Wheat Yield Estimation Using Remote Sensing Indices Derived from Sentinel-2 Time Series and Google Earth Engine in a Highly Fragmented and Heterogeneous Agricultural Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Image Acquisition and Pre-Processing
2.3. Tools Used
2.4. Methods
2.4.1. Wheat Yield Measurements
2.4.2. Remote Sensing Indices Computing
Index | Equation | S-2 Bands Used | Original Author |
---|---|---|---|
NDVI | (NIR − R)/(NIR + R) | (B8 − B4)/(B8 + B4) | [26] |
EVI | 2.5(NIR − R)/(NIR + 6R − 7.5 ×BLUE + 1) | 2.5(B8 − B4)/(B8 + 6B4 − 7.5 × B2 + 1) | [27] |
WDVI | (NIR − 0.5 × R) | (B8 – 0.5 × B4) | [28] |
S2REP | 705 + 35 × (((NIR + R)/2) − RE1)/(RE2 − RE1)) | 705 + 35 × (((B7 + B4)/2) − B5)/(B6 − B5)) | [29] |
GNDVI | (NIR − GREEN)/(NIR + GREEN) | (B8 − B3)/(B8 + B3) | [27] |
LAI | 0.57 × exp(2.33 × NDVI) | 0.57 × exp(2.33 × ((B8 − B4)/(B8 + B4))) | [30] |
2.4.3. Sensitive Analysis between Remote Sensing Indices and Crop Yield
2.4.4. Crop Yield Estimation Model
2.4.5. Model Performance Evaluation
2.4.6. Crop Classification
2.4.7. Wheat Yield Mapping
3. Results
3.1. Sensitive Analysis between Remote Sensing Indices, Phenological Dates, and Crop Yield
3.2. Yield Estimation Model
3.3. Validation of MLR Model
3.4. Extrapolation of Wheat Yields from the Field to the Region Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dubey, S.K.; Gavli, A.S.; Yadav, S.K.; Sehgal, S.; Ray, S.S. Remote Sensing-Based Yield Forecasting for Sugarcane (Saccharum officinarum L.) Crop in India. J. Indian Soc. Remote Sens. 2018, 46, 1823–1833. [Google Scholar] [CrossRef]
- Mehdaoui, R.; Anane, M. Exploitation of the red-edge bands of Sentinel 2 to improve the estimation of durum wheat yield in Grombalia region (Northeastern Tunisia). Int. J. Remote Sens. 2020, 41, 8984–9006. [Google Scholar] [CrossRef]
- El Harti, A.; Lhissou, R.; Chokmani, K.; Ouzemou, J.-e.; Hassouna, M.; Bachaoui, E.M.; El Ghmari, A. Spatiotemporal monitoring of soil salinization in irrigated Tadla Plain (Morocco) using satellite spectral indices. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 64–73. [Google Scholar] [CrossRef]
- Mancosu, N.; Snyder, R.L.; Kyriakakis, G.; Spano, D. Water scarcity and future challenges for food production. Water 2015, 7, 975–992. [Google Scholar] [CrossRef]
- Tuvdendorj, B.; Wu, B.; Zeng, H.; Batdelger, G.; Nanzad, L. Determination of appropriate remote sensing indices for spring wheat yield estimation in Mongolia. Remote Sens. 2019, 11, 2568. [Google Scholar] [CrossRef] [Green Version]
- Belin, E. International Journal of Remote Early prediction of crop production using drought indices at different time-scales and remote sensing data: Application in the Ebro Valley (north-east Spain). Int. J. Remote Sens. 2007, 27, 37–41. [Google Scholar]
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Hassan, S.S.; Goheer, M.A. Modeling and Monitoring Wheat Crop Yield Using Geospatial Techniques: A Case Study of Potohar Region, Pakistan. J. Indian Soc. Remote Sens. 2021, 49, 1331–1342. [Google Scholar] [CrossRef]
- Nagy, A.; Szabó, A.; Adeniyi, O.D.; Tamás, J. Wheat yield forecasting for the tisza river catchment using landsat 8 ndvi and savi time series and reported crop statistics. Agronomy 2021, 11, 652. [Google Scholar] [CrossRef]
