Yields of Buckwheat and Alfalfa in an Intercropping System Inoculated with Dark Septate Endophytes in a Coal Mining Subsidence Dryland Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Crop Management
2.3. Sample Collection and Measurements
- DSE colonization rate;DSE colonization rate in roots was determined by acid fuchsin staining [18].
- Yield and the land equivalent ratio (LER);
- 3.
- Agronomic traits;
- 4.
- Nutrient uptake;
2.4. Statistical Analysis
3. Results
3.1. Effects of Different Treatments on DSE Colonization of Buckwheat and Alfalfa
3.2. Effects of Different Treatments on Yields of Buckwheat and Alfalfa
3.3. Effects of the Treatments on the Land Equivalent Ratio (LER) in Intercropping
3.4. Effects of the Treatments on Agronomic Traits of Both Crop Species
3.5. Effects of Different Treatments on Nutrient Uptake by Both Crop Species
3.6. Path Analysis of the Effect of DSE Colonization Rate and Yield Components on the Yields of Both Crop Species
4. Discussion
4.1. Effects of DSE Inoculation on Plant Colonization Rate, Yield, and Yield Components
4.2. Yield Advantage of Intercropping with DSE Inoculation
4.3. Yield Variation Due to Continuous Cropping
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, F.; Liu, X.J.; Tong, C.C.; Wu, Y. Effects of intercropping on light energy utilization characteristics and productivity of different feed crops. Chin. J. Ecol. 2019, 30, 3452–3462. [Google Scholar]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Borghi, E.; Leles, E.P.; Santos, N.C.B. Effect of intercropping on yields of corn with different relative maturities and palisadegrass. Agron. J. 2013, 105, 599–606. [Google Scholar] [CrossRef]
- Lu, H.D.; Jia, Z.K.; Yang, B.P.; Li, Y.P.; Liu, S.X. Different strip intercropping of grain-grass on sloping field in dry areas of south Ningxia. Acta Ecol. Sin. 2010, 30, 5941–5948. [Google Scholar]
- Zhang, G.G.; Yang, Z.B.; Dong, S.T. Interspecific competitiveness affects the total biomass yield in an alfalfa and corn intercropping system. Field Crops Res. 2011, 124, 66–73. [Google Scholar] [CrossRef]
- Kageyama, S.A.; Mandyam, K.G.; Jumpponen, A. Diversity, function and potential applications of root associated endophytes. Mycorrhiza 2008, 1, 29–58. [Google Scholar]
- Kauppinen, M.; Raveala, K.; Wäli, P.R.; Ruotsalainen, A.L. Contrasting preferences of arbuscular mycorrhizal and dark septate fungi colonizing boreal and subarctic Avenella flexuosa. Mycorrhiza 2014, 24, 171–177. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Newsham, K.K. Phialophora graminicola, a dark septate fungus, is a beneficial associate of the grass Vulpia ciliata ssp. ambigua. New Phytol. 1999, 144, 517–524. [Google Scholar] [CrossRef]
- Xie, L.L.; Bi, Y.L.; Ma, S.P.; Shang, J.X.; Hu, Q.C.; Christie, P. Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: Synergistic or competitive growth effects on maize? BMC Plant Biol. 2021, 21, 498. [Google Scholar] [CrossRef]
- Yakti, W.; Kovács, G.M.; Vági, P.; Franken, P. Impact of dark septate endophytes on tomato growth and nutrient uptake. Plant Ecol. Divers. 2019, 11, 637–648. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Bi, Y.L.; Li, M.Q. Effects of dark septate endophyte Alternaria sp. with different culture periods on growth of Medicago sativa. Mycosystema 2021, 40, 2863–2873. [Google Scholar]
