The Impact of Irrigation on Olive Fruit Yield and Oil Quality in a Humid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Experimental Design
2.2. Soil, Irrigation and Tree Water Status
2.3. Climate
2.4. Productive Parameters
2.5. Oil Chemical Composition
2.6. Statistical Analysis
3. Results
3.1. Tree Water Status and Fruit Moisture
3.2. Productive Parameters
3.3. Polyphenols Content in Fruits
3.4. Oil Chemical Composition
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the Southern Hemisphere: Flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci. 2017, 8, 1830. [Google Scholar] [CrossRef] [Green Version]
- Tiscornia, G.; Cal, A.; Giménez, A. Análisis y caracterización de la variabilidad climática en algunas regiones de Uruguay. Rev. Investig. Agropecu. 2016, 42, 66–71. [Google Scholar]
- Vaughan, C.; Dessai, S.; Hewitt, C.; Baethgen, W.; Terra, R.; Berterretche, M. Creating an enabling environment for investment in climate services: The case of Uruguay’s National Agricultural Information System. Clim. Serv. 2017, 8, 62–71. [Google Scholar] [CrossRef]
- Moretti, S.; Hernández, M.L. Regulation of olive fatty acid desaturation by environmental stresses and culture conditions. Annu. Plant Rev. Online 2021, 4, 687–712. [Google Scholar] [CrossRef]
- Mairech, H.; López-Bernal, Á.; Moriondo, M.; Dibari, C.; Regni, L.; Proietti, P.; Villalobos, F.J.; Testi, L. Is new olive farming sustainable? A spatial comparison of productive and environmental performances between traditional and new olive orchards with the model OliveCan. Agric. Syst. 2020, 181, 102816. [Google Scholar] [CrossRef]
- Khosravi, A.; Zucchini, M.; Giorgi, V.; Mancini, A.; Neri, D. Continuous monitoring of olive fruit growth by automatic extensimeter in response to vapor pressure deficit from pit hardening to harvest. Horticulturae 2021, 7, 349. [Google Scholar] [CrossRef]
- Connor, D.; Fereres, E. The physiology of adaptation and yield expression in olive. In Horticultural Reviews; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2005; Volume 31, pp. 155–229. [Google Scholar]
- Fernández, J.E. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.E.; Moreno, F. Water use by the olive tree. J. Crop Prod. 1999, 2, 101–162. [Google Scholar] [CrossRef]
- Moriana, A.; Orgaz, F.; Pastor, M.; Fereres, E. Yield responses of a mature olive orchard to water deficits. J. Am. Soc. Hortic. Sci. 2003, 128, 425–431. [Google Scholar] [CrossRef]
- Grattan, S.R.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive oil production as influenced by different quantities of applied water. Agric. Water Manag. 2006, 85, 133–140. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.M.; Rapoport, H.F. Water deficit-induced changes in mesocarp cellular processes and the relationship between mesocarp and endocarp during olive fruit development. Tree Physiol. 2009, 29, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Searles, P.S. EL uso del agua en olivo. El consumo del agua por el cultivo de olivo (Olea europaea L.) en el noroeste de Argentina: Una comparación con la Cuenca Mediterránea Sección especial. Ecol. Austral 2011, 21, 015–028. [Google Scholar]
