The Role of Social Interaction and Personal Characteristics in Affecting the Adoption of Compost from Organic Fraction of Municipal Solid Waste in Italy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Data Analysis
3. Results
4. Discussion
Limitations of the Study and Future Aims
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Q.; Li, J.; Zeng, X. Minimizing the increasing solid waste through zero waste strategy. J. Clean. Prod. 2015, 104, 199–210. [Google Scholar] [CrossRef]
- Paritosh, K.; Yadav, M.; Mathur, S.; Balan, V.; Liao, W.; Pareek, N.; Vivekanand, V. Organic fraction of municipal solid waste: Overview of treatment methodologies to enhance anaerobic biodegradability. Front. Energy Res. 2018, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0. A Global Snapshot of Solid Waste Management to 2050; World Bank Publications: Washington, DC, USA, 2018. [Google Scholar]
- EPA. United States Environmental Protection Agency. National Overview: Facts and Figures on Materials, Wastes and Recycling; EPA: Washington, DC, USA, 2020.
- Eurostat. Half a Tonne of Municipal Waste Generated per Person in the EU. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/-/ddn-20210216-1?redirect=%2Feurostat%2Fnews%2Fwhats-new (accessed on 22 November 2021).
- ISPRA (Istituto Superiore per la Protezione e Ricerca Ambientale). Rapporto Rifiuti Urbani. Edizione 2020; ISPRA: Rome, Italy, 2020.
- Sugawara, E.; Nikaido, H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob. Agents Chemother. 2014, 58, 7250–7257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinosa-Salgado, R.; Saucedo-Castañeda, G.; Monroy-Hermosillo, O. Composting a digestate from the organic fraction of urban solid wastes. Rev. Mex. Ing. Química 2020, 19, 1–8. [Google Scholar] [CrossRef]
- ISTAT (Italian National Statisitical Institute). Distribuzione, per Uso Agricolo, dei Fertilizzanti (Concimi, Ammendanti e Correttivi). Available online: https://www.istat.it/it/archivio/199719 (accessed on 1 February 2022).
- Cibrario, D. SDG 11: To Ensure Sustainable Waste Services, We Must Value Waste Workers and Make Sure They Are in Decent Jobs. Available online: https://www.2030spotlight.org/sites/default/files/spot2018/chaps/Spotlight_Innenteil_2018_sdg11_cibrario.pdf (accessed on 22 November 2021).
- Zaman, A.U. Identification of key assessment indicators of the zero waste management systems. Ecol. Indic. 2014, 36, 682–693. [Google Scholar] [CrossRef]
- Vilella, M. Sustainable Finance for a Zero Waste Circular Economy. Available online: https://zerowasteeurope.eu/wp-content/uploads/2020/11/zero_waste_europe_report_sustainable-finance-for-a-zero-waste-circular-economy_en.pdf (accessed on 22 November 2021).
- Hettiarachchi, H.; Bouma, J.; Caucci, S.; Zhang, L. Organic Waste Composting through Nexus Thinking. In Organic Waste Composting through Nexus Thinking: Practices, Policies, and Trends; Springer Nature: Berlin/Heidelberg, Germany, 2020; pp. 1–15. ISBN 9783030362836. [Google Scholar]
- Getahun, T.; Nigusie, A.; Entele, T.; Van Gerven, T.; Van Der Bruggen, B. Effect of turning frequencies on composting biodegradable municipal solid waste quality. Resour. Conserv. Recycl. 2012, 65, 79–84. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World the 2030 Agenda for Sustainable Development. Available online: https://sdgs.un.org/2030agenda (accessed on 22 November 2021).