- Li, X.; He, X.L.; Hou, L.F.; Ren, Y.; Wang, S.J.; Su, F. Dark septate endophytes isolated from a xerophyte plant promote the growth of Ammopiptanthus mongolicus under drought condition. Sci. Rep. 2018, 8, 7896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagg, C.; Jansa, J.; Stadler, M.; Schmid, B.; Van der Heijden, M.G.A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 2011, 92, 1303–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Heijden, M.G.A.; Horton, T.R. Socialism in soil? The importance of mycorrhizal fungal networks for facilitation in natural ecosystems. J. Ecol. 2009, 97, 1139–1150. [Google Scholar] [CrossRef]
- Walder, F.; Niemann, H.; Natarajan, M.; Lehmann, M.F.; Boller, T.; Wiemken, A. Mycorrhizal networks: Common goods of plants shared under unequal terms of trade. Plant Physiol. 2012, 159, 789–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.Y.; Ye, M.; Li, C.Y.; He, X.H.; Zhu-Salzman, K.; Wang, R.L.; Su, Y.J.; Luo, S.M.; Zeng, R.S. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants. Sci. Rep. 2014, 4, 3915. [Google Scholar] [CrossRef] [Green Version]
- Lin, G.G.; McCormack, M.L.; Guo, D.L. Arbuscular mycorrhizal fungal effects on plant competition and community structure. J. Ecol. 2015, 103, 1224–1232. [Google Scholar] [CrossRef]
- Kormanik, P.P.; Bryan, W.C.; Schultz, R.C. Procedures and equipment for staining large numbers of plant root samples for endomycorrhizal assay. Can. J. Microbiol. 1980, 26, 536–538. [Google Scholar] [CrossRef]
- Vandermeer, J.H. The Ecology of Intercropping; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Zeng, Q.C.; Jia, P.L.; Wang, Y.; Wang, H.L.; Li, C.C.; An, S.S. The local environment regulates biogeographic patterns of soil fungal communities on the loess plateau. CATENA 2019, 183, 104220. [Google Scholar] [CrossRef]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Mulvaney, R.L. Nitrogen–Inorganic Forms. In Methods of Soil Analysis Part 2–Agronomy 9; Black CA, Ed.; America Society of Agronomy, Inc.: Madison, WI, USA, 1965; pp. 1149–1224. [Google Scholar]
- Pinfleld, N.J.; Smith, D.L.; Hamel, C. Crop yield: Physiology and processes. Plant Growth Regul. 2000, 30, 276–277. [Google Scholar] [CrossRef]
- Ding, Y.H. Dark Septate Endophytes (DSE) of the “Non-Mycorrhizal Plants”; Yunnan University: Kunming, China, 2016. [Google Scholar]
- Ren, Y. Effect of Dark Septate Endophyte and Trichoderma Viride on the Growth and Drought Resistance of Astragalus Membranaceus; Hebei University: Baoding, China, 2019. [Google Scholar]
- Vergara, C.; Araujo, K.E.C.; Alves, L.S.; Souza, S.R.; Santos, L.A.; Santa-Catarina, C.; Silva, K.; Pereira, G.M.D.; Xavier, G.R.; Zilli, J.E. Contribution of dark septate fungi to the nutrient uptake and growth of rice plants. Braz. J. Microbiol. 2017, 49, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Rumbaugh, M.D. Effects of population density on some components of yield of alfalfa. Crop Sci. 1963, 3, 423–424. [Google Scholar] [CrossRef]