- Hueso, A.; Trentacoste, E.R.; Junquera, P.; Gómez-Miguel, V.; Gómez-del-Campo, M. Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina). Agric. Water Manag. 2019, 223, 105589. [Google Scholar] [CrossRef]
- Pierantozzi, P.; Torres, M.; Tivani, M.; Contreras, C.; Gentili, L.; Parera, C.; Maestri, D. Spring deficit irrigation in olive (cv. Genovesa) growing under arid continental climate: Effects on vegetative growth and productive parameters. Agric. Water Manag. 2020, 238, 106212. [Google Scholar] [CrossRef]
- Hartmann, H.T. Growth of the olive fruit. Proc. Am. Soc. Hortic. Sci. 1949, 54, 86–94. [Google Scholar]
- Trentacoste, E.R.; Calderón, F.J.; Contreras-Zanessi, O.; Galarza, W.; Banco, A.P.; Puertas, C.M. Effect of regulated deficit irrigation during the vegetative growth period on shoot elongation and oil yield components in olive hedgerows (cv. Arbosana) pruned annually on alternate sides in San Juan, Argentina. Irrig. Sci. 2019, 37, 533–546. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J.; Motilva, M.J. Composition and organoleptic characteristics of oil from Arbequina olive (Olea europaea L.) trees under deficit irrigation. J. Sci. Food Agric. 2002, 82, 1755–1763. [Google Scholar] [CrossRef]
- Artajo, L.S.; Romero, M.P.; Tovar, M.J.; Motilva, M.J. Effect of irrigation applied to olive trees (Olea europaea L.) on phenolic compound transfer during olive oil extraction. Eur. J. Lipid Sci. Technol. 2006, 108, 19–27. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S. Olive oil quality response to irrigation cut-off strategies in a super-high density orchard. Agric. Water Manag. 2018, 202, 81–88. [Google Scholar] [CrossRef]
- Malavolta, C.; Perdikis, D. Crop Specific Technical Guidelines for Integrated Production of Olives. IOBC-WPRS Commission IP Guidelines. 2018. Available online: https://www.iobc-wprs.org/ip_integrated_production/IP_practical_guidelines.html (accessed on 10 January 2022).
- Durán, A.; Califra, A.; Molfino, J.H.; Lynn, W. Keys to Soil Taxonomy for Uruguay; USDA, Natural Resources Conservation Service (NRCS): Washington, DC, USA, 2006; 77p.
- Richards, L.; Weaver, L. Moisture retention by some irrigated soils as related to soil moisture tension. J. Agric. Res. 1944, 69, 215–234. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration. In Guideline for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Concepts and future trends. J. Irrig. Drain. Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Puppo, L.; García, C.; Girona, J.; García-Petillo, M. Determination of young olive-tree water consumption with drainage lysimeters. J. Water Resour. Prot. 2014, 6, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Evapotranspiración del Cultivo: Guía para la Determinación de los Requerimientos de Agua de los Cultivos; Estudio FAO de Riego y Drenaje N°. 56; FAO: Rome, Italy, 2006. [Google Scholar]
- Scholander, P.F.; Bradstreet, E.D.; Hemmingsen, E.A.; Hammel, H.T. Sap pressure in vascular plants. Science 1965, 148, 339–346. [Google Scholar] [CrossRef]
- McCutchan, H.; Shackel, K.A. Stem-water potential as a sensitive indicator of water stress in prune trees (Prunus domestica L. cv. French). J. Am. Soc. Hortic. Sci. 1992, 117, 607–611. [Google Scholar] [CrossRef] [Green Version]
