Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Scheme of the Experiment
- IWUE = irrigation water use efficiency;
- y = yield after irrigation;
- a = yield without irrigation;
- x = seasonal dose of water used in irrigation.
2.2. Assessment of Water Needs and Rainfall Deficits
- ETp = crop evapotranspiration (mm);
- ETo = reference evapotranspiration (mm);
- kc = crop coefficients (the ratio of evapotranspiration measured in conditions of sufficient soil moisture to reference evapotranspiration) [18];
- kc = crop coefficient;
- S = field water consumption under drip irrigation of asparagus grown on very light soil in the Bydgoszcz region. The field water consumption (S) under optimal soil moisture conditions (at the level of available water content in the soil) is identified as a crop’s evapotranspiration. The amount of field water consumption was adopted according to Rolbiecki [10] on the basis of a field experiment carried out in 2002–2007 in Kruszyn Krajeński near Bydgoszcz, under the same soil conditions as the experiment carried out in 2011–2017. ETo was calculated for the same time intervals. The values of kc determined that way were as follows: 0.4 (3rd decade of June), 0.8 (July) and 1.0 (August);
- ETo = reference evapotranspiration (mm).
- ETo = reference evapotranspiration (mm);
- n = number of days in a month;
- p = evaporation coefficients according to Doorenbos and Pruitt [21] for months and latitude determined from tables;
- t = monthly mean air temperature (°C).
- ETp = crop evapotranspiration (mm);
- P = total precipitation at the studied period (mm).
2.3. Meteorological Conditions
2.4. Water Needs of Asparagus, Water Deficits (Irrigation Needs) and Irrigation Water Doses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.; Hall, R.D. Green and white asparagus (Asparagus officinalis): A Source of developmental, chemical and urinary intrigue. Metabolites 2020, 10, 17. [Google Scholar] [CrossRef]
- Matei, O.; Jerca, O.I.; Draghci, E. MThe influence of substrate type on the production of asparagus grown in different environmental conditions. Sci. Papers Ser. B Hortic. 2020, 64, 434–441. [Google Scholar]
- Waśkiewicz, A.; Irzykowska, L.; Bocianowski, J.; Karolewski, Z.; Weber, Z.; Goliński, P. Fusariotoxins in asparagus–their biosynthesis and migration. Food Addit. Contam. Part A 2013, 30, 1332–1338. [Google Scholar] [CrossRef]
- Knaflewski, M. Uprawa Szparagów [Asparagus Cultivation]; Hortpress: Warszawa, Poland, 2015; pp. 6–120. [Google Scholar]
- Knaflewski, M. Trendy w światowej produkcji szparaga [Trends in global asparagus production]. In Proceedings of the XXI Konferencja Szparagowa, Nowy Tomyśl, Poland, 10 March 2020; pp. 37–46. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S. Effect of surface drip irrigation on asparagus cultivars in central Poland. Acta Hortic. 2008, 776, 45–50. [Google Scholar] [CrossRef]
- Xekarfotakis, N.; Chatzistathis, T.; Mola, M.; Demirtzoglou, T.; Monokrousos, N. The effects of different fertilization practices in combination with the use of PGPR on the sugar and amino acid content of Asparagus officinalis. Horticulturae 2021, 7, 507. [Google Scholar] [CrossRef]