- Ljubiša, K.; Vera, P.; Ljubiša, Ž.; Nataša, L.; Petar, S.; Ljubica, Š.T.; Divna, S.; Jela, I. Buckwheat Yield Traits Response as Influenced by Row Spacing, Nitrogen, Phosphorus, and Potassium Management. Agronomy 2021, 11, 2371. [Google Scholar]
- Jumpponen, A.; Trappe, J.M. Dark septate endophytes: A review of facultative biotrophic root-colonizing fungi. New Phytol. 1998, 140, 295–310. [Google Scholar] [CrossRef] [PubMed]
- Keyes, S.; van Veelen, A.; McKay, F.D.; Scotson, C.; Koebernick, N.; Petroselli, C.; Williams, K.; Ruiz, S.; Cooper, L.; Mayon, R.; et al. Multimodal correlative imaging and modelling of phosphorus uptake from soil by hyphae of mycorrhizal fungi. New Phytol. 2022, 234, 688–703. [Google Scholar] [CrossRef]
- Zhao, P.; Sun, G.C.; Peng, S.L. Ecophysiological research on nitrogen nutrition of plant. Acta Ecol. Sin. 1998, 2, 38–42. [Google Scholar]
- Poirier, Y.; Bucher, M. Phosphate transport and homeostasis in Arabidopsis. In the Arabidopsis Book; The American Society of Plant Biologists: Rockville, MD, USA, 2002; Volume 1, pp. 148–158. [Google Scholar]
- Wu, F.L.; Qu, D.H.; Tian, W.; Wang, M.Y.; Chen, F.Y.; Li, K.K.; Sun, Y.D.; Su, Y.H.; Yang, L.N.; Su, H.Y.; et al. Transcriptome analysis for understanding the mechanism of dark septate endophyte S16 in promoting the growth and nitrate uptake of sweet cherry. J. Integr. Agric. 2021, 20, 1819–1831. [Google Scholar] [CrossRef]
- Jumpponen, A. Dark septate endophytes–are they mycorrhizal? Mycorrhiza 2001, 11, 207–211. [Google Scholar] [CrossRef]
- Upson, R.; Read, D.J.; Newsham, K.K. Nitrogen form influences the response of Deschampsia antarctica to dark septate root endophytes. Mycorrhiza 2009, 20, 1–11. [Google Scholar] [CrossRef]
- Tienaho, J.; Karonen, M.; Muilu–Mkel, R.; Wähälä, K.; Denegri, E.L.; Franzén, R.; Karp, M.; Santala, V.; Sarjala, T. Metabolic Profiling of Water-Soluble Compounds from the Extracts of Dark Septate Endophytic Fungi (DSE) Isolated from Scots Pine (Pinus sylvestris L.) Seedlings Using UPLC–Orbitrap–MS. Molecules 2019, 24, 2330. [Google Scholar] [CrossRef] [Green Version]
- Gao, C.M.; Li, M.; Liu, R.J. Combination effects of arbuscular mycorrhizal fungi and dark septate endophytes on promoting growth of cucumber plants and resistance to nematode disease. Mycosystema 2016, 35, 1208–1217. [Google Scholar]
- Zhang, J.H.; Ma, Y.Y.; Wang, Z.N.; Qi, J. Research on the improvement of photosynthesis indices of maize in the intercropping system. J. Maize Sci. 2006, 14, 104–106. [Google Scholar]
- Biszczak, W.; Różyło, K.; Kraska, P. Yielding parameters, nutritional value of soybean seed and weed infestation in relay-strip intercropping system with buckwheat. Acta Agric. Scand. Sect. B. 2020, 70, 640–647. [Google Scholar] [CrossRef]
- Yan, S.; Yu, J.; Han, M.; Michaud, J.P.; Guo, L.L.; Li, Z.; Zeng, B.; Zhang, Q.W.; Liu, X.X. Intercrops can mitigate pollen-mediated gene flow from transgenic cotton while simultaneously reducing pest densities. Sci. Total Environ. 2020, 711, 134855. [Google Scholar] [CrossRef]
- Xu, R.X.; Zhao, H.M.; Liu, G.B.; You, Y.L.; Ma, L.; Liu, N.; Zhang, Y.J. Effects of nitrogen and maize plant density on forage yield and nitrogen uptake in an alfalfa–silage maize relay intercropping system in the North China Plain. Field Crops Res. 2021, 263, 108068. [Google Scholar] [CrossRef]
