A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origination of Scaffoldings in Carbon-Capturing Biointerfaces
2.2. Pilot-Scaling Manufacturing of Carbon-Capturing Biointerfaces
2.2.1. Thermochemical Pre-Treatment
2.2.2. Pressing
2.3. Assessing Potential Adsorption on Biointerfaces
2.4. Setting-Up Imagery Protocol
2.4.1. Stereomicroscopy
2.4.2. Superpixel Segmentation and Box-Counting
2.5. Data Analysis
3. Results
3.1. Fractality of Biointerfaces
3.2. Potential Adsorption on Biointerfaces
3.3. Adsorption-Fractality Nexus
3.4. Cross-Validation of Protocol
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
µ | adsorption [mmol CO2 g−1] |
AFM | atomic force microscopy |
BCM | box-counting method |
C | elemental carbon [%] |
CCS | carbon capture and storage |
CCU | carbon capture and utilization |
DF | fractal dimension |
DP | diameter of pore [nm] |
EDS | energy-dispersive X-ray spectrometry |
FSEM | field emission scanning electron microscopy |
FPS | frames per second |
HTC | hydrothermal carbonization |
Hyg | hygroscopicity [%] |
IPCC | Intergovernmental Panel on Climate Change |
KMO | Kaiser-Meyer-Olkin |
LCA | life cycle analysis |
N | elemental nitrogen [%] |
PCA | principal component analysis |
PCI | primary principal component |
PCII | secondary principal component |
PNG | portable network graphic |
S | elemental sulfur [%] |
SA | surface area [m2 g−1] |
SANS | small-angle neutron scattering |
SAXS | small-angle X-ray scattering |
SEM | scanning electron microscopy |
SLIC | simple linear iterative clustering |
TEM | transmission electron microscopy |
VP | volume of pore [m3 g−1] |
WP | width of pore [nm] |
References
- Masson-Delmotte, V.P.; Zhai, A.; Pirani, S.L.; Connors, C.; Péan, S.; Berger, N.; Caud, Y.; Chen, L.; Goldfarb, M.I.; Gomis, M.; et al. (Eds.) Sixth Assessment Report Climate Change 2021: The Physical Science Basis—A Report of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2021. [Google Scholar]
- Warudkar, S.S.; Cox, K.R.; Wong, M.S.; Hirasaki, G.J. Influence of stripper operating parameters on the performance of amine absorption systems for post-combustion carbon capture: Part, I. High pressure strippers. Int. J. Greenh. Gas. Control. 2013, 16, 342–350. [Google Scholar] [CrossRef]
- Trickett, C.A.; Helal, A.; Al-Maythalony, B.A.; Yamani, Z.H.; Cordova, K.E.; Yaghi, O.M. The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2017, 2, 17045. [Google Scholar] [CrossRef]
- Minelli, M.; Papa, E.; Medri, V.; Miccio, F.; Benito, P.; Doghieri, F.; Landi, E. Characterization of novel geopolymer—Zeolite composites as solid adsorbents for CO2 capture. Chem. Eng. J. 2018, 341, 505–515. [Google Scholar] [CrossRef]
- Coenen, K.; Gallucci, F.; Hensen, E.; van Sint Annaland, M. Kinetic model for adsorption and desorption of H2O and CO2 on hydrotalcite-based adsorbents. Chem. Eng. J. 2019, 355, 520–531. [Google Scholar] [CrossRef]
- Kacem, M.; Pellerano, M.; Delebarre, A. Pressure swing adsorption for CO2/N2 and CO2/CH4 separation: Comparison between activated carbons and zeolites performances. Fuel Process. Technol. 2015, 138, 271–283. [Google Scholar] [CrossRef]
- Lillia, S.; Bonalumi, D.; Fosbøl, P.L.; Thomsen, K.; Jayaweera, I.; Valenti, G. Thermodynamic and kinetic properties of NH3-K2CO3-CO2-H2O system for carbon capture applications. Int. J. Greenh. Gas Control 2019, 85, 121–131. [Google Scholar] [CrossRef]