- Arab, S.T.; Noguchi, R.; Matsushita, S.; Ahamed, T. Prediction of grape yields from time-series vegetation indices using satellite remote sensing and a machine-learning approach. Remote Sens. Appl. Soc. Environ. 2021, 22, 100485. [Google Scholar] [CrossRef]
- Usman, M.; Jehanzeb, M.; Cheema, M.; Huang, W.; Mahmood, T.; Zaman, M.; Mohsin, M. Evaluation of MODIS and Landsat multiband vegetation indices used for wheat yield estimation in irrigated Indus Basin. Comput. Electron. Agric. 2017, 138, 39–47. [Google Scholar] [CrossRef]
- Naqvi, S.M.Z.A.; Tahir, M.N.; Shah, G.A.; Sattar, R.S.; Awais, M. Remote estimation of wheat yield based on vegetation indices derived from time series data of landsat 8 imagery. Appl. Ecol. Environ. Res. 2019, 17, 3909–3925. [Google Scholar] [CrossRef]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 SEN2COR: L2A processor for users. ESA-SP 2016, 70, 91. [Google Scholar]
- Saad El Imanni, H.; El Harti, A.; Panimboza, J. Investigating Optical and SAR data efficiency in studying the temporal behavior of wheat phenological stages using Google Earth Engine. Agriculture 2022, 40, 24–30. [Google Scholar]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, S.; Cao, Y.; Xu, Z.; Yu, Y.; Han, C. A regional maize yield hierarchical linear model combining landsat 8 vegetative indices and meteorological data: Case study in Jilin Province. Remote Sens. 2021, 13, 1–14. [Google Scholar] [CrossRef]
- Roznik, M.; Boyd, M.; Porth, L. Improving crop yield estimation by applying higher resolution satellite NDVI imagery and high-resolution cropland masks. Remote Sens. Appl. Soc. Environ. 2022, 25, 100693. [Google Scholar] [CrossRef]
- Astaoui, G.; Dadaiss, J.E.; Sebari, I.; Benmansour, S.; Mohamed, E. Mapping Wheat Dry Matter and Nitrogen Content Dynamics and Estimation of Wheat Yield Using UAV Multispectral Imagery Machine Learning and a Variety-Based Approach: Case Study of Morocco. AgriEngineering 2021, 3, 29–49. [Google Scholar] [CrossRef]
- Ouzemou, J.E.; El Harti, A.; Lhissou, R.; El Moujahid, A.; Bouch, N.; El Ouazzani, R.; Bachaoui, E.M.; El Ghmari, A. Crop type mapping from pansharpened Landsat 8 NDVI data: A case of a highly fragmented and intensive agricultural system. Remote Sens. Appl. Soc. Environ. 2018, 11, 94–103. [Google Scholar] [CrossRef]
- Tripathy, R.; Chaudhari, K.N.; Bairagi, G.D.; Pal, O.; Das, R.; Bhattacharya, B.K. Towards Fine-Scale Yield Prediction of Three Major Crops of India Using Data from Multiple Satellite. J. Indian Soc. Remote Sens. 2021, 50, 271–284. [Google Scholar] [CrossRef]
- Liu, H.Q.; Huete, A. Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the ecodistrict scale. Remote Sens. 2014, 6, 10193–10214. [Google Scholar] [CrossRef]
- Yawata, K.; Yamamoto, T.; Hashimoto, N.; Ishida, R.; Yoshikawa, H. Mixed model estimation of rice yield based on NDVI and GNDVI using a satellite image. In Remote Sensing for Agriculture, Ecosystems, and Hydrology; SPIE: Bellingham, WA, USA, 2019; Volume 1114918, p. 48. [Google Scholar] [CrossRef]
- Mercier, A.; Betbeder, J.; Baudry, J.; Le Roux, V.; Spicher, F.; Lacoux, J.; Roger, D.; Hubert-Moy, L. Evaluation of Sentinel-1 & 2 time series for predicting wheat and rapeseed phenological stages. ISPRS J. Photogramm. Remote Sens. 2020, 163, 231–256. [Google Scholar] [CrossRef]