- Berti, M.T.; Cecchin, A.; Samarappuli, D.P.; Patel, S.; Lenssen, A.W.; Moore, K.J.; Wells, S.S.; Kazula, M.J. Alfalfa Established Successfully in Intercropping with Corn in the Midwest US. Agronomy 2021, 11, 1676. [Google Scholar] [CrossRef]
- Sun, Q.Z.; Liu, Q.; Li, F.; Xu, L.J.; Tao, Y. Cultivation and utilization of alfalfa in the Ming Dynasty. Acta Pratac. Sin. 2018, 27, 204–214. [Google Scholar]
- Li, L.; Sun, J.H.; Zhang, F.S.; Li, X.L.; Yang, S.C.; Rengel, Z. Wheat/maize or wheat/soybean strip intercropping I. Yield advantage and interspeci interactions on nutrients. Field Crops Res. 2001, 71, 123–137. [Google Scholar] [CrossRef]
- Stoyke, G.; Curra, R.S. Resynthesis in Pure Culture of a Common Subalpine Fungus-Root Association Using Phialocephala fortinii and Menziesia ferruginea (Ericaceae). Arct. Alp. Res. 2018, 25, 189–193. [Google Scholar] [CrossRef]
- Ahlich, K.; Sieber, T.N. The profusion of dark septate endophytic fungi in non-ectomycorrhizal fine roots of forest trees and shrubs. New Phytol. 2010, 132, 259–270. [Google Scholar] [CrossRef]
- Mostafa, A.M.; Abdollah, J.; Reza, M.M.; Ahmad, A.; Filippo, M. Funneliformis mosseae inoculation under water deficit stress improves the yield and phytochemical characteristics of thyme in intercropping with soybean. Sci. Rep. 2021, 11, 15279. [Google Scholar]
- Esmaeil, R.C.; Jalal, J.; Mohammad, S.S.; Mohsen, B.; Elnaz, E.; Keshavarz, A.R. Isabgol and lentil intercrop responses to arbuscular mycorrhizal fungi inoculation. Biol. Agric. Hortic. 2021, 37, 125–140. [Google Scholar]
- Qiao, X.; Bei, S.K.; Li, H.G.; Christie, P.; Zhang, F.S.; Zhang, J.L. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems. Plant Soil. 2016, 406, 173–185. [Google Scholar] [CrossRef]
- Wang, G.H.; Sheng, L.C.; Zhao, D.; Sheng, J.D.; Wang, X.R.; Liao, H. Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Front. Plant Sci. 2016, 7, 1901. [Google Scholar] [CrossRef] [Green Version]
- Xiao, T.J.; Yang, Q.S.; Ran, W.; Xu, G.H.; Shen, Q.R. Effect of inoculation with arbuscular mycorrhizal fungus on nitrogen and phosphorus utilization in upland rice-mungbean intercropping system. Sci. Agric. Sin. 2010, 9, 528–535. [Google Scholar] [CrossRef]
- Sobhani, M.R.; Rahmikhdoev, G.; Mazaheri, D.; Majidian, A.M. Effects of sowing date, cropping pattern and nitrogen on CGR, yield and yield compo-nent summer sowing buckwheat (Fagopyrum esculentum Moench). J. Appl. Environ. Biol. Sci. 2012, 2, 35–46. [Google Scholar]
- Hakl, J.; Pisarčik, M.; Hrevušová, Z.; Šantrůček, J. In-field lucerne root morphology traits over time in relation to forage yield, plant density, and root disease under two cutting managements. Field Crops Res. 2017, 213, 109–117. [Google Scholar] [CrossRef]
- Ahlawat, A.; Jain, V.; Nainawatee, H.S. Effect of low temperature and Rhizospheric application of naringenin on pea- Rhizobium leguminosarum biovar viciae symbiosis. J. Plant Biochem. Biot. 1998, 7, 35–38. [Google Scholar] [CrossRef]
