Fenclorim Increasing Butachlor Selectivity between Wheat and Roegneria kamoji by Seed Soaking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Effect of PRE Herbicides on Seedling Emergence and Growth of Wheat and R. kamoji
2.3. Effect of Fenclorim on Butachlor Activity to Wheat
2.4. Protein Content and α-Amylase, GST, KCS Activities Assay
2.5. Statistical Analysis
3. Results
3.1. Effect of PRE Herbicides on Seedling Emergence and Growth of Wheat and R. kamoji
3.2. Effect of Fenclorim on Butachlor Activity to Wheat
3.3. Protein Content and α-Amylase, GST, KCS Activities Assay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.H. Weed Flora of China; China Agriculture Press: Beijing, China, 1998; pp. 1313–1315. (In Chinese) [Google Scholar]
- Xu, Z.H.; Qi, H.Y.; Lu, Y.L.; Yang, W.D.; Xie, G.X. Weed Identification and Management; Zhejiang University Press: Hangzhou, China, 2014; pp. 12–13. (In Chinese) [Google Scholar]
- Tang, W.; Yu, X.Y.; Chen, J.; Xie, L.; Lu, Y.L. Tolerance to some ACCase inhibitors in four common Roegneria (Roegneria kamoji) populations from China. Front. Agron. 2020, 2, 587651. [Google Scholar] [CrossRef]
- Tang, W.; Liu, S.; Yu, X.; Yang, Y.; Zhou, X.; Lu, Y. The basis of tolerance mechanism to metsulfuron-methyl in Roegneria kamoji (Triticeae: Poaceae). Plants 2021, 10, 1823. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Zhou, W.J.; Lu, Y.L.; Yu, X.Y.; Tang, W. Characterization of seed germination and seedling emergence of Roegneria kamoji Ohwi. J. Weed Sci. 2019, 37, 17–22. (In Chinese) [Google Scholar]
- Abigail, M.E.A.; Samuel, S.M.; Ramalingam, C. Addressing the environmental impacts of butachlor and the available remediation strategies: A systematic review. Int. J. Environ. Sci. Technol. 2015, 12, 4025–4036. [Google Scholar] [CrossRef] [Green Version]
- Dwivedi, S.; Saquib, Q.; Al-Khedhairy, A.A.; Musarrat, J. Butachlor induced dissipation of mitochondrial membrane potential, oxidative DNA damage and necrosis in human peripheral blood mononuclear cells. Toxicology 2012, 302, 77–87. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Lin, C. Physiological, biochemical and growth responses of Italian ryegrass to butachlor exposure. Pestic. Biochem. Physiol. 2013, 106, 21–27. [Google Scholar] [CrossRef]
- Alla, M.M.N.; Badawi, A.M.; Hassan, N.M.; El-Bastawisy, Z.M.; Badran, E.G. Efect of metribuzin, butachlor and chlorimuronethyl on amino acid and protein formation in wheat and maize seedlings. Pestic. Biochem. Physiol. 2008, 90, 8–18. [Google Scholar] [CrossRef]
- Kunar, N.; Jagannath, S. Cytological Effects of herbicide butachlor 50 EC on somatic cells of Triticum aestivum L. J. Appl. Biol. Biotechnol. 2015, 3, 030–034. [Google Scholar]
- Agrawal, C.; Sen, S.; Singh, S.; Rai, S.; Singh, P.K.; Singh, V.K.; Rai, L.C. Comparative proteomics reveals association of early accumulated proteins in conferring butachlor tolerance in three N2-fixing Anabaena spp. J. Proteom. 2014, 96, 271–290. [Google Scholar] [CrossRef]
- Böger, P.; Matthes, B.; Schmalfuß, J. Towards the primary target of chloroacetamides-new findings pave the way. Pest Manag. Sci. Former. Pestic. Sci. 2000, 56, 497–508. [Google Scholar] [CrossRef]
