Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
- In Greece, 100 students participated in the questionnaire at the following universities: (a) Aristotle University of Thessaloniki (Faculty of Agriculture, Forestry and Natural Environment); (b) Alexander Technological Educational Institute of Thessaloniki (School of Agricultural Technology and of Food and Nutrition Technology); (c) Technological Educational Institute of Thessaly (School of Agricultural Technology and of Food and Nutrition Technology).
- In Italy, 100 students were surveyed, from the University of Florence, Tuscany, Italy.
- In Portugal, 144 students participated in the questionnaire, in five Higher Education Institutions: (a) Escola Superior Agrária de Santarém; (b) Universidade de Trás-os-Montes e Alto Douro; (c) Escola Superior Agrária de Beja; (d) Universidade de Évora; and e) Escola Superior Agrária de Elvas.
- In Spain, 192 students were surveyed at the following universities: (a) Universidad Politécnica de Madrid (UPM); (b) Technical School of Agri-food and Environment; (c) School of Agriculture Engineering at University of Sevilla; and (d) Universitat Politécnica de Valéncia.
2.2. Validity and Reliability Tests
2.3. Data Analysis
3. Results
3.1. Descriptive Statistics Analysis
3.2. Multivariate Statistical Analysis
- The first cluster included 78 respondents with 15.8%.
- The second cluster included 114 respondents with 23.1%.
- The third cluster included 84 respondents with 17.0%.
- The fourth cluster comprised the majority of respondents, 138, with 27.9%.
- The fifth cluster included 80 respondents with 16.2%.
- Finally, 42 respondents were not included in any cluster as they exhibited individual behavior and were not grouped.
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Pérez-Ruiz, M.; Gonzalez-de-Santos, P.; Ribeiro, A.; Fernandez-Quintanilla, C.; Peruzzi, A.; Vieri, M.; Tomic, S.; Agüera, J. Highlights and preliminary results for autonomous crop protection. Comput. Electron. Agric. 2015, 110, 150–161. [Google Scholar] [CrossRef]
- Partel, V.; Charan Kakarla, S.; Ampatzidis, Y. Development and evaluation of a low-cost and smart technology for precision weed management utilizing artificial intelligence. Comput. Electron. Agric. 2019, 157, 339–350. [Google Scholar] [CrossRef]
- Aragó Galindo, P.; Granell, C.; Molin, P.G.; Huerta Guijarro, J. Participative site-specific agriculture analysis for smallholders. Precis. Agric. 2012, 13, 594–610. [Google Scholar] [CrossRef] [Green Version]
- Reichardt, M.; Jürgens, C. Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precis. Agric. 2009, 10, 73–94. [Google Scholar] [CrossRef]
- Kutter, T.; Tiemann, S.; Siebert, R.; Fountas, S. The role of communication and co-operation in the adoption of precision farming. Precis. Agric. 2011, 12, 2–17. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2017, 18, 701–716. [Google Scholar] [CrossRef]
- Kountios, G.; Ragkos, A.; Bournaris, T.; Papadavid, G.; Michailidis, A. Educational needs and perceptions of the sustainability of precision agriculture: Survey evidence from Greece. Precis. Agric. 2018, 19, 537–554. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, M.; Wang, N. Precision agriculture—A worldwide overview. Comput. Electron. Agric. 2002, 36, 113–132. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Andrianopoulos, A.; Galanis, G.; Kalopesa, E.; Dimitrakos, A.; Katsogiannos, F.; Zalidis, G. An Integrated Approach to Promote Precision Farming as a Measure Toward Reduced-Input Agriculture in Northern Greece Using a Spatial Decision Support System. In Comprehensive Geographic Information Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2017; pp. 315–352. ISBN 978-0-12-804793-4. [Google Scholar]