- Igalavithana, A.D.; Kim, K.-H.; Jung, J.-M.; Heo, H.-S.; Kwon, E.E.; Tack, F.M.G.; Tsang, D.; Jeon, Y.J.; Ok, Y.S. Effect of biochars pyrolyzed in N2 and CO2, and feedstock on microbial community in metal(loid)s contaminated soils. Environ. Int. 2019, 126, 791–801. [Google Scholar] [CrossRef] [PubMed]
- Sultan, U.; Zhang, Y.; Farooq, M.; Imran, M.; Khan, A.A.; Zhuge, W.; Khan, T.A.; Yousaf, M.H.; Ali, Q. Qualitative assessment and global mapping of supercritical CO2 power cycle technology. Sustain. Energy Technol. Assess. 2021, 43, 100978. [Google Scholar] [CrossRef]
- Godin, J.; Liu, W.; Ren, S.; Xu, C.C. Advances in recovery and utilization of carbon dioxide: A brief review. J. Environ. Chem. Eng. 2021, 9, 105644. [Google Scholar] [CrossRef]
- Siddiqui, M.A.Q.; Ueda, K.; Komatsu, H.; Shimamoto, T.; Roshan, H. Caveats of using fractal analysis for clay rich pore systems. J. Pet. Sci. Eng. 2020, 195, 107622. [Google Scholar] [CrossRef]
- Li, C.; Hao, M.; Geng, Z.; He, Y.; Wei, S. Drop-weight impact fragmentation of gas-containing coal particles. Particuology 2021, 55, 35–42. [Google Scholar] [CrossRef]
- Jiang, G.; Cai, L.; Wang, S.; Laaksonen, A.; Feng, X.; Mu, L.; Lu, X.; Zhu, J. Critical role of carbonized cellulose in the evolution of highly porous biocarbon: Seeing the structural and compositional changes of spent mushroom substrate by deconvoluted thermogravimetric analysis. Ind. Eng. Chem. Res. 2020, 59, 22541–22548. [Google Scholar] [CrossRef]
- Ossler, F.; Santodonato, L.J.; Bilheux, H.Z. In-situ neutron imaging of hydrogenous fuels in combustion generated porous carbons under dynamic and steady state pressure conditions. Carbon 2017, 116, 766–776. [Google Scholar] [CrossRef] [Green Version]
- Geng, Z.; Xiao, Q.; Lv, H.; Li, B.; Wu, H.; Lu, Y.; Zhang, C. One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen doping content for highly selective CO2 capture. Sci. Rep. 2016, 6, 30049. [Google Scholar] [CrossRef]
- Cai, J.; Lin, D.; Singh, H.; Wei, W.; Zhou, S. Shale gas transport model in 3D fractal porous media with variable pore sizes. Mar. Pet. Geol. 2018, 98, 437–447. [Google Scholar] [CrossRef]
- Zhang, R.-H.; Wu, J.-F.; Zhao, Y.-L.; He, X.; Wang, R.-H. Numerical simulation of the feasibility of supercritical CO2 storage and enhanced shale gas recovery considering complex fracture networks. J. Pet. Sci. Eng. 2021, 204, 108671. [Google Scholar] [CrossRef]
- He, H.; Liu, P.; Xu, L.; Hao, S.; Qiu, X.; Shan, C.; Zhou, Y. Pore structure representations based on nitrogen adsorption experiments and an FHH fractal model: Case study of the block Z shales in the Ordos Basin, China. J. Pet. Sci. Eng. 2021, 203, 108661. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, S.; Li, Z.; Zhang, H.; Duan, F. Pore structure of sludge char and simultaneously NO removal characteristics in the treated flue gas from Ca-L. Fuel 2021, 289, 119937. [Google Scholar] [CrossRef]
- Xiang, G.; Ye, W.; Yu, F.; Wang, Y.; Fang, Y. Surface fractal dimension of bentonite affected by long-term corrosion in alkaline solution. Appl. Clay Sci. 2019, 175, 94–101. [Google Scholar] [CrossRef]
- Feng, Y.; Li, Y.; Wang, J.; Wu, M.; Fan, H.; Mi, J. Insights to the microwave effect in the preparation of sorbent for H2S removal: Desulfurization kinetics and characterization. Fuel 2017, 203, 233–243. [Google Scholar] [CrossRef]