- Trenkamp, S.; Martin, W.; Tietjen, K. Specific and differential inhibition of very-long-chain fatty acid elongases from Arabidopsis thaliana by different herbicides. Proc. Natl. Acad. Sci. USA 2004, 101, 11903–11908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, J.; Lühs, W.; Sonntag, K.; Zähringer, U.; Borchardt, D.S.; Wolter, F.P.; Heinz, E.; Frentzen, M. Functional characterization of beta-ketoacyl-CoA synthase genes from Brassica napus L. Plant Mol. Biol. 2001, 46, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Michael, W.L.; Lardizabal, K.; Metz, J.G. A jojoba P-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 1996, 8, 281–292. [Google Scholar]
- Wang, X.C.; Guan, Y.Y.; Zhang, D.; Dong, X.B.; Tian, L.H.; Qu, L.Q. A β-ketoacyl-CoA synthase is involved in rice leaf cuticular wax synthesis and requires a CER2-LIKE protein as a cofactor. Plant Physiol. 2017, 173, 944–955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, L.Y. Herbicide Safeners and Their Application; Science Press: Beijing, China, 2019; pp. 131–138. (In Chinese) [Google Scholar]
- Chen, Y.; Shen, X.; Fang, Y. Fenclorim effects on rice germination and yield. Can. J. Plant Sci. 2013, 93, 237241. [Google Scholar] [CrossRef]
- Hu, L.F.; Yao, Y.; Cai, R.W.; Pan, L.; Liu, K.L.; Bai, L.Y. Effects of fenclorim on rice physiology, gene transcription and pretilachlor detoxification ability. BMC Plant Biol. 2020, 20, 100. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Hatzios, K.K. Physiological interactions between the herbicide pretilachlor and the the safener fenclorim on rice. Pestic. Biochem. Physiol. 1991, 39, 270–280. [Google Scholar] [CrossRef]
- Wu, J.; Omokawa, H.; Hatzios, K. Glutathione S-transferase activity in unsafened and fenclorim-safened rice (Oryza sativa). Pestic. Biochem. Physiol. 1996, 54, 220–229. [Google Scholar] [CrossRef]
- Zhang, B.; Jin, Y.; Zhang, Z.C.; Dong, L.Y. Mechanism of fenclorim reducing the phytotoxicity orf pretichlor to rice by seed soaking. Jiangsu J. Agr. Sci. 2014, 30, 1345–1349. (In Chinese) [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dyebinding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Seefeldt, S.S.; Jensen, J.E.; Fuerst, E.P. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 1995, 9, 218–227. [Google Scholar] [CrossRef]
- Wang, H.Z.; Liu, W.T.; Zhao, K.P.; Yu, H.; Zhang, J.; Wang, J.X. Evaluation of weed control efficacy and crop safety of the new HPPD-inhibiting herbicide QYR301. Sci. Rep. 2018, 8, 7910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Saghir, M.G. Taxonomy and phylogeny in Triticeae: A historical review and current status. Adv. Plants Agric. Res. 2016, 3, 00108. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.F.; Yen, C.; Yang, J.L. The diversity of head-scab resistance in Triticeae and their relation to ecological conditions. Euphytica 1997, 97, 277–281. [Google Scholar] [CrossRef]
