]
- Mounika, K.; Ahamed, M.L.; Umar, S.N. Principal Component and Cluster Analysis in Inbred Lines of Maize (Zea mays L.). Int. J. Curr. Microbiol. App.Sci. 2018, 7, 3221–3229. [Google Scholar] [CrossRef]
- Wang, L.F.; Wu, J.; Jing, R.L.; Cheng, X.Z.; Wang, S.M. Drought resistance identification of mungbean germplasm resources at seedlings stage. Acta Agron. Sin. 2015, 41, 145–153. [Google Scholar] [CrossRef]
- Wang, W.X.; Chen, L.M.; Wang, H.X.; Liu, Y.Q.; Wu, Z.M.; Zeng, Y.J.; Tan, X.M.; Pan, X.H.; Shi, Q.H.; Zeng, Y.H. Study on physiological characteristics behind mitigative effect of flooding on low temperature-caused chilling damage to direct seeded early indica rice at the seedling stage. Chin. J. Rice Sci. 2021, 35, 166–176. [Google Scholar]
- Tian, L.; Chen, Y.P.; Liu, J.; Ma, X.G.; Wang, N.; Yang, B.; Li, Y.; Guo, H.D.; Li, J.; Hu, H.; et al. Comprehensive evaluation and selection of rice germplasm for saline tolerance at germination stage. Chin. J. Rice Sci. 2017, 31, 12. [Google Scholar]
- Lekklar, C.; Chadchawan, S.; Boon-Long, P.; Pfeiffer, W.; Chaidee, A. Salt stress in rice: Multivariate analysis separates four components of beneficial silicon action. Protoplasma 2019, 256, 331–347. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Song, Y.H.; Zhang, M.H.; Li, X.Y.; Li, H.; Wang, Y.X.; Qi, X.L. Effect of water deficit on physiology and biochemistry of seedlings of different wheat varieties and the alleviation effect of exogenous application of 5-aminolevulinic acid. Acta Agron. Sin. 2022, 48, 478–487. [Google Scholar] [CrossRef]
- Li, Q.Y.; Zhu, C.H.; Li, X.Y.; Xiang, Y.J.; Yang, X.R.; Fu, H.J.; Zhang, H. Drought resistance identification and index screening of rice near-isogenic introgression lines at germinating stage. J. Nucl. Agric. Sci. 2021, 35, 192–201. [Google Scholar]
- Zhu, L.W.; Cao, D.D.; Fu, Y.Y.; Hu, Q.J.; Li, Z.; Guan, Y.J.; Hu, W.M.; Hu, J. Soluble oligosaccharide and small heat shock protein correlated with seed germination and vigor during hybrid rice seed maturation. Acta Agron. Sin. 2016, 42, 714–724. [Google Scholar] [CrossRef]
- Li, L.; Mao, X.G.; Wang, J.Y.; Chang, X.P.; Liu, Y.P.; Jing, R.L. Drought tolerance evaluation of wheat germplasm resources. Acta Agron. Sin. 2018, 44, 988–999. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Yang, Y.Z.; Zhou, W.Q.; Lian, X.R.; Zhang, Y.J.; Wang, X.R.; Kou, S.R.; He, H.J.; Liu, Z.X.; Wang, X.J. Evaluation and selection of drought resistance inbred lines of maize under drought stress. Agric. Res. Arid. Areas 2020, 38, 211–217. [Google Scholar]