- Wichrowska, D.; Rolbiecki, R.; Rolbiecki, S.; Jagosz, B.; Ptach, W.; Kazula, M.; Figas, A. Concentrations of some chemical components in white asparagus spears depending on the cultivar and post-harvest irrigation treatments. Folia Hort. 2018, 30, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Ruth, R.L.; Gardner, B.R. Asparagus spear size distribution and earliness as affected by water and nitrogen applications. Trans. Amer. Soc. Agr. Eng. 1991, 33, 480–486. [Google Scholar] [CrossRef]
- Rolbiecki, R. Ocena Potrzeb i Efektów Mikronawodnień Szparaga (Asparagus officinalis L.) na Obszarze Szczególnie Deficytowym w Wodę [Assessment of the Needs and Effects of Micro-Irrigation of Asparagus (Asparagus officinalis L.) in an Area Particularly Water-Deficient]; UTP: Bydgoszcz, Poland, 2013; pp. 1–103. [Google Scholar]
- Brainard, D.C.; Byl, B.; Hayden, Z.D.; Noyes, D.C.; Bakker, J.; Werling, B. Managing drought risk in a changing climate: Irrigation and cultivar impacts on Michigan asparagus. Agric. Water Manag. 2019, 213, 773–781. [Google Scholar] [CrossRef]
- Martínez, J.; Reca, J. Water use efficiency of surface drip irrigation versus an alternative subsurface drip irrigation method. J. Irrig. Drai. Eng. 2014, 140, 04014030. [Google Scholar] [CrossRef]
- Knaflewski, M. Uprawa Szparaga [Growing Asparagus]; Hortpress: Warszawa, Poland, 2005. [Google Scholar]
- Paschold, P.J.; Weithaler, A. Eignung von sensoren zum steuern der bewässerung bei freilandgemüse. Z. Bewäss. Wirtsch 2000, 35, 51–62. [Google Scholar]
- Platt, C. Problemy Rachunku Prawdopodobieństwa i Statystyki Matematycznej [Probability Theory and Mathematical Statistics]; PWN: Warszawa, Poland, 1978. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration—Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 56, 300. [Google Scholar]
- Łabędzki, L. Ewapotranspiracja upraw rolniczych—Terminologia, definicje, metody obliczania. Mat. Inf. Falenty 1996, 33, 1–16. [Google Scholar]
- Łabędzki, L. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda Sr. Obsz. Wiej. Rozpr. Nauk. Monogr. 2006, 17, 1–107. [Google Scholar]
- Smith, M. CROPWAT a computer program for irrigation planning and management. FAO Irrig. Drain. Pap. 1992, 46, 132. [Google Scholar]
- Żakowicz, S. Podstawy Technologii Nawadniania Rekultywowanych Składowisk Odpadów Komunalnych [Fundamentals of Irrigation Technology of Reclaimed Municipal Waste Landfills]; SGGW: Warszawa, Poland, 2010; pp. 1–95. [Google Scholar]
- Doorenbos, J.; Pruitt, W.O. Guidelines for predicting crop water requirements. FAO Irrig. Drain. Pap. 1977, 24, 176. [Google Scholar]
- Żakowicz, S.; Hewelke, P.; Gnatowski, T. Podstawy Infrastruktury Technicznej w Przestrzeni Rolniczej [Fundamentals of Technical Infrastructure in Agricultural Space]; SGGW: Warszawa, Poland, 2009; pp. 1–192. [Google Scholar]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Prus, P.; Stachowski, P.; Kazula, M.J.; Szczepanek, M.; Ptach, W.; Pal-Fam, F.; et al. Response of chosen american Asparagus officinalis L. cultivars to drip irrigation on the sandy soil in central Europe: Growth, yield, and water productivity. Agronomy 2021, 11, 864. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Jagosz, B.; Ptach, W.; Stachowski, P.; Kazula, M. Water needs of asparagus plants in the different regions of Poland. Annu. Set Environ. Prot. 2019, 21, 1227–1237. [Google Scholar]