- Schlenker, W.; Roberts, M.J. Nonlinear temperature effects indicate severe damages to us crop yields under Effects of on Maize Yield climate change. PNAS 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [Green Version]
- Manschadi, A.M.; Soltani, A. Variation in traits contributing to improved use of nitrogen in wheat: Implications for genotype by environment interaction. Field Crops Res. 2021, 270, 108211. [Google Scholar] [CrossRef]
- Addy, J.W.G.; Ellis, R.H.; Macdonald, A.J.; Semenov, M.A.; Mead, A. Investigating the effects of inter-annual weather variation (1968–2016) on the functional response of cereal grain yield to applied nitrogen, using data from the Rothamsted Long-Term Experiments. Agric. For. Meteorol. 2020, 284, 107898. [Google Scholar] [CrossRef] [PubMed]
- Sinha, B.; Sinha, A.C. Effect of Integrated Weed Management Practices on Yield, Yield Attributes and Economics of Buckwheat (Fagopyrum Esculentum Moench) under Rainfed Conditions in Terai Region of West Bengal, India. Int. J. Bio-Resour. Stress Manage. 2012, 3, 299–302. [Google Scholar]
- Arduini, I.; Masoni, A.; Mariotti, M. A growth scale for the phasic development of common buckwheat. Acta Agric. Scand. Sect. B. 2016, 66, 215–228. [Google Scholar] [CrossRef]
- Ma, L.S.; Li, Y.J.; Wu, P.T.; Zhao, X.N.; Chen, X.L.; Gao, X.D. Coupling evapotranspiration partitioning with water migration to identify the water consumption characteristics of wheat and maize in an intercropping system. Agr. Forest Meteoro. 2020, 290, 108034. [Google Scholar] [CrossRef]
- Gong, X.W.; Dang, K.; Lv, S.M.; Zhao, G.; Wang, H.L.; Feng, B.L. Interspecific competition and nitrogen application alter soil ecoenzymatic stoichiometry, microbial nutrient status, and improve grain yield in broomcorn millet/mung bean intercropping systems. Field Crops Res. 2021, 270, 108227. [Google Scholar] [CrossRef]
- Feng, C.; Sun, Z.X.; Zhang, L.Z.; Feng, L.S.; Zheng, J.M.; Bai, W.; Gu, C.F.; Wang, Q.; Xu, Z.; van der Werf, W. Maize/peanut intercropping increases land productivity: A meta-analysis. Field Crops Res. 2021, 270, 108208. [Google Scholar] [CrossRef]
- Xu, B.C.; Li, F.M.; Shan, L. Switchgrass and milkvetch intercropping under 2:1 row-replacement in semiarid region, northwest China: Aboveground biomass and water use efficiency. Eur. J. Agron. 2008, 28, 485–492. [Google Scholar] [CrossRef]
- Sun, T.; Li, Z.Z.; Wu, Q.; Sheng, T.T.; Du, M.Y. Effects of alfalfa intercropping on crop yield, water use efficiency, and overall economic benefit in the Corn Belt of Northeast China. Field Crops Res. 2018, 216, 109–119. [Google Scholar] [CrossRef]
- Brooker, R.W.; Bennett, A.E.; Cong, W.F.; Daniell, T.J.; George, T.S.; Hallett, P.D.; Hawes, C.; Iannetta, P.P.M.; Jones, H.G.; Karley, A.J.; et al. Improving intercropping: A synthesis of research in agronomy, plant physiology and ecology. New Phytol. 2015, 206, 107–117. [Google Scholar] [CrossRef]
- Ganvit, V.C.; Hsurve, V.; Sharma, S.; Ganvit, J.B. Forage production potential of oat (Avena sativa)-lucerne (Medicago sativa L.) intercropping systems. Curr. Adv. Agric. Sci. 2018, 10, 132–134. [Google Scholar] [CrossRef]
- Sun, Q.Z.; Han, J.G.; Yu, Z.; Tao, Y.; Han, C.Y.; Zhang, S.F. Studies on cultivation technique for stress resistant and high yielding alfalfa grown in Kerqin sandy land. J. Agric. Sci. Technol. 2008, 10, 9. [Google Scholar]
