Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Experimental Design
2.3. Determination of Production Parameters
2.4. Satellite Data
2.5. Methods
2.5.1. Sentinel-2 Data Analysis
2.5.2. Planet Data Analysis
2.5.3. Software and Statistics
3. Results
3.1. Productive Parameters Analysis
3.2. Sentinel-2 Data Analysis
3.2.1. Dynamics and Correlations between Visible and NIR Regions
3.2.2. Effect of GB on Spectral Band Reflectances
3.2.3. Construction of the Vegetation Index
3.3. Planet Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
DAS | Red Reflectance | NIR Reflectance |
---|---|---|
6 | 0.0597 a | 0.0970 a |
16 | 0.0752 b | 0.1204 b |
21 | 0.1129 c | 0.2068 c |
31 | 0.0658 d | 0.1434 d |
41 | 0.0330 e | 0.1959 e |
51 | 0.0287 f | 0.3405 f |
56 | 0.0164 g | 0.2809 g |
66 | 0.0157 g | 0.3414 f |
96 | 0.0198 h | 0.3702 h |
101 | 0.0222 i | 0.4080 i |
111 | 0.0402 j | 0.4015 j |
116 | 0.0426 k | 0.4047 ij |
136 | 0.0710 l | 0.3048 k |
141 | 0.0766 b | 0.2969 l |
Appendix B
References
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World. Transforming Food Systems for Affordable Healthy Diets; FAO; IFAD; UNICEF; WFP; WHO: Rome, Italy, 2020; p. 3. [Google Scholar]
- World Population Prospects—Population Division—United Nations. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 2 December 2021).
- Food and Agriculture Organization (FAO). Global Agriculture towards 2050. Report from the High-Level Expert Forum ‘How to Feed the World 2050’. 2009. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 4 December 2021).
- Onojeghuo, A.O.; Blackburn, G.A.; Huang, J.; Kindred, D.; Huang, W. Applications of Satellite ‘Hyper-Sensing’ in Chinese Agriculture: Challenges and Opportunities. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 62–86. [Google Scholar] [CrossRef] [Green Version]
- Marvin, D.R. The Second Green Revolution Will Bring Agri-Tech Breakthroughs to Growers. Ind. Biotechnol. 2018, 14, 120–122. [Google Scholar] [CrossRef] [Green Version]
- Wollenweber, B.; Porter, J.R.; Lübberstedt, T. Need for Multidisciplinary Research towards a Second Green Revolution. Curr. Opin. Plant Biol. 2005, 8, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Scopus—Document Search. Available online: https://www.scopus.com/search/form.uri?display=basic#basic (accessed on 2 December 2021).
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 2 December 2021).
- Awika, J.M. Major Cereal Grains Production and Use around the World. In Advances in Cereal Science: Implications to Food Processing and Health Promotion; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2011; Volume 1089. [Google Scholar]
- United State Department of Agriculture (USDA). USDA Agricultural Projections to 2030; USDA: Washington, DC, USA, 2021.
- Hoefsloot, P.; Ines, A.; Dam, J.; Duveiller, G.; Kayitakire, F.; Hansen, J. Combining Crop Models and Remote Sensing for Yield Prediction; Joint Research Centre of the European Commission and the CCAFS Program of CGIAR: Ispra, Italy, 2012; p. 5. [Google Scholar]
- Childs, N.; Kiawu, J. Factors Behind the Rise in Global Rice Prices in 2008. 2009. Available online: https://www.ers.usda.gov/webdocs/outlooks/38489/13518_rcs09d01_1_.pdf?v=9.9 (accessed on 5 December 2021).