- Pallottino, F.; Biocca, M.; Nardi, P.; Figorilli, S.; Menesatti, P.; Costa, C. Science mapping approach to analyze the research evolution on precision agriculture: World, EU and Italian situation. Precis. Agric. 2018, 19, 1011–1026. [Google Scholar] [CrossRef]
- Kitchen, N.R.; Snyder, C.J.; Franzen, D.W.; Wiebold, W.J. Educational Needs of Precision Agriculture. Precis. Agric. 2002, 3, 341–351. [Google Scholar] [CrossRef]
- Say, S.M.; Keskin, M.; Sehri, M.; Sekerli, Y.E. Adoption of Precision Agriculture Technologies in Developed and Developing Countries. In Proceedings of the International Science and Technology Conference (ISTEC), Berlin, Germany, 16–18 August 2017; pp. 41–49. [Google Scholar]
- Barnes, A.P.; Soto, I.; Eory, V.; Beck, B.; Balafoutis, A.; Sánchez, B.; Vangeyte, J.; Fountas, S.; van der Wal, T.; Gómez-Barbero, M. Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy 2019, 80, 163–174. [Google Scholar] [CrossRef]
- Bramley, R.G.V.; Ouzman, J. Farmer attitudes to the use of sensors and automation in fertilizer decision-making: Nitrogen fertilization in the Australian grains sector. Precis. Agric. 2019, 20, 157–175. [Google Scholar] [CrossRef]
- Miller, N.J.; Griffin, T.W.; Ciampitti, I.A.; Sharda, A. Farm adoption of embodied knowledge and information intensive precision agriculture technology bundles. Precis. Agric. 2019, 20, 348–361. [Google Scholar] [CrossRef]
- Thompson, N.M.; Bir, C.; Widmar, D.A.; Mintert, J.R. Farmer Perceptions Of Precision Agriculture Technology Benefits. J. Agric. Appl. Econ. 2019, 51, 142–163. [Google Scholar] [CrossRef] [Green Version]
- Tey, Y.S.; Brindal, M. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.; García-Chamizo, J.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J.; Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef] [Green Version]
- Clark, B.; Jones, D.G.; Kendall, H.; Taylor, J.; Cao, Y.; Li, W.; Zhao, C.; Chen, J.; Yang, G.; Chen, L.; et al. A proposed framework for accelerating technology trajectories in agriculture: A case study in China. Front. Agric. Sci. Eng. 2018, 5, 485–498. [Google Scholar] [CrossRef]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Far, S.T.; Rezaei-Moghaddam, K. Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Inf. Process. Agric. 2018, 5, 173–184. [Google Scholar] [CrossRef]
- Kountios, G.; Bournaris, T.; Papadavid, G.; Michailidis, A.; Klavdianou, A.P.; Papadaki-Klavdianou, A. Exploring educational needs of young farmers in precision agriculture in Serres, Greece, and the perspective of innovative agricultural educational programs. J. Int. Bus. Entrep. Dev. 2018, 11, 4–14. [Google Scholar] [CrossRef]
- Rezaei-Moghaddam, K.; Salehi, S. Agricultural specialists’ intention toward precision agriculture technologies: Integrating innovation characteristics to technology acceptance model. Afr. J. Agric. Res. 2010, 5, 1191–1199. [Google Scholar]
- Ferguson, R.B. Educational resources for precision agriculture. Precis. Agric. 2002, 3, 359–371. [Google Scholar] [CrossRef]