- Gucci, R.; Caruso, G.; Gennai, C.; Esposto, S.; Urbani, S.; Servili, M. Fruit growth, yield and oil quality changes induced by deficit irrigation at different stages of olive fruit development. Agric. Water Manag. 2019, 212, 88–98. [Google Scholar] [CrossRef]
- Uceda, M.; Frías, L. Épocas de recolección. Evolución del contenido graso del fruto y de la composición y calidad del aceite. In Proceedings of II Seminario Oleícola International; IOOC: Córdoba, Spain, 1975. [Google Scholar]
- IUPAC. Standard Methods for the Analysis of Oils, Fats and Derivatives, International Union of Pure and Applied Chemistry IUPAC, Ed.; 1st Supplement to the 7th ed.; Pergamon Press: Oxford, UK, 1992. [Google Scholar]
- European Union Regulation. Commission Regualation (EEC). No 2568/91 of 11 of July 1991 on the Characteristics of Olive oil and Olive-Residue Oil and on the Relevant Methods of Analysis. Off. J. Eur. Commun. 1991, L248, 1–83. [Google Scholar]
- Minguez-Mosquera, M.I.; Rejano-Navarro, L.; Gandul-Rojas, B.; Sanchez-Gomez, A.H.; Garrido-Fernandez, J. Color-pigment correlation in virgin olive oil. J. Am. Oil Chem. Soc. 1991, 68, 332–336. [Google Scholar] [CrossRef]
- Feippe, A.; Ibáñez, F.; Altier, G.P. Fruit ripening stage effect on the fatty acid profile of “Arbequina” and “Picual” olives in Uruguay. Acta Hortic. 2010, 877, 1495–1499. [Google Scholar] [CrossRef]
- Sánchez-Rangel, J.C.; Benavides, J.; Heredia, J.B.; Cisneros-Zevallos, L.; Jacobo-Velázquez, D.A. The Folin-Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Anal. Methods 2013, 5, 5990–5999. [Google Scholar] [CrossRef]
- Gutfinger, T. Polyphenols in olive oils. J. Am. Oil Chem. Soc. 1981, 58, 966–968. [Google Scholar] [CrossRef]
- Trentacoste, E.R.; Puertas, C.M.; Sadras, V.O. Effect of fruit load on oil yield components and dynamics of fruit growth and oil accumulation in olive (Olea europaea L.). Eur. J. Agron. 2010, 32, 249–254. [Google Scholar] [CrossRef]
- Martín-Vertedor, A.I.; Rodríguez, J.M.P.; Losada, H.P.; Castiel, E.F. Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca) I.—Growth and water relations. Agric. Water Manag. 2011, 98, 941–949. [Google Scholar] [CrossRef] [Green Version]
- Iniesta, F.; Testi, L.; Orgaz, F.; Villalobos, F.J. The effects of regulated and continuous deficit irrigation on the water use, growth and yield of olive trees. Eur. J. Agron. 2009, 30, 258–265. [Google Scholar] [CrossRef]
- Villalobos, F.; Orgaz, F.; Testi, L.; Fereres, E. Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur. J. Agron. 2000, 13, 155–163. [Google Scholar] [CrossRef]
- Fernández, J.E.; Torres-Ruiz, J.M.; Diaz-Espejo, A.; Montero, A.; Álvarez, R.; Jiménez, M.D.; Cuerva, J.; Cuevas, M.V. Use of maximum trunk diameter measurements to detect water stress in mature “Arbequina” olive trees under deficit irrigation. Agric. Water Manag. 2011, 98, 1813–1821. [Google Scholar] [CrossRef]