- Hassen, A.; Belguith, K.; Jedidi, N.; Cherif, A.; Cherif, M.; Boudabous, A. Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 2001, 80, 217–225. [Google Scholar] [CrossRef]
- Pampuro, N.; Bertora, C.; Sacco, D.; Dinuccio, E.; Grignani, C.; Balsari, P.; Cavallo, E.; Bernal, M.P. Fertilizer value and greenhouse gas emissions from solid fraction pig slurry compost pellets. J. Agric. Sci. 2017, 155, 1646–1658. [Google Scholar] [CrossRef]
- Bekchanov, M.; Mirzabaev, A. Circular economy of composting in Sri Lanka: Opportunities and challenges for reducing waste related pollution and improving soil health. J. Clean. Prod. 2018, 202, 1107–1119. [Google Scholar] [CrossRef]
- Assandri, D.; Pampuro, N.; Zara, G.; Bianco, A.; Cavallo, E.; Budroni, M. Co-Composting of Brewers’ Spent Grain with Animal Manures and Wheat Straw: Influence of Two Composting Strategies on Compost Quality. Agronomy 2021, 11, 1349. [Google Scholar] [CrossRef]
- Pampuro, N.; Bisaglia, C.; Romano, E.; Brambilla, M.; Foppa Pedretti, E.; Cavallo, E. Phytotoxicity and Chemical Characterization of Compost Derived from Pig Slurry Solid Fraction for Organic Pellet Production. Agriculture 2017, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Larney, F.J.; Hao, X. A review of composting as a management alternative for beef cattle feedlot manure in southern Alberta, Canada. Bioresour. Technol. 2007, 98, 3221–3227. [Google Scholar] [CrossRef] [PubMed]
- Vigoroso, L.; Pampuro, N.; Bagagiolo, G.; Cavallo, E. Factors Influencing Adoption of Compost Made from Organic Fraction of Municipal Solid Waste and Purchasing Pattern: A Survey of Italian Professional and Hobbyist Users. Agronomy 2021, 11, 1262. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, S.; Yuan, Z. Adoption of solid organic waste composting products: A critical review. J. Clean. Prod. 2020, 272, 122712. [Google Scholar] [CrossRef]
- Lupton, S. Markets for waste and waste–derived fertilizers. An empirical survey. J. Rural Stud. J. 2017, 55, 83–99. [Google Scholar] [CrossRef]
- Case, S.D.C.; Oelofse, M.; Hou, Y.; Oenema, O.; Jensen, L.S. Farmer perceptions and use of organic waste products as fertilisers—A survey study of potential benefits and barriers. Agric. Syst. 2017, 151, 84–95. [Google Scholar] [CrossRef]
- Šūmane, S.; Kunda, I.; Knickel, K.; Strauss, A.; Tisenkopfs, T.; des los Rios, I.; Rivera, M.; Chebach, T.; Ashkenazy, A. Local and farmers’ knowledge matters! How integrating informal and formal knowledge enhances sustainable and resilient agriculture. J. Rural Stud. 2018, 59, 232–241. [Google Scholar] [CrossRef]
- Pampuro, N.; Caffaro, F.; Cavallo, E. Farmers’ Attitudes toward On-Farm Adoption of Soil Organic Matter in Piedmont Region, Italy. Agriculture 2020, 10, 14. [Google Scholar] [CrossRef] [Green Version]
- Bollinger, B.; Gillingham, K. Peer effects in the diffusion of solar photovoltaic panels. Mark. Sci. 2012, 31, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Caffaro, F.; Micheletti Cremasco, M.; Roccato, M.; Cavallo, E. Drivers of farmers’ intention to adopt technological innovations in Italy: The role of information sources, perceived usefulness, and perceived ease of use. J. Rural Stud. 2020, 76, 264–271. [Google Scholar] [CrossRef]
- Talukder, M.; Quazi, A. The impact of social influence on individuals’ adoption of innovation. J. Organ. Comput. Electron. Commer. 2011, 21, 111–135. [Google Scholar] [CrossRef]
- Paul, J.; Sierra, J.; Causeret, F.; Guindé, L.; Blazy, J.M. Factors affecting the adoption of compost use by farmers in small tropical Caribbean islands. J. Clean. Prod. 2017, 142, 1387–1396. [Google Scholar] [CrossRef]
- Welch, E.W.; Marc-Aurele, F.J. Determinants of farmer behavior: Adoption of and compliance with best management practices for nonpoint source pollution in the Skaneateles Lake Watershed. Lake Reserv. Manag. 2001, 17, 233–245. [Google Scholar] [CrossRef]
- Mzoughi, N. Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter? Ecol. Econ. 2011, 70, 1536–1545. [Google Scholar] [CrossRef]
- Greiner, R. Motivations and attitudes influence farmers’ willingness to participate in biodiversity conservation contracts. Agric. Syst. 2015, 137, 154–165. [Google Scholar] [CrossRef]