- Heiniger, R.W.; Havlin, J.L.; Crouse, D.A.; Kvien, C.; Knowles, T. Seeing is believing: The role of field days and tours in precision agriculture education. Precis. Agric. 2002, 3, 309–318. [Google Scholar] [CrossRef]
- Yost, M.A.; Sudduth, K.A.; Walthall, C.L.; Kitchen, N.R. Public–private collaboration toward research, education and innovation opportunities in precision agriculture. Precis. Agric. 2019, 20, 4–18. [Google Scholar] [CrossRef]
- Pathak, H.S.; Brown, P.; Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precis. Agric. 2019, 20, 1292–1316. [Google Scholar] [CrossRef]
- Markus, G.; Sebastian Schleicher, K.E. Barriers to Adoption of Smart Farming Technologies. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; pp. 9–21. [Google Scholar]
- Balafoutis, A.T.; Beck, B.; Fountas, S.; Tsiropoulos, Z.; Vangeyte, J.; Van Der Wal, T.; Soto-Embodas, I.; Gómez-Barbero, M.; Pedersen, S.M.; Balafoutis, A.T.; et al. Smart Farming Technologies—Description, Taxonomy and Economic Impact. In Precision Agriculture: Technology and Economic Perspectives; Springer: Cham, Switzerland, 2017; pp. 21–77. [Google Scholar] [CrossRef] [Green Version]
- Fausti, S.; Erickson, B.; Clay, S.; Schumacher, L.; Clay, D.; Skouby, D. Educator Survey: Do institutions provide the precision agriculture education needed by agribusiness? J. Agribus. 2018, 36, 41–63. [Google Scholar]
- Pocknee, S.; Kvien, C.; Rains, G.; Fiez, T.; Durfey, J.; Mask, P. Web-based educational programs in precision agriculture. Precis. Agric. 2002, 3, 327–340. [Google Scholar] [CrossRef]
- Saleh, J.M.; Man, N.B. Training Requirements of Agricultural Extension Officers Using Borich Needs Assessment Model. J. Agric. Food Inf. 2017, 18, 110–122. [Google Scholar] [CrossRef]
- Bournaris, T.; Mattas, A.; Michailidis, A.; Andujar, D.; Correia, M.; De Pascale, V.; Díaz, M.; Diezma, B.; Guadagni, A.; Karamouzi, E.; et al. SPARKLE e-Learning Platform for Sustainable Precision Agriculture. HAICTA 2020, 2761, 334–339. [Google Scholar]
- Movahedi, R.; Nagel, U.J. Identifying Required Competencies for the Agricultural Extension and Education Undergraduates. J. Agric. Sci. Technol. 2012, 14, 727–742. [Google Scholar]
- Bournaris, T. Evaluation of e-Government Web Portals: The Case of Agricultural e-Government Services in Greece. Agronomy 2020, 10, 932. [Google Scholar] [CrossRef]
- Neuman, W.L. Social Research Methods: Qualitative and Quantitative Approaches, 7th ed.; Bacon, P.A., Ed.; Sage: Boston, MA, USA, 2011. [Google Scholar]
- Michailidis, A.; Partalidou, M.; Nastis, S.A.; Papadaki-Klavdianou, A.; Charatsari, C. Who goes online? Evidence of internet use patterns from rural Greece. Telecommun. Policy 2011, 35, 333–343. [Google Scholar] [CrossRef]
- Sarantakos, S. Social Research; MacMillan Press LTD: Hampshire, UK, 2005. [Google Scholar]
- Loizou, E.; Michailidis, A.; Chatzitheodoridis, F. Investigating the drivers that influence the adoption of differentiated food products: The case of a greek urban area. Br. Food J. 2013, 115, 917–935. [Google Scholar] [CrossRef]
- Trpkova, M.; Tevdovski, D. Twostep cluster analysis: Segmentation of largest companies in Macedonia. In Proceedings of the Challenges for Analysis of the Economy, the Businesses, and Social Progress International Scientific Conference, Szeged, Hungary, 19–21 November 2009; Kovács, P., Szép, K., Katona, T., Eds.; Unidocument Kft: Szeged, Hungary, 2009; pp. 302–320. [Google Scholar]