- Zhao, F.R.; Li, Q.; Chen, G.Y.; Li, J.; Kang, H.Y.; Wang, Y.; Fan, X.; Sha, L.; Zhou, Y.; Zhang, H. Stripe rust resistance in Roegneria kamoji (Poaceae: Triticeae) and its genetic analysis. J. Phytopathol. 2017, 165, 157–161. [Google Scholar] [CrossRef]
- Huang, Z.F.; Sui, B.F.; Zhang, C.X.; Huang, H.J.; Wei, S.H. The basis of resistance mechanism to mesosulfuron-methyl in Tausch’s goatgrass (Aegilops tauschii Coss.). Pestic. Biochem. Physiol. 2019, 155, 126–131. [Google Scholar] [CrossRef]
- Kunar, N.; Jagannath, S. Phytotoxic effect of butachlor 50 EC on early seed growth and biochemical parameters of Triticum aestivum L. Int. J. Adv. Lif. Sci. 2013, 6, 425–433. [Google Scholar]
- He, H.Z.; Li, Y.J.; Chen, T.F.; Huang, X.L.; Guo, Q.; Li, S.F.; Yu, T.H.; Li, H.S. Butachlor induces some physiological and biochemical changes in a rice field biofertilizer cyanobacterium. Pestic. Biochem. Physiol. 2013, 105, 224–230. [Google Scholar] [CrossRef]
- Li, N.; Zhang, J.J.; Liu, J.T.; Zhang, N.; Yang, H. Biodegradation of butachlor in rice intensifed by a regulator of OsGT1. Ecotoxicol. Environ. Saf. 2022, 242, 113942. [Google Scholar] [CrossRef]
- Qiu, Y.Q.; Hou, R.Z.; Jiang, R.L. Comparative study on the resistance of rice to butachlor and acetochlor. J. South China Norm. Univ. (Nat. Sci. Ed.) 2001, 4, 79–83. (In Chinese) [Google Scholar]
- Xu, H.; Zhang, Z.J.; Guo, A.G. Influence of herbicide to young shoots of rice and Echinochloa crusgalli (L.) Beauv. after germination. Chin. Agric. Sci. Bull. 2001, 17, 20–23. (In Chinese) [Google Scholar]
- Brunton, D.J.; Boutsalis, P.; Gill, G.; Preston, C. Resistance to very-long-chain fatty-acid (VLCFA)-inhibiting herbicides in multiple field-selected rigid ryegrass (Lolium rigidum) populations. Weed Sci. 2019, 67, 267–272. [Google Scholar] [CrossRef]
- Rui, C.; Chen, X.; Xu, N.; Wang, J.; Zhang, H.; Li, S.; Huang, H.; Fan, Y.; Zhang, Y.; Lu, X.; et al. Identification and structure analysis of KCS family genes suggest their reponding to regulate fiber development in long-staple cotton under salt-alkaline stress. Front. Genet. 2022, 13, 812449. [Google Scholar] [CrossRef] [PubMed]
- Busi, R. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids. Pest Manag. Sci. Former. Pestic. Sci. 2014, 70, 1378–1384. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Dutta, D.; Karmakar, R.; Ray, D. Structure-toxicity relationship of chloroacetanilide herbicides: Relative impact on soil microorganisms. Environ. Toxicol. Pharmacol. 2012, 34, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Woodward, E.E.; Hladik, M.L.; Kolpin, D.W. Occurrence of dichloroacetamide herbicide safeners and co-applied herbicides in Midwestern U.S. streams. Environ. Sci. Technol. Lett. 2018, 5, 3–8. [Google Scholar] [CrossRef]
- Scarponi, L.; Quagliarini, E.; Del Buono, D. Induction of wheat and maize glutathione S-transferase by some herbicide safeners and their effect on enzyme activity against butachlor and terbuthylazine. Pest Manag. Sci. Former. Pestic. Sci. 2006, 62, 927–932. [Google Scholar] [CrossRef]