- Mozzato, D.; Gatto, P.; Defrancesco, E.; Bortolini, L.; Pirotti, F.; Pisani, E.; Sartori, L. The Role of Factors Affecting the Adoption of Environmentally Friendly Farming Practices: Can Geographical Context and Time Explain the Differences Emerging from Literature? Sustainability 2018, 10, 3101. [Google Scholar] [CrossRef] [Green Version]
- Oster Rebecca Thornton, E.; Oster, E.; Thornton, R.; St Ann Arbor, T. Determinants of Technology Adoption: Private Value and Peer Effects in Menstrual Cup Take-Up; National Bureau of Economic Research: Cambridge, MA, USA, 2009. [Google Scholar]
- Rehman, A.; Jingdong, L.; Khatoon, R.; Hussain, I.; Iqbal, M.S. Modern Agricultural Technology Adoption its Importance, Role and Usage for the Improvement of Agriculture. Life Sci. J. 2017, 14, 70–74. [Google Scholar]
- Pham, H.G.; Chuah, S.H.; Feeny, S. Factors affecting the adoption of sustainable agricultural practices: Findings from panel data for Vietnam. Ecol. Econ. 2021, 184, 107000. [Google Scholar] [CrossRef]
- Weltin, M.; Zasada, I.; Hüttel, S. Relevance of portfolio effects in adopting sustainable farming practices. J. Clean. Prod. 2021, 313, 127809. [Google Scholar] [CrossRef]
- Lamine, C.; Renting, H.; Rossi, A.; (Han) Wiskerke, J.S.C.; Brunori, G. Agri-Food systems and territorial development: Innovations, new dynamics and changing governance mechanisms. In Farming Systems Research into the 21st Century: The New Dynamic; Darnhofer, D., Gibbon, B.D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 229–256. ISBN 9789400745032. [Google Scholar]
- Home, R.; Indermuehle, A.; Tschanz, A.; Ries, E.; Stolze, M. Factors in the decision by Swiss farmers to convert to organic farming. Renew. Agric. Food Syst. 2019, 34, 571–581. [Google Scholar] [CrossRef]
- Somda, J.; Nianogo, A.J.; Nassa, S.; Sanou, S. Soil fertility management and socio-economic factors in crop-livestock systems in Burkina Faso: A case study of composting technology. Ecol. Econ. 2002, 43, 175–183. [Google Scholar] [CrossRef]
- Sotamenou, J.; Parrot, L. Sustainable urban agriculture and the adoption of composts in Cameroon. Int. J. Agric. Sustain. 2013, 11, 282–295. [Google Scholar] [CrossRef]
- Folefack, A. The determinants for the adoption of compost from household waste for crop production by farmers living nearby Yaoundé, Cameroon: Descriptive and logit model approaches of analysis. Int. J. Biol. Chem. Sci. 2015, 9, 308–328. [Google Scholar] [CrossRef] [Green Version]
- Opara, U.N. Agricultural information sources used by farmers in Imo State, Nigeria. Inf. Dev. 2008, 24, 289–295. [Google Scholar] [CrossRef]
- Nigussie, A.; Kuyper, T.W.; de Neergaard, A. Agricultural waste utilisation strategies and demand for urban waste compost: Evidence from smallholder farmers in Ethiopia. Waste Manag. 2015, 44, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Supaporn, P.; Kobayashi, T.; Supawadee, C. Factors affecting farmers’ decisions on utilization of rice straw compost in Northeastern Thailand. J. Agric. Rural Dev. Trop. Subtrop. 2013, 114, 21–27. [Google Scholar]
- Viaene, J.; Van Lancker, J.; Vandecasteele, B.; Willekens, K.; Bijttebier, J.; Ruysschaert, G.; De Neve, S.; Reubens, B. Opportunities and barriers to on-farm composting and compost application: A case study from northwestern Europe. Waste Manag. 2016, 48, 181–192. [Google Scholar] [CrossRef]
- Knickmeyer, D. Social factors influencing household waste separation: A literature review on good practices to improve the recycling performance of urban areas. J. Clean. Prod. 2020, 245, 118605. [Google Scholar] [CrossRef]
- Dahlin, J.; Beuthner, C.; Halbherr, V.; Kurz, P.; Nelles, M.; Herbes, C. Sustainable compost and potting soil marketing: Private gardener preferences. J. Clean. Prod. 2019, 208, 1603–1612. [Google Scholar] [CrossRef]
- Petrescu-Mag, R.M.; Petrescu, D.C.; Azadi, H. A social perspective on soil functions and quality improvement: Romanian farmers’ perceptions. Geoderma 2020, 380, 114573. [Google Scholar] [CrossRef]
- Centemero, M.; Caimi, V.; Adani, F. L’impiego del Compost in Agricoltura “The Use of Compost in Agriculture”. Available online: https://www.researchgate.net/publication/238682407_L%27IMPIEGO_DEL_COMPOST_IN_%0AAGRICOLTURA_THE_USE_OF_COMPOST_IN_AGRICULTURE (accessed on 21 June 2021).