- Şchiopu, D. Applying TwoStep Cluster Analysis for Identifying Bank Customers’ Profile. Buletinul 2010, LXII, 66–75. [Google Scholar]
- Van der Kooij, A.J.; Meulman, J. MURALS: Multiple regression and optimal scoring using alternating least squares. In Advances in Statistical Software; Bandilla, W., Faulbaum, F., Eds.; Lucius & Lucius: Stuttgart, Germany, 1997; pp. 99–106. [Google Scholar]
- Chatzitheodoridis, F.; Kontogeorgos, A.; Liltsi, P.; Apostolidou, I.; Michailidis, A.; Loizou, E. Small women’s cooperatives in less favored and mountainous areas under economic instability. Agric. Econ. Rev. 2016, 17, 63–79. [Google Scholar]
- Lazaridou, D.; Michailidis, A.; Trigkas, M. Socio-economic factors influencing farmers’ willingness to undertake environmental responsibility. Environ. Sci. Pollut. Res. 2019, 26, 14732–14741. [Google Scholar] [CrossRef]
- Pratt, J. Dividing the indivisible: Using simple symmetry to partition variance explained. In Proceedings of the Second International TAMPERE Conference in Statistics, Tampere, Finland, 1–4 July 1987; Pukkika, T., Puntanen, S., Eds.; University of Tampere: Tampere, Finland, 1987; pp. 245–260. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 1995; ISBN 0028740742. [Google Scholar]
- Loizou, E.; Chatzitheodoridis, F.; Michailidis, A.; Tsakiri, M.; Theodossiou, G. Linkages of the energy sector in the greek economy: An input-output approach. Int. J. Energy Sect. Manag. 2015, 9, 393–411. [Google Scholar] [CrossRef]
Distribution of the Sample by Country | Number of Questionnaires | Value |
---|---|---|
Greece | 100 | 18.7% |
Italy | 100 | 18.7% |
Spain | 192 | 35.8% |
Portugal | 144 | 26.9% |
Socioeconomic Characteristics | ||
Male | 324 | 60.4% |
Female | 209 | 39.0% |
Age (mean value) | 23 years and 11 months | |
Undergraduate students | 352 | 65.7% |
Postgraduate students | 167 | 31.2% |
PhD candidates | 14 | 2.6% |
Skills | Current Skills | Expected Training Needs | ||||||
---|---|---|---|---|---|---|---|---|
Greece | Spain | Portugal | Italy | Greece | Spain | Portugal | Italy | |
Μ | Μ | Μ | Μ | Μ | Μ | Μ | Μ | |
Technological expertise | 2.46 | 2.7 | 2.78 | 2.08 | 3.36 | 3.93 | 3.4 | 3.24 |
Legislative expertise | 1.86 | 1.79 | 1.9 | 1.78 | 3.27 | 3.41 | 3.4 | 3.02 |
Local community leadership | 2.24 | 2.03 | 2.24 | 1.83 | 3.28 | 3.44 | 3.27 | 2.91 |
Business management skills | 2.5 | 2.3 | 2.33 | 1.74 | 3.5 | 3.56 | 3.35 | 2.95 |
Innovation management | 2.47 | 2.31 | 2.35 | 1.79 | 3.67 | 3.96 | 3.42 | 3.38 |
Marketing skills | 2.67 | 2.56 | 2.5 | 2.01 | 3.62 | 3.43 | 3.23 | 2.99 |
Sustainability | 2.44 | 2.92 | 3.08 | 2.78 | 3.57 | 4.04 | 3.38 | 3.55 |
Local ecosystems | 2.39 | 2.93 | 2.98 | 2.72 | 3.35 | 3.96 | 3.4 | 3.25 |
Country | Training Needs | M |
---|---|---|
Greece | Knowledge of local ecosystems | 4.33 |
How to choose right technologies or solutions | 4.13 | |
Sense of solidarity and responsibility for the community | 4.11 | |
Spain | Low waste production | 4.38 |
How to choose right technologies or solutions | 4.32 | |
Working with processed data | 4.18 | |
Portugal | How to choose right technologies or solutions | 4.30 |
Low waste production | 4.24 | |
Working with processed data | 4.15 | |
Italy | How to choose right technologies or solutions | 4.10 |
Low waste production | 4.08 | |