- Rouse, J.H. Monitoring Vegetation Systems in the Great Plains with ERTS, 3rd. ed.; NASA: Washington, DC, USA, 1973; Volume 1, pp. 309–317. [Google Scholar]
- Huete, A.D. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W. Application of a weighted infrared-red vegetation index for estimating leaf Area Index by Correcting for Soil Moisture. Remote Sens. Environ. 1989, 29, 25–37. [Google Scholar] [CrossRef]
- Guyot, G.; Baret, F. Utilisation de la haute resolution spectrale pour suivre l’etat des couverts vegetaux. J. Chem. Inf. Model. 1988, 53, 1689–1699. [Google Scholar]
- Tewari, S.; Kulhavý, J.; Rock, B.N.; Hadaš, P. Remote monitoring of forest response to changed soil moisture regime due to river regulation. J. For. Sci. 2003, 49, 429–438. [Google Scholar] [CrossRef] [Green Version]
- Lykhovyd, P. Sweet corn yield simulation using normalized difference vegetation index and leaf area index. J. Ecol. Eng. 2020, 21, 228–236. [Google Scholar] [CrossRef]
- Breiman, L. Statistical modeling: The two cultures. Stat. Sci. 2001, 16, 199–215. [Google Scholar] [CrossRef]
- Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers. Int. J. Remote Sens. 2014, 35, 3440–3458. [Google Scholar] [CrossRef]
- Křen, J.; Klem, K.; Svobodová, I.; Míša, P.; Neudert, L. Yield and grain quality of spring barley as affected by biomass formation at early growth stages. Plant Soil Environ. 2014, 60, 221–227. [Google Scholar] [CrossRef] [Green Version]
- Sultana, S.R.; Ali, A.; Ahmad, A.; Mubeen, M.; Zia-Ul-Haq, M.; Ahmad, S.; Ercisli, S.; Jaafar, H.Z.E. Normalized difference vegetation index as a tool for wheat yield estimation: A case study from Faisalabad, Pakistan. Sci. World J. 2014, 2014, 725326. [Google Scholar] [CrossRef] [PubMed]
- Cavalaris, C.; Megoudi, S.; Maxouri, M.; Anatolitis, K.; Sifakis, M.; Levizou, E.; Kyparissis, A. Modeling of durum wheat yield based on sentinel-2 imagery. Agronomy 2021, 11, 1486. [Google Scholar] [CrossRef]
Band | Description | Resolution | Wavelength |
---|---|---|---|
B1 | Aerosols | 60 m | 443.9 nm (S2A)/442.3 nm (S2B) |
B2 | Blue | 10 m | 496.6 nm (S2A)/492.1 nm (S2B) |
B3 | Green | 10 m | 560 nm (S2A)/559 nm (S2B) |
B4 | Red | 10 m | 664.5 nm (S2A)/665 nm (S2B) |
B5 | Red Edge 1 | 20 m | 703.9 nm (S2A)/703.8 nm (S2B) |
B6 | Red Edge 2 | 20 m | 740.2 nm (S2A)/739.1 nm (S2B) |
B7 | Red Edge 3 | 20 m | 782.5 nm (S2A)/779.7 nm (S2B) |
B8 | NIR | 10 m | 835.1 nm (S2A)/833 nm (S2B) |
B8A | Red Edge 4 | 20 m | 864.8 nm (S2A)/864 nm (S2B) |
B9 | Water vapor | 60 m | 945 nm (S2A)/943.2 nm (S2B) |
B11 | SWIR 1 | 20 m | 1613.7 nm (S2A)/1610.4 nm (S2B) |
B12 | SWIR 2 | 20 m | 2202.4 nm (S2A)/2185.7 nm (S2B) |
Phenological Stages | Dates | NDVI | EVI | WDVI | S2REP | GNDVI | LAI |
---|---|---|---|---|---|---|---|
Germination | 22/11/2020 | 0.54 | 0.35 | 0.18 | −0.34 | 0.37 | 0.52 |
Tillering | 02/12/2020 | −0.92 | −0.79 | −0.1 | 0.01 | −0.89 | −0.92 |
07/12/2020 | 0.78 | −0.25 | −0.87 | −0.67 | 0.9 | −0.59 | |
12/12/2020 | −0.57 | −0.76 | −0.7 | 0.49 | −0.5 | −0.58 | |
22/12/2020 | −0.84 | −0.9 | −0.92 | −0.54 | −0.87 | −0.85 | |