- Pampuro, N.; Caffaro, F.; Cavallo, E. Reuse of Animal Manure: A Case Study on Stakeholders’ Perceptions about Pelletized Compost in Northwestern Italy. Sustainability 2018, 10, 2028. [Google Scholar] [CrossRef] [Green Version]
- Consorzio Italiano Compostatori (CIC). Italian Composting and Biogas Association Presentation of the CIC’s Quality Label for Compost; CIC: Rome, Italy, 2017; Volume 2, pp. 1–20. [Google Scholar]
- Bruni, C.; Akyol, Ç.; Cipolletta, G.; Eusebi, A.L.; Caniani, D.; Masi, S.; Colón, J.; Fatone, F. Decentralized Community Composting: Past, Present and Future Aspects of Italy. Sustainability 2020, 12, 3319. [Google Scholar] [CrossRef] [Green Version]
- Farmer, R.G.; Leonard, M.L.; Mills Flemming, J.E.; Anderson, S.C. Observer aging and long-term avian survey data quality. Ecol. Evol. 2014, 4, 2563–2576. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Sicular, T. Aging of the labor force and technical efficiency in crop production: Evidence from Liaoning province, China. China Agric. Econ. Rev. 2013, 5, 342–359. [Google Scholar] [CrossRef]
- Sutherland, L.-A.; Toma, L.; Barnes, A.P.; Matthews, K.B.; Hopkins, J. Agri-environmental diversification: Linking environmental, forestry and renewable energy engagement on Scottish farms. J. Rural Stud. 2016, 47, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Unay-Gailhard, İ.; Bojnec, Š. Sustainable participation behaviour in agri-environmental measures. J. Clean. Prod. 2016, 138, 47–58. [Google Scholar] [CrossRef]
- Marra, M.; Pannell, D.J.; Abadi Ghadim, A. The economics of risk, uncertainty and learning in the adoption of new agricultural technologies: Where are we on the learning curve? Agric. Syst. 2003, 75, 215–234. [Google Scholar] [CrossRef]
- Luo, L.; Wang, Y.; Qin, L. Incentives for promoting agricultural clean production technologies in China. J. Clean. Prod. 2014, 74, 54–61. [Google Scholar] [CrossRef]
- Curry, N.; Ingram, J.; Kirwan, J.; Maye, D. Knowledge networks for sustainable agriculture in England. Outlook Agric. 2012, 41, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Solano, C.; León, H.; Pérez, E.; Herrero, M. The role of personal information sources on the decision-making process of Costa Rican dairy farmers. Agric. Syst. 2003, 76, 3–18. [Google Scholar] [CrossRef]
- Ingram, J. Technical and social dimensions of farmer learning: An analysis of the emergence of reduced tillage systems in england. J. Sustain. Agric. 2010, 34, 183–201. [Google Scholar] [CrossRef]
- Goulet, F. Narratives of experience and production of knowledge within farmers’ groups. J. Rural Stud. 2013, 32, 439–447. [Google Scholar] [CrossRef]
- Coughenour, C.M. Innovating conservation agriculture: The case of no-till cropping. Rural Sociol. 2003, 68, 278–304. [Google Scholar] [CrossRef]
- Padel, S. Conversion to organic farming: A typical example of the diffusion of an innovation? Sociol. Rural. 2001, 41, 40–61. [Google Scholar] [CrossRef]
- Kroma, M.M. Organic farmer networks: Facilitating learning and innovation for sustainable agriculture. J. Sustain. Agric. 2006, 28, 5–28. [Google Scholar] [CrossRef]
- Hassanein, N.; Kloppenburg, J.R. Where the Grass Grows Again: Knowledge Exchange in the Sustainable Agriculture Movement. Rural Sociol. 1995, 60, 721–740. [Google Scholar] [CrossRef]
- Nerbonne, J.F.; Lentz, R. Rooted in grass: Challenging patterns of knowledge exchange as a means of fostering social change in a southeast Minnesota farm community. Agric. Hum. Values 2003, 20, 65–78. [Google Scholar] [CrossRef]
- Rogers, M. Networks, firm size and innovation. Small Bus. Econ. 2004, 22, 141–153. [Google Scholar] [CrossRef]
- Ford, S.A.; Babb, E.M. Farmer sources and uses of information. Agribusiness 1989, 5, 465–476. [Google Scholar] [CrossRef]
- Patil, U. Peer-to-Peer Knowledge Sharing in Agriculture—A Conceptual Model. Int. J. Adv. Res. Found. 2016, 3, 6. [Google Scholar]