- Lee, H.; Cha, J.; Choi, C.; Choi, N.; Ji, H.S.; Park, S.R.; Lee, S.; Hwang, D.J. Rice WRKY11 Plays a Role in Pathogen Defense and Drought Tolerance. Rice 2018, 11, 5. [Google Scholar] [CrossRef]
- Akter, S.; Jahan, I.; Hossain, M.A.; Hossain, M.A. Laboratory and Field Phenotyping for Drought Stress Tolerance and Diversity Study in Lentil (Lens culinaris Medik.). Phyton 2021, 90, 949. [Google Scholar] [CrossRef]
- Yang, J.C. Relationships of rice root morphology and physiology with the formation of grain yield and quality and the nutrient absorption and utilization. Sci. Agric. Sin. 2011, 44, 11. [Google Scholar]
- Zhao, J.J.; Qiao, L.; Wu, B.B.; Ge, C.; Qiao, L.Y.; Zhang, S.W.; Yan, S.X.; Zheng, X.W.; Zheng, J. Seedling root characteristics and drought resistance of wheat in Shanxi province. Acta Agron. Sin. 2021, 47, 714–727. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Gang, Q.; Wang, Y.; Chen, J.; Chen, A.J.; Wang, L.Y.; Guo, X.Y.; Niu, Y.L.; Zhang, X.Y.; Chen, L.D.; et al. Effect of soil water and nitrogen on plant growth, root morphology and spatial distribution of maize at the seedling stage. Sci. Agric. Sin. 2019, 52, 11. [Google Scholar]
- Mu, Z.H.; Zhang, S.Q.; Liang, A.H.; Liang, Z.S. Relationship between maize root hydraulic conductivity and drought resistance. Acta Agron. Sin. 2005, 31, 203–208. [Google Scholar]
- Zhu, C.Q.; Xu, Q.S.; Cao, X.C.; Zhu, L.F.; Kong, Y.L.; Jin, Q.Y.; Zhang, J.H. Effect of substrates with different properties on chilling tolerance of early rice seedlings. Chin. J. Rice Sci. 2021, 35, 10. [Google Scholar]
- Shan, C.J.; Dai, H.F. Effect of exogenous glutathione on leaf physiological properties of maize seedling under drought stress. J. Irrig. Drain. 2016, 35, 59–62. [Google Scholar]
- Ain-Lhout, F.; Zunzunegui, M.; Diaz-Barradas, M.C.; Tirado, R.; Clavijo, A.; Novo, F.G. Comparison of proline accumulation in two mediterranean shrubs subjected to natural and experimental water deficit. Plant Soil 2001, 230, 175–183. [Google Scholar] [CrossRef]
- Ding, L.; Li, Y.R.; Li, Y.; Shen, Q.R.; Guo, S.W. Effect of drought stress on photosynthesis and water status of rice leaves. Chin. J. Rice Sci. 2014, 28, 65–70. [Google Scholar]
- Planchet, E.; Verdu, I.; Delahaie, J.; Cukier, C.; Girard, C.; Paven, M.-C.M.-L.; Limami, A.M. Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J. Exp. Bot. 2014, 65, 2161–2170. [Google Scholar] [CrossRef] [Green Version]