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Wen, H.; Wei, G.; Ma, L.; Li, Z.; Lei, C.; Hao, J. Damage characteristics of coal microstructure with liquid CO2 freezing-thawing. Fuel 2019, 249, 169–177. [Google Scholar] [CrossRef]
- Ren, Q.; Zhang, Y.; Arauzo, I.; Shan, L.; Xu, J.; Wang, Y.; Su, S.; Hu, S.; Xiang, J. Roles of moisture and cyclic loading in microstructures and their effects on mechanical properties for typical Chinese bituminous coals. Fuel 2021, 293, 120408. [Google Scholar] [CrossRef]
- Lin, K.; Huang, X.; Zhao, Y.-P. Combining image recognition and simulation to reproduce the adsorption/desorption behaviors of shale gas. Energy Fuels 2020, 34, 258–269. [Google Scholar] [CrossRef]
- Panigrahi, S.; Sharma, H.B.; Dubey, B.K. Overcoming yard waste recalcitrance through four different liquid hot water pretreatment techniques—Structural evolution, biogas production and energy balance. Biomass Bioenergy 2019, 127, 105268. [Google Scholar] [CrossRef]
- Iftikhar, M.; Asghar, A.; Ramzan, N.; Sajjadi, B.; Chen, W.-Y. Biomass densification: Effect of cow dung on the physicochemical properties of wheat straw and rice husk based biomass pellets. Biomass Bioenergy 2019, 122, 1–16. [Google Scholar] [CrossRef]
- Sharma, H.B.; Dubey, B.K. Co-hydrothermal carbonization of food waste with yard waste for solid biofuel production: Hydrochar characterization and its pelletization. Waste Manag. 2020, 118, 521–533. [Google Scholar] [CrossRef] [PubMed]
- Whittaker, C.; Shield, I. Factors affecting wood, energy grass and straw pellet durability—A review. Renew. Sustain. Energy Rev. 2017, 71, 1–11. [Google Scholar] [CrossRef]
- Goel, C.; Kaur, H.; Bhunia, H.; Bajpai, P.K. Carbon dioxide adsorption on nitrogen enriched carbon adsorbents: Experimental, kinetics, isothermal and thermodynamic studies. J. CO2 Util. 2016, 16, 50–63. [Google Scholar] [CrossRef]
- Gargiulo, V.; Gomis-Berenguer, A.; Giudicianni, P.; Ania, C.O.; Ragucci, R.; Alfè, M. Assessing the potential of biochars prepared by steam-assisted slow pyrolysis for CO2 adsorption and separation. Energy Fuels 2018, 32, 10218–10227. [Google Scholar] [CrossRef]
- Abdulmumini, M.M.; Zigan, S.; Bradley, M.S.; Lestander, T.A. Fuel pellet breakage in pneumatic transport and durability tests. Renew. Energy 2020, 157, 911–919. [Google Scholar] [CrossRef]
- Sigvardsen, N.M.; Ottosen, L.M. Characterization of coal bio ash from wood pellets and low-alkali coal fly ash and use as partial cement replacement in mortar. Cem. Concr. Compos. 2019, 95, 25–32. [Google Scholar] [CrossRef]
- Panigrahy, C.; Seal, A.; Mahato, N.K.; Bhattacharjee, D. Differential box counting methods for estimating fractal dimension of gray-scale images: A survey. Chaos Solitons Fractals 2019, 126, 178–202. [Google Scholar] [CrossRef]
- Tjørve, K.M.C.; Tjorve, E. The use of Gompertz models in growth analyses, and new Gompertz-model approach: An addition to the Unified-Richards family. PLoS ONE 2017, 12, e0178691. [Google Scholar] [CrossRef] [PubMed]
- Migenda, N.; Möller, R.; Schenck, W. Adaptive dimensionality reduction for neural network-based online principal component analysis. PLoS ONE 2021, 16, e0248896. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 25 June 2021).