Knowledge of local ecosystems | 4.04 |
Training Methods | M | St.dev. |
---|---|---|
Agriculturalist’s visit in farms | 4.45 | 0.18 |
Field demonstrations | 4.27 | 0.37 |
Practical courses/exercise | 4.27 | 0.12 |
Educational excursions | 4.15 | 0.12 |
Farmer’s visits to the agriculturalist’s office | 3.89 | 0.15 |
Education at the individual level/individual contact | 3.81 | 0.09 |
Short-term seminars | 3.67 | 0.15 |
Lectures at physical meetings | 3.61 | 0.23 |
Agricultural journals | 3.60 | 0.17 |
Online communication with agriculturalist | 3.59 | 0.21 |
Creating newsgroups | 3.49 | 0.17 |
Online courses/e-learning | 3.33 | 0.12 |
Helpline instructions | 3.19 | 0.07 |
Articles in newspapers | 3.15 | 0.19 |
Television broadcasts | 3.11 | 0.30 |
Information in the form of forms or brochures | 2.90 | 0.17 |
Broadcasts on radio | 2.86 | 0.12 |
DVD | 2.86 | 0.36 |
Greece | Spain | Portugal | Italy | Average | |
---|---|---|---|---|---|
% | % | % | % | % | |
Extremely unlikely | 9.00 | 6.00 | 4.00 | 8.00 | 6.75 |
Unlikely | 6.00 | 16.00 | 17.00 | 20.00 | 14.75 |
Neutral | 27.00 | 29.00 | 33.00 | 40.00 | 32.35 |
Likely | 41.00 | 42.00 | 38.00 | 29.00 | 37.5 |
Extremely likely | 17.00 | 6.00 | 4.00 | 3.00 | 7.50 |
Not answered/I do not know | - | 1.00 | 4.00 | - | 2.50 |
Level of Knowledge of PA |
---|
Level of current technological expertise (knowledge of new technology and equipment) |
Level of current legislative expertise (knowledge of laws, regulations and provisions) |
Level of current local community leadership (knowledge of opinion leadership/detection of the influencers in a local community) |
Level of current business management skills (do you have skills/expertise in business management?) |
Level of current innovation management (do you have skills/expertise in innovation management?) |
Level of current marketing skills (do you have skills/expertise in marketing?) |
Level of current sustainability (knowledge of sustainability issues and circular agriculture) |
Level of current local ecosystems (knowledge of local ecosystems) |
Level of knowledge of soft PA |
Level of knowledge of hard PA |
Level of interest of hard PA |
Level of interest of soft PA |
Level of knowledge of intelligent machinery (precision seeding, section control for sprayers) |
Correlations | Importance | Tolerance | ||||
---|---|---|---|---|---|---|
Zero-Order | Partial | Part | After Transformation | Before Transformation | ||
Gender | −0.200 | −0.209 | −0.174 | 0.110 | 0.895 | 0.880 |
Age | 0.146 | 0.133 | 0.110 | 0.052 | 0.853 | 0.756 |
Educational level | 0.198 | 0.216 | 0.180 | 0.115 | 0.873 | 0.742 |
Country | 0.205 | 0.273 | 0.232 | 0.171 | 0.695 | 0.682 |
Willing to pay for a MOOCs | 0.152 | 0.070 | 0.057 | 0.028 | 0.837 | 0.842 |
When do you think is the best time to get training in PA? | −0.067 | −0.099 | −0.081 | 0.017 | 0.938 | 0.923 |
PA increases productivity | 0.211 | 0.066 | 0.054 | 0.044 | 0.614 | 0.591 |
Life-long learning would be necessary to keep up with the speed of PA | 0.175 | 0.043 | 0.035 | 0.022 | 0.718 | 0.624 |
PA contributes to lower production costs | 0.224 | 0.082 | 0.067 | 0.073 | 0.384 | 0.478 |
PA results in improved income | 0.162 | −0.065 | −0.053 | −0.040 | 0.425 | 0.488 |
PA requires high investment | 0.039 | −0.065 | −0.053 | −0.007 | 0.766 | 0.577 |
PA requires great economic risk | 0.045 | 0.038 | 0.031 | 0.005 | 0.655 | 0.673 |