27/12/2020 | −0.7 | −0.79 | −0.81 | −0,57 | −0.77 | −0.7 | |
01/01/2021 | 0.25 | −0.66 | −0.73 | −0.75 | −0.54 | −0.5 | |
Jointing | 26/01/2021 | −0.25 | −0.27 | −0.27 | −0.56 | −0.33 | −0.22 |
31/01/2021 | −0.25 | −0.22 | 0.04 | −0.5 | −0.31 | −0.23 | |
Heading | 10/02/2021 | −0.28 | 0.01 | 0.11 | −0.4 | −0.26 | −0.25 |
15/02/2021 | −0.04 | −0.16 | −0.22 | −0.3 | −0.03 | −0.05 | |
12/03/2021 | 0.23 | 0.34 | 0.34 | 0.43 | 0.41 | 0.26 | |
22/03/2021 | 0.5 | 0.57 | 0.53 | 0.59 | 0.6 | 0.5 | |
Maturity | 01/04/2021 | 0.68 | 0.45 | 0.65 | 0.75 | 0.71 | 0.64 |
Harvest | 06/05/2021 | −0.03 | 0.47 | 0.62 | −0.44 | 0.19 | −0.02 |
MLR Models | Equations | R2 | RMSE (qha−1) | nRMSE (%) |
---|---|---|---|---|
Model 1 | y = −118.86 × NDVIL10Dec + 39 × NDVIF10Apr + 61.26 | 0.87 | 4.69 | 9.84 |
Model 2 | y = −229.12 × EVIL10Dec + 26.47 × EVIF10Apr + 74.93 | 0.88 | 4.43 | 9.31 |
Model 3 | y = −509.43 × WDVIL10Dec + 34.73 × WDVIF10Apr + 110.35 | 0.87 | 4.59 | 9.64 |
Model 4 | y = −2.25 × S2REPL10Dec + 3.45 × WDVIF10Apr − 843.82 | 0.64 | 7.78 | 16.34 |
Model 5 | y = −250.36 × GNDVIL10Dec + 65.47 × GNDVIF10Apr + 118.2 | 0.89 | 4.29 | 8.96 |
Model 6 | y = −37.13 × LAIL10Dec + 5.30 × LAIF10Apr + 79.9 | 0.84 | 5.17 | 10.86 |
Model | Yield Measured/Retrieved (qha−1) | R2 | RMSE | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model 5 | 2020/2021 | Measured Retrieved | 27 25.9 | 22.6 26.7 | 57.7 52.9 | 48.8 54.8 | 46.8 52.2 | 55.8 46.6 | 59.1 59 | 58 59.3 | 52.5 51 | ||
0.89 | 4.26 | ||||||||||||
2019/2020 | Measured Retrieved | 33 32.7 | 66 58 | 43 39.1 | 55 63.3 | 55 72.5 | 47 62.46 | 0.53 | 8.78 | ||||
2018/2019 | Measured Retrieved | 54 60 | 53 62 | 44 51 | 43 55 | 0.79 | 5.87 | ||||||
2017/2018 | Measured Retrieved | 65 64.1 | 53 44 | 32 30.9 | 62 62.3 | 0.93 | 3.04 |
Accuracy Index | Accuracy Values |
---|---|
Overall accuracy | 93.82% |
Kappa index | 0.92 |
Wheat user accuracy | 90.46% |
Wheat producer accuracy | 94.96% |
Wheat F1 score | 92.66% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saad El Imanni, H.; El Harti, A.; El Iysaouy, L. Wheat Yield Estimation Using Remote Sensing Indices Derived from Sentinel-2 Time Series and Google Earth Engine in a Highly Fragmented and Heterogeneous Agricultural Region. Agronomy 2022, 12, 2853. https://doi.org/10.3390/agronomy12112853
Saad El Imanni H, El Harti A, El Iysaouy L. Wheat Yield Estimation Using Remote Sensing Indices Derived from Sentinel-2 Time Series and Google Earth Engine in a Highly Fragmented and Heterogeneous Agricultural Region. Agronomy. 2022; 12(11):2853. https://doi.org/10.3390/agronomy12112853
Chicago/Turabian StyleSaad El Imanni, Hajar, Abderrazak El Harti, and Lahcen El Iysaouy. 2022. "Wheat Yield Estimation Using Remote Sensing Indices Derived from Sentinel-2 Time Series and Google Earth Engine in a Highly Fragmented and Heterogeneous Agricultural Region" Agronomy 12, no. 11: 2853. https://doi.org/10.3390/agronomy12112853
APA StyleSaad El Imanni, H., El Harti, A., & El Iysaouy, L. (2022). Wheat Yield Estimation Using Remote Sensing Indices Derived from Sentinel-2 Time Series and Google Earth Engine in a Highly Fragmented and Heterogeneous Agricultural Region. Agronomy, 12(11), 2853. https://doi.org/10.3390/agronomy12112853