- Marra, F.P.; Marino, G.; Marchese, A.; Caruso, T. Effects of different irrigation regimes on a super-high-density olive grove cv. “Arbequina”: Vegetative growth, productivity and polyphenol content of the oil. Irrig. Sci. 2016, 34, 313–325. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.; Fereres, E.; Raes, D. Respuesta del rendimiento de los cultivos al agua. In FAO: Estudio de Riego y Drenaje No. 66, (rev.); Organización de las Naciones Unidas para la Alimentación y la Agricultura: Roma, Italy, 2012; 510p. [Google Scholar]
- Lavee, S.; Hanoch, E.; Wodner, M.; Abramowitch, H. The effect of predetermined deficit irrigation on the performance of cv. Muhasan olives (Olea europaea L.) in the eastern coastal plain of Israel. Sci. Hortic. 2007, 112, 156–163. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; Moriana, A.; Pérez, D.; Olmedilla, N.; Ribas, F.; Fregapane, G. Influence of different irrigation strategies in a traditional Cornicabra cv. olive orchard on virgin olive oil composition and quality. Food Chem. 2007, 100, 568–578. [Google Scholar] [CrossRef]
- Ahumada-Orellana, L.E.; Ortega-Farías, S.; Searles, P.S.; Retamales, J.B. Yield and water productivity responses to irrigation cut-off strategies after fruit set using stem water potential thresholds in a super-high density olive orchard. Front. Plant Sci. 2017, 8, 1280. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.; de la Rosa, R.; Moukhli, A.; El Riachy, M.; Mariotti, R.; Torres, M.; Pierantozzi, P.; Stanzione, V.; Mastio, V.; Zaher, H.; et al. Plasticity of fruit and oil traits in olive among different environments. Sci. Rep. 2019, 9, 16968. [Google Scholar] [CrossRef] [Green Version]
- Gómez-del-Campo, M. Summer deficit-irrigation strategies in a hedgerow olive orchard cv. “Arbequina”: Effect on fruit characteristics and yield. Irrig. Sci. 2013, 31, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Inglese, P.; Barone, E.; Gullo, G. The effect of complementary irrigation on fruit growth, ripening pattern and oil characteristics of olive (Olea europaea L.) cv. Carolea. J. Hortic. Sci. Biotechnol. 1996, 71, 257–263. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of regulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Šamec, D.; Karalija, E.; Šola, I.; Vujčić Bok, V.; Salopek-Sondi, B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021, 10, 118. [Google Scholar] [CrossRef]
- Talhaoui, N.; Gómez-Caravaca, A.M.; León, L.; De La Rosa, R.; Fernández-Gutiérrez, A.; Segura-Carretero, A. From olive fruits to olive Oil: Phenolic compound transfer in six different olive cultivars grown under the same agronomical conditions. Int. J. Mol. Sci. 2016, 17, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar] [CrossRef]
- Dag, A.; Ben-Gal, A.; Yermiyahu, U.; Basheer, L.; Nir, Y.; Kerem, Z. The effect of irrigation level and harvest mechanization on virgin olive oil quality in a traditional rain-fed “Souri” olive orchard converted to irrigation. J. Sci. Food Agric. 2008, 88, 1524–1528. [Google Scholar] [CrossRef]
- Tognetti, R.; D’Andria, R.; Sacchi, R.; Lavini, A.; Morelli, G.; Alvino, A. Deficit irrigation affects seasonal changes in leaf physiology and oil quality of Olea europaea (cultivars Frantoio and Leccino). Ann. Appl. Biol. 2007, 150, 169–186. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Conde-Innamorato, P.; Arias-Sibillotte, M.; Villamil, J.J.; Bruzzone, J.; Bernaschina, Y.; Ferrari, V.; Zoppolo, R.; Villamil, J.; Leoni, C. It is feasible to produce olive oil in temperate humid climate regions. Front. Plant Sci. 2019, 10, 1544. [Google Scholar] [CrossRef]