- Ao, X.; Xie, P.D.; Liu, J.Q.; Zhang, H.J. Comparison of photosynthetic characteristics of soybean cultivars with different phosphorus efficiency. Acta Agron. Sin. 2009, 35, 522–529. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhao, G.C.; Xu, K.Z.; Di, Y.T.; Jiang, N.; Ling, F.L.; Zhao, Y.J. Changes in photosynthetic indexes of rice varieties during forty-seven years of genetic improvement in Jilin province. China. Chin. J. Rice Sci. 2009, 23, 165–171. [Google Scholar] [CrossRef]
- Li, G.H.; Zhang, K.; Liu, F.Z.; Liu, D.D.; Wan, Y.S. Morphological and physiological traits of leaf in different drought resistant peanut cultivars. Sci. Agric. Sin. 2014, 47, 11. [Google Scholar]
- Wang, Z.J.; Xie, Z.M.; Tian, Y.S.; Chen, L.; Dong, Y.M.; Li, Y.Z.; Lv, Z.Z. Photosynthetic characteristics of rice under drip irrigation with plastic film mulching and continuous flooding. Chin. J. Rice Sci. 2015, 29, 9. [Google Scholar]
No. | Varieties | Μ (RCL) | μ (RSL) | Μ (RRL) | μ (RRN) | μ (RSW) | μ (RRW) | μ (RGR) | D Value | Rank |
---|---|---|---|---|---|---|---|---|---|---|
1 | Jipinlongxiang 180 | 0.6309 | 0.2002 | 0.1796 | 0.1823 | 0.0505 | 0.1285 | 0.2288 | 0.1960 | 63 |
2 | Daohuaxiang 8 | 0.1612 | 0.0925 | 0.0244 | 0.1787 | 0.0002 | 0.0454 | 0.1345 | 0.0822 | 68 |
3 | Longdao 16 | 0.0000 | 0.1829 | 0.0413 | 0.0858 | 0.1001 | 0.1433 | 0.2148 | 0.1149 | 67 |
4 | Longdao 20 | 0.9184 | 0.3172 | 0.1911 | 0.1155 | 0.4175 | 0.1633 | 0.2779 | 0.2999 | 55 |
5 | Songjing16 | 0.7334 | 0.1376 | 0.1220 | 0.1339 | 0.1229 | 0.1095 | 0.4790 | 0.2188 | 61 |
6 | Fangyuan 18 | 0.8970 | 0.4215 | 0.4081 | 0.8281 | 0.3750 | 0.2973 | 0.4290 | 0.4900 | 43 |
7 | Fangxiang 2 | 0.8247 | 0.8424 | 0.4620 | 0.4618 | 0.8565 | 0.7484 | 0.5476 | 0.6712 | 25 |
8 | Zhenzhuxiang | 0.3705 | 0.2538 | 0.3418 | 0.5356 | 0.3893 | 0.2746 | 0.4568 | 0.3706 | 49 |
9 | Daohuaxiang 7 | 0.9626 | 0.4581 | 0.3748 | 0.5262 | 0.6093 | 0.3647 | 0.9950 | 0.5723 | 39 |
10 | Shouzhe 918 | 0.7511 | 0.5939 | 0.5403 | 0.7783 | 0.8352 | 0.3053 | 0.5400 | 0.6080 | 38 |
11 | Wuyoudao 4 | 0.9187 | 0.4020 | 0.4078 | 0.3628 | 0.2920 | 0.2313 | 0.3383 | 0.3836 | 46 |
12 | Zhongke 804 | 0.8045 | 0.5512 | 0.1707 | 0.8536 | 0.4683 | 0.3367 | 0.9751 | 0.5588 | 40 |
13 | Longyang 16 | 0.4049 | 0.2277 | 0.2099 | 0.2630 | 0.2250 | 0.1750 | 0.1981 | 0.2310 | 59 |
14 | Longyang 20 | 0.9343 | 0.1888 | 0.0601 | 0.4712 | 0.0787 | 0.2982 | 0.1439 | 0.2644 | 57 |
15 | Longyang 21 | 0.6499 | 0.3911 | 0.2316 | 0.5906 | 0.3003 | 0.2353 | 0.5018 | 0.3885 | 44 |
16 | Longyang 06-6 | 0.3871 | 0.4652 | 0.2814 | 0.4934 | 0.3443 | 0.1737 | 0.5272 | 0.3722 | 48 |
17 | Longyang 13 | 0.9139 | 1.0000 | 0.4863 | 0.9658 | 0.8806 | 0.4600 | 0.8571 | 0.7752 | 12 |
18 | Suidao 9 | 0.1670 | 0.0000 | 0.0591 | 0.0000 | 0.0000 | 0.0494 | 0.0541 | 0.0383 | 69 |