- Okvat, H.A.; Zautra, A.J. Community Gardening: A Parsimonious Path to Individual, Community, and Environmental Resilience. Am. J. Community Psychol. 2011, 47, 374–387. [Google Scholar] [CrossRef] [PubMed]
- Hunter, C.M.; Williamson, D.H.Z.; Pearson, M.; Saikawa, E.; Gribble, M.O.; Kegler, M. Safe community gardening practices: Focus groups with garden leaders in Atlanta, Georgia. Local Environ. 2020, 25, 18–35. [Google Scholar] [CrossRef] [PubMed]
- Wood, B.A.; Blair, H.T.; Gray, D.I.; Kemp, P.D.; Kenyon, P.R.; Morris, S.T.; Sewell, A.M. Agricultural science in the wild: A social network analysis of farmer knowledge exchange. PLoS ONE 2014, 9, e105203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, D.C.; Keating, C.; Morris, C. Understand how to influence farmers’ decision-making behaviour. Rep. Agric. Hortic. Dev. Board 2018, 2–44. [Google Scholar]
- Tamas, A.; Mosler, H.-J.; Tobias, R.; Caballero Rodríguez, T.; Guzmán Miranda, O. Factors Determining the Intentions to Reuse, Separate and Compost Household Waste in the City of Santiago de Cuba. Waste Soc. Context 2005, 2005, 736–744. [Google Scholar]
- European Commission. Esempi di Successo sul Compostaggio e la Raccolta Differenziata [Success Stories on Composting and Separate Collection]; European Commission: Lussemburg, Belgium, 2000. [Google Scholar]
Variables | Levels | High Interest in Adoption n (%) | Low Interest in Adoption n (%) |
---|---|---|---|
Gender | Male | 27 (73.0%) | 19 (90.5%) |
Female | 10 (27.0%) | 2 (9.5%) | |
Age | <50 | 28 (75.7%) | 17 (81.0%) |
>50 | 9 (24.3%) | 4 (19.0%) | |
Education | Medium-low level | 11 (29.7%) | 13 (61.9%) |
High level | 26 (70.3%) | 8 (38.1%) | |
Profession | Professionals | 17 (45.9%) | 13 (61.9%) |
Hobbyists | 20 (54.1%) | 8 (38.1%) |
Variables | Levels | High Interest in Adoption n (%) | Low Interest in Adoption n (%) |
---|---|---|---|
Perceived properties | Completely replaces other fertilizers | 9 (24.3%) | 3 (14.3%) |
Partially replaces other fertilizers | 28 (75.7%) | 18 (85.7%) | |
Suggestions from peers or social networks | Yes | 27 (73.0%) | 27 (73.0%) |
No | 10 (27.0%) | 14 (66.7%) |
Variable | B | SE | Wald | df | p | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Gender | −1.067 | 0.959 | 1.239 | 1 | 0.266 | 0.344 | 0.053 | 2.252 |
Age | 0.054 | 0.783 | 0.005 | 1 | 0.945 | 1.055 | 0.227 | 4.894 |
Education | 0.753 | 0.706 | 1.136 | 1 | 0.286 | 2.124 | 0.532 | 8.481 |
Profession | −0.111 | 0.698 | 0.025 | 1 | 0.873 | 0.865 | 0.228 | 3.511 |
Suggestion from peers or social networks | 1.642 | 0.685 | 5.752 | 1 | 0.016 | 5.165 | 1.350 | 19.759 |
Perceived properties | 0.678 | 0.873 | 0.604 | 1 | 0.437 | 1.971 | 0.356 | 10.911 |
Constant | 0.074 | 1.066 | 0.005 | 1 | 0.945 | 1.077 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bagagiolo, G.; Vigoroso, L.; Pampuro, N.; Cavallo, E. The Role of Social Interaction and Personal Characteristics in Affecting the Adoption of Compost from Organic Fraction of Municipal Solid Waste in Italy. Agronomy 2022, 12, 445. https://doi.org/10.3390/agronomy12020445
Bagagiolo G, Vigoroso L, Pampuro N, Cavallo E. The Role of Social Interaction and Personal Characteristics in Affecting the Adoption of Compost from Organic Fraction of Municipal Solid Waste in Italy. Agronomy. 2022; 12(2):445. https://doi.org/10.3390/agronomy12020445
Chicago/Turabian StyleBagagiolo, Giorgia, Lucia Vigoroso, Niccolò Pampuro, and Eugenio Cavallo. 2022. "The Role of Social Interaction and Personal Characteristics in Affecting the Adoption of Compost from Organic Fraction of Municipal Solid Waste in Italy" Agronomy 12, no. 2: 445. https://doi.org/10.3390/agronomy12020445
APA StyleBagagiolo, G., Vigoroso, L., Pampuro, N., & Cavallo, E. (2022). The Role of Social Interaction and Personal Characteristics in Affecting the Adoption of Compost from Organic Fraction of Municipal Solid Waste in Italy. Agronomy, 12(2), 445. https://doi.org/10.3390/agronomy12020445