PA primary products are safe | 0.152 | 0.144 | 0.119 | 0.062 | 0.777 | 0.642 |
PA primary products are of high nutritional value | 0.091 | −0.104 | −0.086 | −0.031 | 0.581 | 0.467 |
PA protects the environment | 0.190 | 0.087 | 0.071 | 0.055 | 0.537 | 0.410 |
PA improves the sustainable management of land parcels | 0.010 | 0.138 | 0.114 | 0.004 | 0.732 | 0.741 |
I prefer conventional farming methods | 0.038 | −0.152 | −0.126 | −0.018 | 0.635 | 0.565 |
PA requires relevant information | 0.131 | 0.041 | 0.034 | 0.016 | 0.687 | 0.502 |
PA requires relevant education/training | 0.104 | 0.106 | 0.087 | 0.031 | 0.775 | 0.750 |
PA requires young age | −0.142 | −0.196 | −0.163 | 0.081 | 0.728 | 0.724 |
I cannot familiarize myself with PA methods | 0.154 | −0.172 | 0.142 | 0.098 | 0.448 | 0.356 |
Successful examples of other farmers influence my adoption of PA methods | 0.046 | −0.114 | −0.094 | −0.020 | 0.430 | 0.353 |
PA requires innovation from farmers | 0.066 | 0.059 | 0.048 | 0.012 | 0.682 | 0.704 |
Business consultants influence my adoption of PA methods | 0.122 | 0.104 | 0.085 | 0.041 | 0.578 | 0.592 |
Government/public incentives influence my adoption of PA techniques | 0.132 | 0.095 | 0.078 | 0.037 | 0.677 | 0.658 |
PA is now necessary | 0.132 | 0.129 | 0.106 | 0.048 | 0.761 | 0.639 |
PA would improve my social position | 0.041 | −0.124 | −0.102 | −0.015 | 0.727 | 0.662 |
Variables | “Innovators” Second Cluster (23.1%) | “Early Adopters” Third Cluster (17.0%) | “Early Majority” Fourth Cluster (27.9%) | “Late Majority” Fifth Cluster (16.2%) | “Laggards” First Cluster (15.8%) |
---|---|---|---|---|---|
Gender | Male | Male | Male | Male | Female |
Mean age (years) | 25.89 | 24.75 | 22.90 | 23.34 | 22.74 |
Country | Italy | Portugal | Spain | Greece | Spain |
Education | Postgraduate | Undergraduate | Undergraduate | Undergraduate | Undergraduate |
Familiarity with PA | 3.10 | 2.91 | 2.41 | 1.99 | 1.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bournaris, T.; Correia, M.; Guadagni, A.; Karouta, J.; Krus, A.; Lombardo, S.; Lazaridou, D.; Loizou, E.; Marques da Silva, J.R.; Martínez-Guanter, J.; et al. Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes. Agronomy 2022, 12, 269. https://doi.org/10.3390/agronomy12020269
Bournaris T, Correia M, Guadagni A, Karouta J, Krus A, Lombardo S, Lazaridou D, Loizou E, Marques da Silva JR, Martínez-Guanter J, et al. Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes. Agronomy. 2022; 12(2):269. https://doi.org/10.3390/agronomy12020269
Chicago/Turabian StyleBournaris, Thomas, Manuela Correia, Alessandro Guadagni, Jeremy Karouta, Anne Krus, Stefania Lombardo, Dimitra Lazaridou, Efstratios Loizou, José Rafael Marques da Silva, Jorge Martínez-Guanter, and et al. 2022. "Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes" Agronomy 12, no. 2: 269. https://doi.org/10.3390/agronomy12020269
APA StyleBournaris, T., Correia, M., Guadagni, A., Karouta, J., Krus, A., Lombardo, S., Lazaridou, D., Loizou, E., Marques da Silva, J. R., Martínez-Guanter, J., Michailidis, A., Nastis, S., Paltaki, A., Partalidou, M., Pérez-Ruiz, M., Ribeiro, Á., Valero, C., & Vieri, M. (2022). Current Skills of Students and Their Expected Future Training Needs on Precision Agriculture: Evidence from Euro-Mediterranean Higher Education Institutes. Agronomy, 12(2), 269. https://doi.org/10.3390/agronomy12020269