19 | Shengyu 1 | 0.8409 | 0.2547 | 0.3763 | 0.4264 | 0.3726 | 0.2098 | 0.4838 | 0.3876 | 45 |
20 | Suidao 3 | 0.6841 | 0.1403 | 0.1544 | 0.1867 | 0.2015 | 0.2141 | 0.3345 | 0.2402 | 58 |
21 | Suijing 9 | 0.5204 | 0.1805 | 0.1685 | 0.2927 | 0.5193 | 0.1150 | 0.2810 | 0.2787 | 56 |
22 | Muyudao 49 | 0.9378 | 0.4240 | 0.4441 | 0.9125 | 0.4154 | 0.5442 | 0.8931 | 0.6199 | 33 |
23 | Yuxiang 3 | 0.8355 | 0.2896 | 0.1986 | 0.2844 | 0.2999 | 0.4070 | 0.5763 | 0.3760 | 47 |
24 | Lianyu 1013 | 0.4334 | 0.1463 | 0.0469 | 0.0854 | 0.1502 | 0.1136 | 0.5764 | 0.1942 | 64 |
25 | Lianyu 06124 | 0.7799 | 0.2814 | 0.5246 | 0.1725 | 0.2628 | 0.1509 | 0.4850 | 0.3457 | 53 |
26 | Suijing 28 | 0.8105 | 0.2148 | 0.2195 | 0.2050 | 0.3481 | 0.2295 | 0.7153 | 0.3499 | 52 |
27 | Suiyu 117463 | 0.8556 | 0.8658 | 0.3969 | 0.7156 | 0.7463 | 0.8760 | 0.9587 | 0.7607 | 13 |
28 | Longjing 1656 | 0.8817 | 0.2801 | 0.1711 | 0.5272 | 0.2375 | 0.2006 | 0.6157 | 0.3697 | 50 |
29 | Longjing 1525 | 0.5950 | 0.7424 | 0.0000 | 0.1295 | 0.0601 | 0.0000 | 0.0000 | 0.1878 | 65 |
30 | Zhongkefa 6 | 0.9417 | 0.3619 | 0.2610 | 0.1570 | 0.2673 | 0.1746 | 0.7163 | 0.3599 | 51 |
31 | Beidao 1 | 0.8220 | 0.2894 | 0.1159 | 0.1445 | 0.1464 | 0.0819 | 0.0719 | 0.1962 | 62 |
32 | Longnian 588 | 0.8011 | 0.1849 | 0.3211 | 0.0379 | 0.1856 | 0.1807 | 0.1492 | 0.2294 | 60 |
33 | Qingling 998 | 0.6320 | 0.2281 | 0.1595 | 0.2245 | 0.8963 | 1.0000 | 0.2766 | 0.4936 | 42 |
34 | Heizhenzhu | 0.9122 | 0.6937 | 0.2912 | 0.6694 | 0.9089 | 0.3779 | 0.6560 | 0.6182 | 35 |
35 | Jiyang 108 | 0.6662 | 0.9885 | 0.5516 | 0.7633 | 0.6106 | 0.3979 | 0.9257 | 0.6890 | 20 |
36 | Baijing 1 | 0.4751 | 0.9774 | 0.2953 | 0.8139 | 0.5761 | 0.6094 | 0.9421 | 0.6702 | 27 |
37 | Tongke 37 | 0.7401 | 0.8379 | 0.3451 | 0.6576 | 0.6889 | 0.6462 | 0.9852 | 0.6854 | 23 |
38 | Jinian 6 | 0.7858 | 0.8829 | 0.3233 | 0.8260 | 0.9593 | 0.2185 | 0.9796 | 0.6874 | 22 |
39 | Jinongda 828 | 0.7915 | 0.6463 | 0.4796 | 0.6508 | 0.7509 | 0.3111 | 0.8645 | 0.6193 | 34 |
40 | Lvdao 177 | 0.7386 | 0.8022 | 0.4218 | 0.9599 | 0.9219 | 0.5740 | 0.9467 | 0.7575 | 14 |
41 | Jinongda 603 | 0.9640 | 0.5951 | 0.4496 | 0.6474 | 0.6447 | 0.3333 | 0.9407 | 0.6165 | 36 |
42 | Jingu 119 | 0.9449 | 0.9138 | 0.5347 | 0.7005 | 0.9411 | 0.8425 | 0.9031 | 0.8138 | 8 |
43 | Changjing 616 | 1.0000 | 0.8851 | 0.4980 | 0.8325 | 0.8776 | 0.6608 | 0.9740 | 0.7955 | 10 |
44 | Qinglin 168 | 0.8576 | 0.6253 | 0.5646 | 0.5198 | 0.8284 | 0.3830 | 0.9347 | 0.6496 | 28 |
45 | Jinongda 899 | 0.7638 | 0.6087 | 0.3502 | 0.5350 | 0.9126 | 0.4883 | 0.9583 | 0.6414 | 30 |