- Sena-Moreno, E.; Pérez-Rodríguez, J.M.; De Miguel, C.; Prieto, M.H.; Franco, M.N.; Cabrera-Bañegil, M.; Martín-Vertedor, D. Pigment profile, color and antioxidant capacity of Arbequina virgin olive oils from different irrigation treatments. JAOCS J. Am. Oil Chem. Soc. 2017, 94, 935–945. [Google Scholar] [CrossRef]
- Giuffrida, D.; Salvo, F.; Salvo, A.; Cossignani, L.; Dugo, G. Pigments profile in monovarietal virgin olive oils from various Italian olive varieties. Food Chem. 2011, 124, 1119–1123. [Google Scholar] [CrossRef]
- Criado, M.N.; Romero, M.P.; Casanovas, M.; Motilva, M.J. Pigment profile and colour of monovarietal virgin olive oils from Arbequina cultivar obtained during two consecutive crop seasons. Food Chem. 2008, 110, 873–880. [Google Scholar] [CrossRef] [PubMed]
- García, J.M.; Hueso, A.; Gómez-del-Campo, M. Deficit irrigation during the oil synthesis period affects olive oil quality in high-density orchards (cv. Arbequina). Agric. Water Manag. 2020, 230, 105858. [Google Scholar] [CrossRef]
- García-Inza, G.P.; Castro, D.N.; Hall, A.J.; Rousseaux, M.C. Responses to temperature of fruit dry weight, oil concentration, and oil fatty acid composition in olive (Olea europaea L. var. ’arauco’). Eur. J. Agron. 2014, 54, 107–115. [Google Scholar] [CrossRef]
- García, J.M.; Cuevas, M.V.; Fernández, J.E. Production and oil quality in “Arbequina” olive (Olea europaea, L.) trees under two deficit irrigation strategies. Irrig. Sci. 2013, 31, 359–370. [Google Scholar] [CrossRef]
- Ellis, A.C.; Gambaro, A. Characterisation of Arbequina extra virgin olive oil from Uruguay. J. Food Res. 2018, 7, 79–90. [Google Scholar] [CrossRef]
- Fernández, J.E.; Diaz-Espejo, A.; Romero, R.; Hernandez-Santana, V.; García, J.M.; Padilla-Díaz, C.M.; Cuevas, M.V. Precision irrigation in olive (Olea europaea L.) tree orchards. In Water Scarcity and Sustainable Agriculture in Semiarid Environment: Tools, Strategies, and Challenges for Woody Crops; Elsevier: Oxford, UK, 2018; pp. 179–217. ISBN 9780128131640. [Google Scholar]
Cultivar | 2019 | 2021 | ||||
---|---|---|---|---|---|---|
Non-Irrigated | 50% ETc | 100% ETc | Non-Irrigated | 50% ETc | 100% ETc | |
cv. Arbequina | −1.7 to −2.3 | −1.3 to −1.6 | −0.8 to −1.3 | −2.5 to −3.4 | −1.7 to −2.1 | −1.3 to −1.8 |
cv. Frantoio | −1.9 to −2.7 | −1.5 to −1.6 | −1.1 to −1.5 | −3.1 to −3.5 | −2.0 to −2.8 | −1.9 to −2.4 |
Evaluated Parameters | cv. Arbequina | cv. Frantoio | ||||
---|---|---|---|---|---|---|
Irrigation Treatment | ||||||
Non-Irrigated | 50% ETc | 100% ETc | Non-Irrigated | 50% ETc | 100% ETc | |
Fruit yield (kg/tree) | 35.2 a,* | 42.2 a | 45.2 a | 31.5 b | 45.5 a | 52.4 a |
Maturity index | 3.32 a | 2.21 b | 1.91 b | 2.31 a | 1.32 b | 0.96 b |
Oil content | 39.6 a | 37.7 a | 37.6 a | 39.2 a | 36.9 a,b | 34.5 b |
(% DWB) | ||||||
WPf (kg fruit/m3 water applied) | # | 19.6 | 9.5 | # | 21.2 | 11.0 |
2019 | 2021 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cv. Arbequina | cv. Frantoio | cv. Arbequina | cv. Frantoio | |||||||||