- Paschold, P.J.; Eckes, U.; Löbmeier, F.J.; Hoppmann, D. Untersuchungen zur Ermittlung des Langjährigen Wasser und Berednungsbedarfs bei Ausgewählten Gemüsearten, Unveröff; Arbeitsbericht; Forschungsanstalt Geisenheim: Geisenheim, Germany, 2001. [Google Scholar]
- Hartmann, H.D.; Hermann, G.; Kirchner-Ness, R. Effect of weather during the vegetative period on the yield of asparagus in the following year. Gartenbauwissenschaft 1990, 55, 30–34. [Google Scholar]
- Pardo, A.; Arbizou, J.; Suso, M.L. Evapotranspiration and crop coefficients in white asparagus. Acta Hortic. 1997, 449, 187–192. [Google Scholar] [CrossRef]
- Hartmann, H.D. Die bewasserung bei spargel und ihre auswikung auf die pflanze. Arch. Gart. 1981, 29, 167–175. [Google Scholar]
- Hartmann, H.D. The influence of irrigation on the development and yield of asparagus. Acta Hortic. 1981, 119, 309–316. [Google Scholar] [CrossRef]
- Mulder, J.H.; Lavrijsen, P. First results of the “Third International Asparagus Cultivar Trial” planted in Horst, The Netherlands. Acta Hortic. 2008, 776, 367–372. [Google Scholar] [CrossRef]
- Paschold, P.J.; Hermann, G.; Artelt, B. Comparison of international asparagus cultivars under Rhine-Valley conditions in Germany. Acta Hortic. 1996, 415, 257–262. [Google Scholar] [CrossRef]
- Paschold, P.J.; Artelt, B.; Hermann, G. Comparison of white asparagus cultivars (Asparagus officinalis L.) in Germany. Acta Hortic. 2008, 776, 379–385. [Google Scholar] [CrossRef]
- Sterrett, S.B.; Ross, B.B.; Savage, C.P. Establishment and yield of asparagus as influenced by planting and irrigation method. J. Amer. Soc. Hort. Sci. 1990, 115, 29–33. [Google Scholar] [CrossRef]
- Rolbiecki, R.; Rolbiecki, S.; Figas, A.; Jagosz, B.; Stachowski, P.; Sadan, H.A.; Prus, P.; Pal-Fam, F. Requirements and effects of surface drip irrigation of mid-early potato cultivar Courage on a very light soil in Central Poland. Agronomy 2021, 11, 33. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Response of black currant (Ribes nigrum L.) cv. ‘Titania’ to micro-irrigation under loose sandy soil conditions. Acta Hortic. 2002, 585, 649–652. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C. Effect of micro-irrigation on the growth and yield of raspberry (Rubus idaeus L.) cv. ‘Polana’ grown in very light soil. Acta Hortic. 2002, 585, 653–657. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rolbiecki, R.; Rzekanowski, C.; Derkacz, M. Effect of different irrigation regimes on growth and yield of ‘Elsanta’ strawberries planted on loose sandy soil. Acta Hortic. 2004, 646, 163–166. [Google Scholar] [CrossRef]
- Rolbiecki, S.; Rzekanowski, C. Influence of sprinkler and drip irrigation on the growth and yield of strawberries grown on sandy soils. Acta Hortic. 1997, 439, 669–672. [Google Scholar] [CrossRef]
- Szczepanek, M.; Onofri, A. Chewing, strong and slender creeping red fescue response to sowing time and method. Crop Sci. 2013, 53, 2613–2622. [Google Scholar] [CrossRef]
- Wilczewski, E.; Skinder, Z.; Szczepanek, M. Effects of weather conditions on yield of tansy phacelia and common sunflower grown as stubble catch crop. Pol. J. Environ. Stud. 2012, 21, 1053–1060. [Google Scholar]