46 | Jinongda 858 | 0.7638 | 0.6087 | 0.3502 | 0.5350 | 0.9126 | 0.4883 | 0.9583 | 0.6414 | 30 |
47 | Wokeshou 1 | 0.6665 | 0.8664 | 1.0000 | 0.7333 | 0.9146 | 0.6344 | 0.9700 | 0.8341 | 6 |
48 | Songjing 22 | 0.7449 | 0.9537 | 0.4968 | 0.6314 | 0.9213 | 0.6840 | 0.8100 | 0.7454 | 17 |
49 | Longyang19 | 0.9042 | 0.9270 | 0.7829 | 0.8662 | 0.9353 | 0.6762 | 0.8477 | 0.8413 | 5 |
50 | Yilongdundao | 0.8112 | 0.5459 | 0.4338 | 0.6693 | 0.6619 | 0.6471 | 0.6275 | 0.6135 | 37 |
51 | Longdao 202 | 0.7671 | 0.6613 | 0.8701 | 1.0000 | 0.9504 | 0.7785 | 0.9897 | 0.8625 | 3 |
52 | Suijing 27 | 0.9427 | 0.7212 | 0.7113 | 0.9013 | 0.8388 | 0.7641 | 0.8677 | 0.8090 | 9 |
53 | Suijing 18 | 0.9731 | 0.8774 | 0.5578 | 0.8636 | 0.9666 | 0.8139 | 0.9629 | 0.8455 | 4 |
54 | Longjing 21 | 0.9537 | 0.7489 | 0.6008 | 0.6715 | 0.9172 | 0.5740 | 0.8951 | 0.7458 | 16 |
55 | Longdao 18 | 0.9815 | 0.9916 | 0.7993 | 0.9530 | 0.9973 | 0.6781 | 0.9508 | 0.8962 | 2 |
56 | Hongke 67 | 0.8751 | 0.4835 | 0.6246 | 0.6373 | 0.6911 | 0.8671 | 0.7593 | 0.6945 | 19 |
57 | Hongke 88 | 0.9230 | 0.3144 | 0.1681 | 0.1598 | 0.1931 | 0.2128 | 0.5000 | 0.3034 | 54 |
58 | Hongke 8 | 0.7797 | 0.7218 | 0.4722 | 0.9712 | 0.9426 | 0.4298 | 0.9554 | 0.7386 | 18 |
59 | Jinongda 138 | 0.9027 | 0.9554 | 0.7192 | 0.7314 | 0.8935 | 0.7048 | 0.3453 | 0.7488 | 15 |
60 | Jinongda 168 | 0.8510 | 0.6178 | 0.5179 | 0.4992 | 0.8165 | 0.4396 | 0.9168 | 0.6427 | 29 |
61 | Jinongda 738 | 0.5919 | 0.8530 | 0.5994 | 0.7565 | 0.8343 | 0.2564 | 0.9832 | 0.6889 | 21 |
62 | Tongyuanxiang 518 | 0.9509 | 0.0328 | 0.0277 | 0.0813 | 0.0789 | 0.1257 | 0.4172 | 0.1850 | 66 |
63 | Jinongda 838 | 0.2389 | 0.9577 | 0.5148 | 0.6460 | 0.9296 | 0.3496 | 0.9290 | 0.6704 | 26 |
64 | Hongke 57 | 0.8863 | 0.9008 | 0.3892 | 0.8073 | 0.1008 | 0.6064 | 1.0000 | 0.6363 | 32 |
65 | Tonghuayuan | 0.9866 | 0.8607 | 0.5160 | 0.8125 | 0.9305 | 0.7871 | 0.9947 | 0.8234 | 7 |
66 | Tieganxiang 2 | 0.8261 | 0.7729 | 0.5991 | 0.8294 | 1.0000 | 0.5521 | 0.9386 | 0.7775 | 11 |
67 | Hanxiang7 | 0.9127 | 0.9378 | 0.8981 | 0.9245 | 0.9858 | 0.7823 | 0.9852 | 0.9148 | 1 |
68 | Longqingdao21 | 0.8369 | 0.5326 | 0.6387 | 0.5620 | 0.6749 | 0.6960 | 0.9633 | 0.6844 | 24 |
69 | Miaodao 74 | 0.8132 | 0.3719 | 0.2691 | 0.5990 | 0.4483 | 0.3745 | 0.9856 | 0.5155 | 41 |
Coefficient of variation | 28.60 | 53.62 | 58.25 | 52.95 | 57.57 | 60.67 | 45.80 | |||
Weight | 0.0800 | 0.1500 | 0.1629 | 0.1481 | 0.1610 | 0.1697 | 0.1281 |
Treatment | Varieties | Panicles/m2 | Per Panicle | Seed-Setting Rate (%) | 1000– Grain Weight/g | Yield /(kg·ha) | Yield Loss (%) | |
---|---|---|---|---|---|---|---|---|