Non-Irrigated | 50% ETc | 100% ETc | Non-Irrigated | 50% ETc | 100% ETc | Non-Irrigated | 50% ETc | 100% ETc | Non-Irrigated | 50% ETc | 100% ETc | |
Total Phenolics (mg GAE/kg EVOO) | 147.5 a,* | 138.3 a,b | 121.7 b | 343.5 a,b | 372.4 a | 306.4 b | 86.4 a | 72.6 a | 80.2 a | 133.5 a | 105.9 b | 104.0 b |
Totals Carotenoids (mg Car/kg EVOO) | 3.54 a | 3.36 b | 2.88 b | 7.29 a | 5.81 b | 5.59 b | 0.68 a | 0.77 a | 0.79 a | 5.19 a | 3.08 b | 3.41 b |
Total Chlorophylls (mg Ch/kg EVOO) | 0.69 b | 1.94 a | 1.99 a | 6.81 a | 5.16 a | 5.79 a | 0.14 b | 0.75 a | 0.75 a | 7.47 a | 3.85 b | 4.04 b |
Fatty acid composition: | ||||||||||||
Palmitic Acid (%) | 14. 82 a | 15.07 a | 15.25 a | 13.54 a | 14.19 a | 13.67 a | 16.69 b | 17.41 a | 17.18 a,b | 14.00 a | 13.81 a | 14.64 a |
Palmitoleic Acid (%) | 2.19 a | 1.99 a,b | 1.93 b | 1. 23 a | 1.45 a | 1.55 a | 1.62 b | 2.16 a,b | 2.28 a | 1.07 a | 0.85 a | 1.09 a |
Stearic Acid (%) | 1.51 c | 1.74 a | 1.65 b | 2.25 a | 1.89 b | 1.58 b | 1.71 a | 1.75 a | 1.69 a | 2.26 a | 1.90 b | 1.70 c |
Oleic Acid (%) | 67.56 b | 68.73 a,b | 69. 57 a | 73.45 a | 73.05 a | 74.07 a | 60.23 a | 60.52 a | 61.24 a | 71.10 a | 70.28 a | 71.01 a |
Linoleic Acid (%) | 12.84 a | 11.41 b | 10.42 c | 8.17 a | 8.14 a | 7.78 a | 18.42 a | 16.66 a,b | 16.14 b | 10.11 b | 11.59 a | 9.808 b |
Linolenic Acid (%) | 0.50 a | 0.51 a | 0.56 a | 0.75 a | 0.68 b | 0.68 b | 0.60 a | 0.65 a | 0.66 a | 0.63 c | 0.70 b | 0.82 a |
Arachidic Acid (%) | 0.30 a | 0.29 a | 0.31 a | 0.31 a | 0.31 a | 0.31 a | 0.34 b | 0.40 a | 0.40 a | 0.41 a | 0.40 a | 0.40 a |
Eicosenoic Acid (%) | 0.28 a | 0.27 a | 0.31 a | 0. 30 a | 0.29 a | 0.37 a | 0.27 b | 0.31 a | 0.30 a | 0.31 c | 0.36 b | 0.40 a |
MUFA/PUFA | 5.23 c | 5.94 b | 6.55 a | 8.39 a | 8.49 a | 9.00 a | 3.28 a | 3.66 a | 3.81 a | 6.76 a | 5.84 b | 6.83 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conde-Innamorato, P.; García, C.; Villamil, J.J.; Ibáñez, F.; Zoppolo, R.; Arias-Sibillotte, M.; Ponce De León, I.; Borsani, O.; García-Inza, G.P. The Impact of Irrigation on Olive Fruit Yield and Oil Quality in a Humid Climate. Agronomy 2022, 12, 313. https://doi.org/10.3390/agronomy12020313
Conde-Innamorato P, García C, Villamil JJ, Ibáñez F, Zoppolo R, Arias-Sibillotte M, Ponce De León I, Borsani O, García-Inza GP. The Impact of Irrigation on Olive Fruit Yield and Oil Quality in a Humid Climate. Agronomy. 2022; 12(2):313. https://doi.org/10.3390/agronomy12020313
Chicago/Turabian StyleConde-Innamorato, Paula, Claudio García, Juan José Villamil, Facundo Ibáñez, Roberto Zoppolo, Mercedes Arias-Sibillotte, Inés Ponce De León, Omar Borsani, and Georgina Paula García-Inza. 2022. "The Impact of Irrigation on Olive Fruit Yield and Oil Quality in a Humid Climate" Agronomy 12, no. 2: 313. https://doi.org/10.3390/agronomy12020313
APA StyleConde-Innamorato, P., García, C., Villamil, J. J., Ibáñez, F., Zoppolo, R., Arias-Sibillotte, M., Ponce De León, I., Borsani, O., & García-Inza, G. P. (2022). The Impact of Irrigation on Olive Fruit Yield and Oil Quality in a Humid Climate. Agronomy, 12(2), 313. https://doi.org/10.3390/agronomy12020313