Years | Months of the Growing Season | Mean for April–Sepember | |||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | September | ||
2011 | 10.5 | 13.4 | 17.7 | 17.6 | 17.7 | 14.3 | 15.2 |
2012 | 8.4 | 14.5 | 15.2 | 18.8 | 17.6 | 13.3 | 14.6 |
2013 | 7.0 | 14.2 | 17.4 | 18.9 | 18.1 | 10.7 | 14.4 |
2014 | 9.9 | 13.3 | 16.0 | 21.5 | 17.2 | 14.4 | 15.4 |
2015 | 7.5 | 12.4 | 15.7 | 18.5 | 20.9 | 13.8 | 14.8 |
2016 | 8.3 | 14.7 | 17.7 | 18.3 | 16.4 | 14.3 | 15.0 |
2017 | 6.8 | 13.4 | 16.8 | 17.7 | 17.7 | 13.1 | 14.3 |
2011–2017 | 8.3 | 13.7 | 16.6 | 18.8 | 17.8 | 13.4 | 14.8 |
1981–2010 | 7.8 | 13.3 | 16.1 | 18.6 | 17.9 | 13.1 | 14.5 |
Years | Months of the Growing Season | Mean for April–September | |||||
---|---|---|---|---|---|---|---|
April | May | June | July | August | Sepember | ||
2011 | 0.0 | 2.0 | 40.0 | 137.0 | 30.7 | 24.3 | 234.0 |
2012 | 26.5 | 25.4 | 133.8 | 115.6 | 51.8 | 25.1 | 378.2 |
2013 | 13.6 | 91.7 | 49.3 | 79.0 | 56.6 | 64.1 | 354.3 |
2014 | 40.7 | 65.7 | 44.9 | 55.4 | 57.3 | 25.9 | 289.9 |
2015 | 15.6 | 21.6 | 33.0 | 50.4 | 20.3 | 52.4 | 193.3 |
2016 | 28.7 | 51.4 | 98.1 | 133.8 | 55.3 | 8.1 | 375.4 |
2017 | 40.8 | 56.3 | 54.3 | 118.9 | 126.1 | 78.4 | 474.8 |
2011–2017 | 23.7 | 44.9 | 64.8 | 98.6 | 56.9 | 39.7 | 353.3 |
1981–2010 | 27.0 | 49.3 | 52.8 | 69.8 | 62.6 | 46.0 | 307.5 |
Years and Statistical Characteristics | Irrigation Period | ||||
---|---|---|---|---|---|
21–31 June | July | August | 21–31 Junuary–August | Junuary–August | |
2011 | 18 | 104 | 115 | 236 | 218 |
2012 | 16 | 109 | 116 | 241 | 225 |
2013 | 17 | 110 | 117 | 245 | 227 |
2014 | 16 | 120 | 112 | 248 | 232 |
2015 | 16 | 108 | 132 | 257 | 241 |
2016 | 18 | 108 | 111 | 238 | 220 |
2017 | 17 | 104 | 116 | 237 | 220 |
Statistical Characteristics of Asparagus Water Needs | |||||
Minimum (mm) | 16 | 104 | 111 | 236 | 218 |
Maximum (mm) | 18 | 120 | 132 | 257 | 241 |
Mean (mm) | 17 | 109 | 117 | 243 | 226 |
Median (mm) | 17 | 108 | 116 | 241 | 225 |
Standard Deviation | 0.73 | 5.11 | 6.57 | 7.06 | 7.46 |
Variation Coefficient (%) | 4.3 | 4.7 | 5.6 | 2.9 | 3.3 |
Years | Irrigation Period | |||
---|---|---|---|---|
21–31 June | July | August | 21–31 Junuary–August | |
2011 | - | 4 | 86 | 90 |
2012 | - | 15 | 73 | 88 |
2013 | - | 68 | 53 | 121 |
2014 | 7 | 67 | 44 | 118 |
2015 | - | 43 | 125 | 168 |
2016 | - | - | 70 | 70 |
2017 | - | - | 18 | 18 |
Treatments | Cultivars | Years of the Study | Mean | |||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |||
Control | Ramada | 5.10 | 5.49 | 6.33 | 6.96 | 6.88 | 6.75 | 6.25 |
Rapsody | 4.30 | 4.92 | 4.61 | 4.94 | 5.21 | 5.15 | 4.85 | |
Ravel | 5.40 | 5.24 | 5.76 | 6.26 | 6.55 | 6.55 | 5.96 | |
Fertigation | Ramada | 7.20 | 8.19 | 8.97 | 9.33 | 9.24 | 9.21 | 8.69 |
Rapsody | 6.90 | 7.77 | 8.69 | 9.01 | 9.66 | 8.90 | 8.48 | |
Ravel | 7.80 | 8.64 | 9.22 | 9.74 | 10.21 | 9.58 | 9.19 | |
Control | 4.93 | 5.21 | 5.56 | 6.05 | 6.21 | 6.15 | 5.69 | |
Fertigation | 7.30 | 8.20 | 8.96 | 9.36 | 9.70 | 9.23 | 8.79 | |
Ramada | 6.15 | 6.84 | 7.65 | 8.14 | 8.06 | 7.98 | 7.47 | |
Rapsody | 5.60 | 6.34 | 6.65 | 6.97 | 7.43 | 7.02 | 6.66 | |
Ravel | 6.60 | 6.94 | 7.49 | 8.00 | 8.38 | 8.06 | 7.57 | |
LSD0.05 for Control | 0.951 | 0.208 | 0.412 | 0.534 | 0.745 | 0.459 | 0.551 | |