- Skelton, L.E.; Barrett, G.W. A comparison of conventional and alternative agroecosystems using alfalfa (Medicago sativa) and winter wheat (Triticum aestivum). Renew. Agric. Food Syst. 2005, 20, 38–47. [Google Scholar] [CrossRef]
- Carter, P.R.; Barnett, K.H. Corn-hybrid performance under conventional and no-tillage systems after thinning. Agron. J. 1987, 79, 919–926. [Google Scholar] [CrossRef]
Year | Treatment | Plant Height (cm) | Stem Diameter (mm) | Number of Main Stem Nodes | Number of Main Stem Branches | Number of Flower Clusters | Grain Number per Plant | Grain Weight per Plant (g) | 100-Grain Weight (g) | Above-Ground Biomass (g) | Below-Ground Biomass (g) |
---|---|---|---|---|---|---|---|---|---|---|---|
2020 | B-SCK | 69.2 ± 0.4 b | 5.8 ± 0.3 b | 11.8 ± 0.3 b | 5.5 ± 0.3 c | 65.3 ± 20.2 c | 231.4 ± 108.7 b | 5.50 ± 2.20 b | 2.46 ± 0.25 a | 12.40 ± 3.70 b | 2.27 ± 0.57 b |
B-SDSE | 79.8 ± 5.4 ab | 7.2 ± 0.4 a | 13.3 ± 0.5 ab | 6.4 ± 0.1 b | 101.3 ± 5.9 b | 311.8 ± 103.3 b | 6.40 ± 2.60 b | 2.03 ± 0.49 a | 17.60 ± 4.70 b | 3.13 ± 0.79 b | |
B-ICK | 78.1 ± 9.1 ab | 6.8 ± 0.9 ab | 12.7 ± 1.7 ab | 5.9 ± 0.5 bc | 80.3 ± 20.2 bc | 269.2 ± 100.3 b | 6.30 ± 2.10 b | 2.41 ± 0.34 a | 16.80 ± 4.80 b | 3.01 ± 0.68 b | |
B-IDSE | 84.5 ± 6.2 a | 7.7 ± 0.3 a | 14.0 ± 0.6 a | 7.1 ± 0.2 a | 144.7 ± 11.7 a | 672.6 ± 158.7 a | 16.50 ± 2.40 a | 2.52 ± 0.28 a | 35.20 ± 6.30 a | 6.42 ± 1.00 a | |
2021 | B-SCK | 44.0 ± 7.3 B | 3.8 ± 0.6 AB | 10.3 ± 1.0 AB | 3.8 ± 1.3 B | 36.7 ± 7.6 B | 112.0 ± 41.6 AB | 2.70 ± 1.24 AB | 2.37 ± 0.20 A | 5.86 ± 1.27 B | 1.51 ± 0.25 A |
B-SDSE | 58.0 ± 9.5 A | 5.5 ± 1.7 A | 11.2 ± 0.6 A | 7.5 ± 0.1 A | 75.0 ± 27.8 A | 134.7 ± 54.5 A | 3.14 ± 1.66 A | 2.25 ± 0.29 AB | 14.24 ± 4.94 A | 1.63 ± 0.70 A | |
B-ICK | 27.8 ± 1.0 C | 2.3 ± 0.7 B | 8.2 ± 0.8 C | 2.5 ± 0.1 B | 27.3 ± 4.0 B | 43.7 ± 1.5 B | 0.68 ± 0.12 B | 1.56 ± 0.25 C | 3.26 ± 0.63 B | 1.02 ± 0.17 A | |
B-IDSE | 33.1 ± 6.9 BC | 3.4 ± 1.0 AB | 9.3 ± 0.3 BC | 3.3 ± 1.4 B | 35.3 ± 2.5 B | 66.7 ± 24.2 AB | 1.26 ± 0.61 AB | 1.81 ± 0.34 BC | 5.09 ± 0.60 B | 0.66 ± 0.49 A | |
Significance | |||||||||||
2020 | P (M) | * | ** | * | *** | *** | ** | ** | NS | ** | ** |
P (C) | NS | * | NS | * | * | * | ** | NS | ** | ** | |
P (M × C) | NS | NS | NS | NS | NS | * | ** | NS | * | * | |
2021 | P (M) | * | * | * | ** | * | NS | NS | NS | ** | NS |
P (C) | ** | * | ** | ** | * | * | * | ** | ** | NS | |
P (M × C) | NS | NS | NS | * | NS | NS | NS | NS | NS | NS |
Year | Treatment | Plant Height (cm) | Stem Diameter (mm) | Number of Main Stem Nodes | Number of Main Stem Branches | Internode Length (cm) | Leaf to Stem Ratio | Aboveground Biomass (g) | Belowground Biomass (g) |
---|---|---|---|---|---|---|---|---|---|
2020 | A-SCK | 7.57 ± 1.4 b | 1.19 ± 0.23 a | 6.17 ± 0.75 b | 7.17 ± 0.55 c | 1.22 ± 0.08 a | 1.04 ± 0.06 b | 0.18 ± 0.04 b | 0.22 ± 0.04 a |
A-SDSE | 10.17 ± 0.93 ab | 1.39 ± 0.08 a | 8.3 ± 0.3 a | 9.3 ± 0.2 b | 1.23 ± 0.08 a | 1.13 ± 0.03 ab | 0.22 ± 0.04 b | 0.27 ± 0.03 a | |
A-ICK | 16.17 ± 3.77 a | 1.28 ± 0.03 a | 9.67 ± 0.4 a | 10.67 ± 0.21 ab | 1.66 ± 0.33 a | 1.33 ± 0.08 a | 0.3 ± 0.06 ab | 0.25 ± 0.06 a | |