- Sridhar, M.; Gunugunuri, K.; Hu, N.; Motahari, A.; Zuo, X.; Schaefer, D.W.; Thiel, S.W.; Smirniotis, P.G. Impact of interfacial roughness on the sorption properties of nanocast polymers. Macromolecules 2016, 49, 2663–2670. [Google Scholar] [CrossRef]
Biointerface | Material | Source | Moisture | VM | FC | Ash | C | H | O | N | S | HHV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
I | Sugarcane bagasse | Full-scale sugar-energy mill plant | 12.40 | 77.35 | 14.20 | 8.45 | 46.70 | 10.20 | 42.95 | 0.10 | 0.05 | 19.75 |
II | Pinewood sawdust | Full-scale timber processing factory | 11.40 | 79.80 | 11.70 | 8.50 | 45.20 | 14.85 | 39.80 | 0.10 | 0.05 | 21.40 |
III | Peanut pod hull | Mechanical harvesting | 71.90 | 62.90 | 6.00 | 31.10 | 50.20 | 2.80 | 46.75 | 0.15 | 0.10 | 15.30 |
IV | Paddy straw | Pilot-scale production of Pleurotus ostreatus | 72.20 | 61.50 | 9.35 | 29.15 | 38.40 | 13.40 | 48.10 | 0.05 | 0.05 | 14.45 |
V | Peaty compost | Pilot-scale production of Agaricus subrufescens | 74.55 | 59.05 | 8.65 | 32.30 | 54.10 | 0.60 | 44.90 | 0.20 | 0.20 | 16.10 |
Property | Biointerface | ||||
---|---|---|---|---|---|
I | II | III | IV | V | |
Static adsorption [mmol CO2 g−1] | 8.20 | 7.45 | 8.35 | 7.10 | 8.65 |
Surfac area [m2 g−1] | 98.10 | 97.95 | 103.80 | 88.35 | 105.40 |
Width of pore [nm] | 1.20 | 1.05 | 1.60 | 1.10 | 1.65 |
Diameter of pore [nm] | 1.80 | 1.65 | 2.20 | 1.35 | 2.25 |
Volume of pore [m3 g−1] | 70.05 | 60.80 | 95.10 | 55.40 | 105.60 |
C [%] | 46.70 | 45.20 | 50.20 | 38.40 | 54.10 |
O [%] | 42.95 | 39.80 | 46.75 | 48.10 | 44.90 |
N [%] | 0.10 | 0.10 | 0.15 | 0.05 | 0.20 |
S [%] | 0.05 | 0.05 | 0.10 | 0.05 | 0.20 |
Hygroscopicity [%] | 8.10 | 8.35 | 7.80 | 9.50 | 5.45 |
Durability [%] | 97.90 | 96.60 | 98.05 | 97.05 | 99.10 |
Fractal dimension of microstructural stress | 1.75 | 1.75 | 1.70 | 1.80 | 1.55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreira, B.R.d.A.; Brito Filho, A.L.d.; Barbosa Júnior, M.R.; Silva, R.P.d. A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces. Agronomy 2022, 12, 446. https://doi.org/10.3390/agronomy12020446
Moreira BRdA, Brito Filho ALd, Barbosa Júnior MR, Silva RPd. A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces. Agronomy. 2022; 12(2):446. https://doi.org/10.3390/agronomy12020446
Chicago/Turabian StyleMoreira, Bruno Rafael de Almeida, Armando Lopes de Brito Filho, Marcelo Rodrigues Barbosa Júnior, and Rouverson Pereira da Silva. 2022. "A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces" Agronomy 12, no. 2: 446. https://doi.org/10.3390/agronomy12020446
APA StyleMoreira, B. R. d. A., Brito Filho, A. L. d., Barbosa Júnior, M. R., & Silva, R. P. d. (2022). A High-Throughput Imagery Protocol to Predict Functionality upon Fractality of Carbon-Capturing Biointerfaces. Agronomy, 12(2), 446. https://doi.org/10.3390/agronomy12020446