Control | Non-drought tolerant varieties | Hongke 88 | 380.00 ± 11.25 ab | 107.39 ± 2.30 b | 97.01 ± 0.98 a | 25.20 ± 0.94 a | 9087.21 ± 306.90 a | 66.26 |
Tongyuanxiang 518 | 344.00 ± 18.27 bc | 97.83 ± 2.83 b | 96.03 ± 0.78 abc | 27.14 ± 0.34 a | 8470.60 ± 139.14 a | 62.82 | ||
Drought-resistant varieties | Jinongda 168 | 302.40 ± 20.16 c | 144.61 ± 15.69 a | 94.75 ± 0.88 cd | 22.84 ± 0.92 b | 8813.32 ± 512.35 a | 59.91 | |
Suidao 3 | 380.48 ± 11.36 ab | 96.83 ± 3.62 b | 93.98 ± 0.34 d | 26.39 ± 0.72 a | 8857.89 ± 94.90 a | 59.36 | ||
Strongly drought-resistant varieties | Changjing 616 | 308.56 ± 7.90 c | 146.55 ± 2.04 a | 95.21 ± 0.34 bcd | 21.39 ± 0.20 c | 8450.70 ± 406.11 a | 46.56 | |
Suijing 18 | 397.33 ± 55.06 a | 77.72 ± 10.84 c | 96.48 ± 1.08 ab | 26.18 ± 2.56 a | 6557.83 ± 386.76 b | 42.71 | ||
Drought | Non-drought tolerant varieties | Hongke 88 | 341.33 ± 18.48 a | 52.00 ± 1.00 d | 89.06 ± 2.17 a | 19.43 ± 0.57 c | 3066.36 ± 416.29 c | —— |
Tongyuanxiang 518 | 256.00 ± 16.00 c | 58.72 ± 0.25 c | 91.84 ± 1.24 a | 25.82 ± 1.64 a | 3149.69 ± 174.98 c | —— | ||
Drought-resistant varieties | Jinongda 168 | 264.80 ± 8.80 bc | 81.60 ± 5.53 b | 90.31 ± 2.13 a | 19.27 ± 1.99 c | 3532.98 ± 305.47 bc | —— | |
Suidao 3 | 360.00 ± 14.40 a | 52.50 ± 2.50 d | 88.72 ± 3.10 a | 22.49 ± 0.08 b | 3599.64 ± 346.38 bc | —— | ||
Strongly drought-resistant varieties | Changjing 616 | 293.87 ± 8.78 b | 90.17 ± 1.44 a | 89.60 ± 2.22 a | 19.52 ± 0.31 c | 4516.22 ± 375.24 a | —— | |
Suijing 18 | 346.67 ± 9.24 a | 58.25 ± 0.75 c | 91.03 ± 2.46 a | 20.53 ± 0.17 c | 3757.20 ± 209.92 b | —— |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, X.; Cang, B.; Yu, K.; Li, W.; Tian, P.; Han, X.; Wang, G.; Di, Y.; Wu, Z.; Yang, M. Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation. Agronomy 2022, 12, 2849. https://doi.org/10.3390/agronomy12112849
Wei X, Cang B, Yu K, Li W, Tian P, Han X, Wang G, Di Y, Wu Z, Yang M. Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation. Agronomy. 2022; 12(11):2849. https://doi.org/10.3390/agronomy12112849
Chicago/Turabian StyleWei, Xiaoshuang, Baifeng Cang, Kuo Yu, Wanchun Li, Ping Tian, Xiao Han, Guan Wang, Yuting Di, Zhihai Wu, and Meiying Yang. 2022. "Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation" Agronomy 12, no. 11: 2849. https://doi.org/10.3390/agronomy12112849
APA StyleWei, X., Cang, B., Yu, K., Li, W., Tian, P., Han, X., Wang, G., Di, Y., Wu, Z., & Yang, M. (2022). Physiological Characterization of Drought Responses and Screening of Rice Varieties under Dry Cultivation. Agronomy, 12(11), 2849. https://doi.org/10.3390/agronomy12112849