A-IDSE | 16.1 ± 6.11 a | 1.19 ± 0.27 a | 9.87 ± 1.59 a | 10.87 ± 1.33 a | 1.6 ± 0.4 a | 1.32 ± 0.22 a | 0.35 ± 0.25 a | 0.28 ± 0.19 a | |
2021 | A-SCK | 21.17 ± 0.29 B | 1.79 ± 0.04 A | 3.25 ± 0.25 A | 10.7 ± 1.48 B | 6.54 ± 0.5 A | 0.88 ± 0.04 B | 0.69 ± 0.02 C | 0.84 ± 0.17 A |
A-SDSE | 31.27 ± 1.99 A | 1.89 ± 0.1 A | 3.75 ± 1.09 A | 14.67 ± 2.76 A | 8.81 ± 2.47 A | 0.97 ± 0.06 AB | 1.15 ± 0.14 BC | 1.25 ± 0.07 A | |
A-ICK | 31.4 ± 1.85 A | 1.8 ± 0.39 A | 3.42 ± 0.14 A | 12.8 ± 0.85 AB | 9.19 ± 0.26 A | 1.15 ± 0.09 A | 1.59 ± 0.3 AB | 1.19 ± 0.13 A | |
A-IDSE | 33.2 ± 1.08 A | 1.6 ± 0.26 A | 4.17 ± 0.52 A | 14.9 ± 0.89 A | 8.05 ± 1.02 A | 1.16 ± 0.24 A | 1.86 ± 0.63 A | 1.29 ± 0.44 A | |
Significance | |||||||||
2020 | P (M) | NS | NS | NS | * | NS | NS | NS | NS |
P (C) | ** | NS | ** | ** | * | ** | NS | NS | |
P (M × C) | NS | NS | NS | NS | NS | NS | NS | NS | |
2021 | P (M) | *** | NS | NS | * | NS | NS | NS | NS |
P (C) | *** | NS | NS | NS | NS | * | ** | NS | |
P (M × C) | ** | NS | NS | NS | NS | NS | NS | NS |
Year | Treatment | Plant N Content (mg g−1) | N Uptake (mg) | Plant P Content (mg g−1) | P Uptake (mg) | Soil Available N Content (mg kg−1) | Soil Available P Content (mg kg−1) |
---|---|---|---|---|---|---|---|
2020 | B-SCK | 22.5 ± 0.8 ab | 287.3 ± 12.8 c | 3.0 ± 0.3 b | 39.3 ± 5.0 d | 16.4 ± 1.1 b | 4.4 ± 2.1 a |
B-SDSE | 26.0 ± 3.5 a | 472.1 ± 45.2 b | 4.5 ± 0.5 a | 79.5 ± 10.4 b | 21.4 ± 0.9 a | 4.7 ± 1.4 a | |
B-ICK | 24.3 ± 1.3 ab | 415.4 ± 32.0 b | 3.5 ± 0.3 b | 59.0 ± 2.6 c | 15.0 ± 1.6 b | 7.5 ± 6.3 a | |
B-IDSE | 20.1 ± 2.2 b | 684.8 ± 42.5 a | 3.1 ± 0.3 b | 105.6 ± 10.4 a | 20.3 ± 1.8 a | 3.5 ± 2.4 a | |
2021 | B-SCK | 12.4 ± 1.9 A | 72.4 ± 18.8 B | 4.2 ± 0.6 A | 24.3 ± 5.9 AB | 17.1 ± 4.3 A | 2.0 ± 0.3 B |
B-SDSE | 10.4 ± 2.0 A | 152.9 ± 78.5 A | 3.7 ± 1.0 A | 55.3 ± 32.9 A | 14.7 ± 1.8 A | 2.5 ± 0.4 B | |
B-ICK | 11.2 ± 0.4 A | 36.2 ± 6.1 B | 3.2 ± 0.1 A | 10.5 ± 2.3 B | 19.3 ± 1.4 A | 4.1 ± 0.5 A | |
B-IDSE | 9.5 ± 1.5 A | 48.9 ± 12.2 B | 3.3 ± 0.6 A | 17.2 ± 4.6 B | 14.5 ± 1.3 A | 2.5 ± 0.1 B | |
Significance | |||||||
2020 | P (M) | NS | ** | * | ** | ** | NS |
P (C) | NS | ** | * | ** | NS | NS | |
P (M × C) | * | NS | ** | NS | NS | NS | |
2021 | P (M) | NS | NS | NS | NS | * | * |
P (C) | NS | * | NS | * | NS | ** | |
P (M × C) | NS | NS | NS | NS | NS | ** |
Year | Treatment | Plant N Content (mg g−1) | N Uptake (mg) | Plant P Content (mg g−1) | P Uptake (mg) | Soil Available N Content (mg kg−1) | Soil Available P Content (mg kg−1) |
---|---|---|---|---|---|---|---|
2020 | A-SCK | 44.8 ± 2.8 b | 7.9 ± 0.8 b | 3.00 ± 0.20 a | 0.5 ± 0.1 a | 23.2 ± 1.7 a | 5.9 ± 3.6 a |
A-SDSE | 46.7 ± 0.5 ab | 10.4 ± 1.1 ab | 3.10 ± 0.60 a | 0.7 ± 0.2 a | 20.6 ± 0.5 ab | 5.6 ± 4.3 a | |
A-ICK | 48.2 ± 0.8 a | 14.3 ± 0.4 ab | 3.30 ± 0.20 a | 1.0 ± 0.1 a | 17.5 ± 3.0 b | 4.0 ± 3.1 a | |
A-IDSE | 49.2 ± 0.4 a | 17.9 ± 9 a | 2.70 ± 0.10 a | 1.0 ± 0.6 a | 20.4 ± 2.2 ab | 6.0 ± 5.5 a | |
2021 | A-SCK | 32.2 ± 4.2 A | 22.1 ± 2.4 B | 2.75 ± 0.14 A | 1.9 ± 0.1 B | 39.3 ± 2.2 A | 1.8 ± 0.1 C |
A-SDSE | 36.8 ± 0.7 A | 42.1 ± 4.4 AB | 2.93 ± 0.02 A | 3.4 ± 0.4 AB | 17.4 ± 4.5 B | 2.6 ± 0.3 A | |