- Taylor, V.L.; Cummins, I.; Brazier-Hicks, M.; Edwards, R. Protective responses induced by herbicide safeners in wheat. Environ. Exp. Bot. 2013, 88, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Scarponi, L.; Del Buono, D.; Vischetti, C. Effect of pretilachlor and fenclorim on carbohydrate and protein formation in relation to their persistence in rice. Pest Manag. Sci. Former. Pestic. Sci. 2005, 61, 371–376. [Google Scholar] [CrossRef]
Herbicide | Formulation and Manufacturer | Recommended Field Dose (g a.i. ha−1) |
---|---|---|
Acetochlor [2-Chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetamide] | 900 g/L EC, Jiangshan Agrochemical & Chemicals Co., Ltd., Nantong, China | 900 |
Butachlor [2-chloro-2′,6′-diethyl-N-(butoxymethyl)-acetanilide] | 60% EC, Nanshen Plant Protection Science and Development Co., Ltd., Nantong, China | 1350 |
Chlorotoluron [3-(3-chloro-4-methylphenyl)-1,1-dimethylurea] | 25%WP, Jiangsu Kuaida Agrochemical Co., Ltd., Nantong, China | 125 |
Diflufenican [N-(2,4-difluorophenyl)-2-[3-(trifluoromethyl)phenoxy]pyridine-3-carboxamide] | 50%WP, Jiangsu Huifeng Agrochemical Co., Ltd., Yancheng, China | 225 |
Flufenacet [N-(4-fluorophenyl)-N-propan-2-yl-2-[[5-(trifluoromethyl)-1,3,4-thiadiazol-2-yl]oxy]acetamide] | 41%FS, Max (Rudong) Chemicals Co., Ltd., Nantong, China | 90 |
Isoproturon [1,1-dimethyl-3-(4-propan-2-ylphenyl)urea] | 50%WP, Jiangsu Kuaida Agrochemical Co., Ltd., Nantong, China | 937.5 |
Herbicide | Seedling Emergence (% of Control) | Above-Ground Fresh Weight (% of Control) | ||
---|---|---|---|---|
Wheat | R. kamoji | Wheat | R. kamoji | |
Acetochlor | 3.4 (3.4) d 1 | 0 (0) c | 0.7 (0.7) f | 0 (0) c |
Butachlor | 96.7 (3.3) a | 47.6 (4.3) b | 79.6 (2.8) b | 18.5 (3.0) b |
Chlorotoluron | 82.5 (6.0) b | 75.6 (9.1) a | 67.6 (5.8) c | 42.1 (9.5) a |
Diflufenican | 100 (0) a | 86.6 (4.3) a | 91.8 (2.3) a | 50.8 (3.6) a |
Flufenacet | 65.3 (6.9) c | 0 (0) c | 42.8 (5.3) d | 0 (0) c |
Isoproturon | 96.7 (3.3) a | 0 (0) c | 29.6 (2.7) e | 0 (0) c |
Herbicide | ED90 1 (g a.i. ha−1) | ED10 2 (g a.i. ha−1) | SI 3 |
---|---|---|---|
R. kamoji | 23.2 | ||
Wheat | 221.8 | 9.6 | |
Wheat + fenclorim | 1600.1 | 68.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Sun, J.; Yu, X.; Zhou, F.; Liu, S.; Liu, M.; Lu, Y.; Yang, Y. Fenclorim Increasing Butachlor Selectivity between Wheat and Roegneria kamoji by Seed Soaking. Agronomy 2022, 12, 2870. https://doi.org/10.3390/agronomy12112870
Tang W, Sun J, Yu X, Zhou F, Liu S, Liu M, Lu Y, Yang Y. Fenclorim Increasing Butachlor Selectivity between Wheat and Roegneria kamoji by Seed Soaking. Agronomy. 2022; 12(11):2870. https://doi.org/10.3390/agronomy12112870
Chicago/Turabian StyleTang, Wei, Jinqiu Sun, Xiaoyue Yu, Fengyan Zhou, Shengnan Liu, Mengjie Liu, Yongliang Lu, and Yongjie Yang. 2022. "Fenclorim Increasing Butachlor Selectivity between Wheat and Roegneria kamoji by Seed Soaking" Agronomy 12, no. 11: 2870. https://doi.org/10.3390/agronomy12112870
APA StyleTang, W., Sun, J., Yu, X., Zhou, F., Liu, S., Liu, M., Lu, Y., & Yang, Y. (2022). Fenclorim Increasing Butachlor Selectivity between Wheat and Roegneria kamoji by Seed Soaking. Agronomy, 12(11), 2870. https://doi.org/10.3390/agronomy12112870