LSD0.05 for Fertigation | 0.632 | 0.585 | 0.625 | 0.758 | 0.862 | 0.711 | 0.695 |
Treatments | Cultivars | Years of the Study | Mean | |||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |||
Control | Ramada | 6.40 | 7.00 | 7.21 | 7.64 | 7.92 | 7.91 | 7.35 |
Rapsody | 6.30 | 6.78 | 7.29 | 7.80 | 7.41 | 7.58 | 7.19 | |
Ravel | 8.60 | 8.62 | 8.80 | 9.05 | 9.01 | 9.24 | 8.89 | |
Fertigation | Ramada | 8.20 | 9.80 | 10.04 | 10.55 | 10.57 | 10.49 | 9.94 |
Rapsody | 8.40 | 10.06 | 10.67 | 10.98 | 10.98 | 10.95 | 10.34 | |
Ravel | 11.40 | 12.55 | 12.84 | 13.04 | 13.21 | 13.01 | 12.68 | |
Control | 7.10 | 7.46 | 7.77 | 8.16 | 8.11 | 8.24 | 7.81 | |
Fertigation | 9.33 | 10.80 | 11.18 | 11.52 | 11.59 | 11.48 | 10.99 | |
Ramada | 7.30 | 8.40 | 8.62 | 9.09 | 9.24 | 8.85 | 8.64 | |
Rapsody | 7.35 | 8.42 | 8.98 | 9.39 | 9.19 | 9.26 | 8.76 | |
Ravel | 10.00 | 10.58 | 10.82 | 11.04 | 11.11 | 11.12 | 10.78 | |
LSD0.05 for Control | 0.754 | 0.185 | 0.215 | 0.422 | 0.311 | 0.412 | 0.381 | |
LSD0.05 for Fertigation | 1.121 | 0.651 | 0.541 | 0.581 | 0.621 | 0.431 | 0.657 |
Treatments | Cultivars | Years of the Study | Mean | |||||
---|---|---|---|---|---|---|---|---|
2012 | 2013 | 2014 | 2015 | 2016 | 2017 | |||
Control | Ramada | 34.20 | 43.10 | 42.11 | 43.55 | 43.15 | 45.33 | 41.90 |
Rapsody | 33.10 | 40.80 | 41.18 | 42.66 | 43.40 | 43.41 | 40.75 | |
Ravel | 36.60 | 39.95 | 40.65 | 41.58 | 42.85 | 42.75 | 40.73 | |
Fertigation | Ramada | 43.20 | 52.68 | 53.58 | 54.62 | 58.61 | 55.60 | 53.04 |
Rapsody | 42.50 | 48.65 | 49.75 | 50.44 | 50.85 | 50.85 | 48.84 | |
Ravel | 41.30 | 43.42 | 44.92 | 45.65 | 56.82 | 45.12 | 46.20 | |
Control | 34.63 | 41.28 | 41.31 | 41.60 | 43.13 | 43.83 | 41.13 | |
Fertigation | 42.33 | 48.25 | 49.42 | 50.24 | 55.43 | 50.52 | 49.36 | |
Ramada | 38.7 | 47.89 | 47.84 | 49.08 | 50.88 | 50.46 | 47.47 | |
Rapsody | 37.8 | 44.72 | 45.46 | 46.55 | 47.12 | 47.13 | 44.79 | |
Ravel | 38.95 | 41.68 | 42.78 | 43.61 | 49.83 | 43.93 | 43.46 | |
LSD0.05 for Control | 0.958 | 2.609 | 2.509 | 2.853 | 2.753 | 2.883 | 2.427 | |
LSD0.05 for Fertigation | 5.221 | 4.375 | 3.475 | 3.681 | 3.885 | 2.961 | 3.933 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolbiecki, R.; Sadan, H.; Rolbiecki, S.; Jagosz, B.; Szczepanek, M.; Figas, A.; Atilgan, A.; Pal-Fam, F.; Pańka, D. Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland. Agronomy 2022, 12, 241. https://doi.org/10.3390/agronomy12020241
Rolbiecki R, Sadan H, Rolbiecki S, Jagosz B, Szczepanek M, Figas A, Atilgan A, Pal-Fam F, Pańka D. Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland. Agronomy. 2022; 12(2):241. https://doi.org/10.3390/agronomy12020241
Chicago/Turabian StyleRolbiecki, Roman, Hicran Sadan, Stanisław Rolbiecki, Barbara Jagosz, Małgorzata Szczepanek, Anna Figas, Atilgan Atilgan, Ferenc Pal-Fam, and Dariusz Pańka. 2022. "Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland" Agronomy 12, no. 2: 241. https://doi.org/10.3390/agronomy12020241
APA StyleRolbiecki, R., Sadan, H., Rolbiecki, S., Jagosz, B., Szczepanek, M., Figas, A., Atilgan, A., Pal-Fam, F., & Pańka, D. (2022). Effect of Subsurface Drip Fertigation with Nitrogen on the Yield of Asparagus Grown for the Green Spears on a Light Soil in Central Poland. Agronomy, 12(2), 241. https://doi.org/10.3390/agronomy12020241