A-ICK | 32.8 ± 3.0 A | 52.7 ± 14.9 A | 2.94 ± 0.10 A | 4.7 ± 1.1 A | 17.1 ± 0.6 B | 0.4 ± 0.1 D | |
A-IDSE | 32.9 ± 3.4 A | 59.9 ± 14.7 A | 2.84 ± 0.10 A | 5.3 ± 1.7 A | 16.9 ± 1.6 B | 2.2 ± 0.1 B | |
Significance | |||||||
2020 | P (M) | NS | NS | NS | NS | NS | NS |
P (C) | ** | * | NS | NS | * | NS | |
P (M × C) | NS | NS | NS | NS | * | NS | |
2021 | P (M) | NS | NS | NS | NS | ** | ** |
P (C) | NS | ** | NS | ** | ** | ** | |
P (M × C) | NS | NS | * | NS | ** | ** |
Determinant | Correlation Coefficient | Direct Pass Coefficient | Indirect Pass Coefficient | ||||||
---|---|---|---|---|---|---|---|---|---|
Sum | DSE Colonization Rate | Plant N Content | Grain Weight per Plant | Plant P Content | P Uptake | Soil Available N Content | |||
DSE colonization rate | 0.730 | 0.147 | 0.583 | 0.097 | 0.332 | 0.001 | 0.141 | 0.012 | |
Plant N content | 0.708 | 0.285 | 0.423 | 0.050 | 0.267 | −0.025 | 0.114 | 0.017 | |
Grain weight per plant | 0.947 | 0.510 | 0.437 | 0.096 | 0.149 | 0.008 | 0.163 | 0.020 | |
Plant P content | −0.052 | −0.117 | 0.064 | −0.001 | 0.061 | −0.036 | 0.040 | 0.000 | |
P uptake | 0.898 | 0.192 | 0.706 | 0.108 | 0.170 | 0.434 | −0.024 | 0.019 | |
Soil available N content | 0.418 | 0.056 | 0.362 | 0.032 | 0.084 | 0.182 | 0.000 | 0.064 | |
Coefficient of determination | 0.993 | ||||||||
Coefficient of determination of residual factors | 0.084 |
Determinant | Correlation Coefficient | Direct Pass Coefficient | Indirect Pass Coefficient | |||
---|---|---|---|---|---|---|
Sum | N Uptake | Plant Height | Plant N Content | |||
N uptake | 0.946 | 0.454 | 0.493 | 0.275 | 0.185 | |
Plant height | 0.938 | 0.314 | 0.625 | 0.398 | 0.193 | |
Plant N content | −0.817 | −0.262 | −0.555 | −0.319 | −0.231 | |
DSE colonization rate | 0.373 | 0.097 | 0.276 | 0.154 | 0.108 | 0.014 |
Coefficient of determination | 0.974 | |||||
Coefficient of determination of residual factors | 0.161 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Bi, Y.; Ma, S.; Zhang, Y.; Guo, Y.; Zhou, Y.; Xu, S.; Christie, P. Yields of Buckwheat and Alfalfa in an Intercropping System Inoculated with Dark Septate Endophytes in a Coal Mining Subsidence Dryland Area. Agronomy 2022, 12, 2860. https://doi.org/10.3390/agronomy12112860
Gao Y, Bi Y, Ma S, Zhang Y, Guo Y, Zhou Y, Xu S, Christie P. Yields of Buckwheat and Alfalfa in an Intercropping System Inoculated with Dark Septate Endophytes in a Coal Mining Subsidence Dryland Area. Agronomy. 2022; 12(11):2860. https://doi.org/10.3390/agronomy12112860
Chicago/Turabian StyleGao, Yakun, Yinli Bi, Shaopeng Ma, Yanxu Zhang, Yun Guo, Yang Zhou, Shihao Xu, and Peter Christie. 2022. "Yields of Buckwheat and Alfalfa in an Intercropping System Inoculated with Dark Septate Endophytes in a Coal Mining Subsidence Dryland Area" Agronomy 12, no. 11: 2860. https://doi.org/10.3390/agronomy12112860
APA StyleGao, Y., Bi, Y., Ma, S., Zhang, Y., Guo, Y., Zhou, Y., Xu, S., & Christie, P. (2022). Yields of Buckwheat and Alfalfa in an Intercropping System Inoculated with Dark Septate Endophytes in a Coal Mining Subsidence Dryland Area. Agronomy, 12(11), 2860. https://doi.org/10.3390/agronomy12112860