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.H.H.; Murata, N. Glycinebetaine: An Effective Protectant against Abiotic Stress in Plants. Trends Plant Sci. 2008, 13, 499–505. [Google Scholar] [CrossRef]
- Park, E.J.; Jekncić, Z.; Chen, T.H.H.; Murata, N. The CodA Transgene for Glycinebetaine Synthesis Increases the Size of Flowers and Fruits in Tomato. Plant Biotechnol. J. 2007, 5, 422–430. [Google Scholar] [CrossRef]
- Kathuria, H.; Giri, J.; Nataraja, K.N.; Murata, N.; Udayakumar, M.; Tyagi, A.K. Glycinebetaine-Induced Water-Stress Tolerance in CodA-Expressing Transgenic Indica Rice Is Associated with Up-Regulation of Several Stress Responsive Genes. Plant Biotechnol. J. 2009, 7, 512–526. [Google Scholar] [CrossRef]
- Harinasut, P.; Tsutsui, K.; Takabe, T.; Nomura, M.; Takabe, T.; Kishitani, S. Exogenous Glycinebetaine Accumulation and Increased Salt-Tolerance in Rice Seedlings. Biosci. Biotechnol. Biochem. 1996, 60, 366–368. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Kalecinski, N.I.; Brown, M.G.L.; Johnson, D.M.; Vermote, E.F.; Roger, J.C.; Franch, B. Assessing Within-Field Corn and Soybean Yield Variability from Worldview-3, Planet, Sentinel-2, and Landsat 8 Satellite Imagery. Remote Sens. 2021, 13, 872. [Google Scholar] [CrossRef]
- Novelli, F.; Spiegel, H.; Sandén, T.; Vuolo, F. Assimilation of Sentinel-2 Leaf Area Index Data into a Physically-Based Crop Growth Model for Yield Estimation. Agronomy 2019, 9, 255. [Google Scholar] [CrossRef] [Green Version]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of Remote Sensing on Crop Models: A Review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ryu, Y.; Jiang, C.; Kimm, H.; Kim, S.; Kang, M.; Shim, K. BESS-Rice: A Remote Sensing Derived and Biophysical Process-Based Rice Productivity Simulation Model. Agric. For. Meteorol. 2018, 256–257, 253–269. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Franch, B.; Roger, J.-C.; Kussul, N.; Ju, J.; Masek, J. Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, through Phenological Fitting, into Regression Yield Models. Remote Sens. 2019, 11, 1768. [Google Scholar] [CrossRef] [Green Version]
- Franch, B.; Bautista, A.S.; Fita, D.; Rubio, C.; Tarrazó-Serrano, D.; Sánchez, A.; Skakun, S.; Vermote, E.; Becker-Reshef, I.; Uris, A. Within-Field Rice Yield Estimation Based on Sentinel-2 Satellite Data. Remote Sens. 2021, 13, 4095. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Gitelson, A.A.; Schepers, J.S.; Walthall, C.L. Application of Spectral Remote Sensing for Agronomic Decisions. Agron. J. 2008, 100. [Google Scholar] [CrossRef] [Green Version]
- Heath, O.V.S. The Physiological Aspects of Photosynthesis; Stanford University Press: Stanford, CA, USA, 1969. [Google Scholar]
- Thomas, J.R.; Gausman, H.W. Leaf Reflectance vs. Leaf Chlorophyll and Carotenoid Concentrations for Eight Crops. Agron. J. 1977, 69, 799–802. [Google Scholar] [CrossRef]
- Yoder, B.J.; Waring, R.H. The Normalized Difference Vegetation Index of Small Douglas-Fir Canopies with Varying Chlorophyll Concentrations. Remote Sens. Environ. 1994, 49, 81–91. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.D.; Huete, A.R. Interpreting Vegetation Indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Deering, D.W. Rangeland Reflectance Characteristics Measured by Aircraft and Spacecraft Sensors; Texas A&M University: College Station, TX, USA, 1978. [Google Scholar]
- Herrmann, I.; Pimstein, A.; Karnieli, A.; Cohen, Y.; Alchanatis, V.; Bonfil, D.J. LAI Assessment of Wheat and Potato Crops by VENμS and Sentinel-2 Bands. Remote Sens. Environ. 2011, 115, 2141–2151. [Google Scholar] [CrossRef]
- Skakun, S.; Vermote, E.; Franch, B. Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale. AIMS Geosci. 2017, 3, 163–186. [Google Scholar] [CrossRef]
- Rehman, T.H.; Borja Reis, A.F.; Akbar, N.; Linquist, B.A. Use of Normalized Difference Vegetation Index to Assess N Status and Predict Grain Yield in Rice. Agron. J. 2019, 111, 2889–2898. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Thenkabail, P.S.; Smith, R.B.; de Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Jiang, Z.; Huete, A.R.; Didan, K.; Miura, T. Development of a Two-Band Enhanced Vegetation Index without a Blue Band. Remote Sens. Environ. 2008, 112, 3833–3845. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS- MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of Different Vegetation Indices for the Remote Assessment of Green Leaf Area Index of Crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.; Skakun, S.; Santamaria-Artigas, A.; Kalecinski, N.; Roger, J.C.; Becker-Reshef, I.; Barker, B.; Justice, C.; Sobrino, J.A. The ARYA Crop Yield Forecasting Algorithm: Application to the Main Wheat Exporting Countries. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102552. [Google Scholar] [CrossRef]
- Franch, B.; Vermote, E.F.; Skakun, S.; Roger, J.-C.; Becker-Reshef, I.; Murphy, E.; Justice, C. Remote Sensing Based Yield Monitoring: Application to Winter Wheat in United States and Ukraine. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 112–127. [Google Scholar] [CrossRef]
- Zhang, H.K.; Roy, D.P.; Yan, L.; Li, Z.; Huang, H.; Vermote, E.; Skakun, S.; Roger, J.C. Characterization of Sentinel-2A and Landsat-8 Top of Atmosphere, Surface, and Nadir BRDF Adjusted Reflectance and NDVI Differences. Remote Sens. Environ. 2018, 215, 482–494. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A Surface Reflectance Derived Using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2015. [Google Scholar]
- Jasinski, M.F. Estimation of Subpixel Vegetation Density of Natural Regions Using Satellite Multispectral Imagery. IEEE Trans. Geosci. Remote Sens. 1996, 34, 804–813. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Eagleson, P.S. Estimation of Subpixel Vegetation Cover Using Red-Infrared Scattergrams. IEEE Trans. Geosci. Remote Sens. 1990, 28, 253–267. [Google Scholar] [CrossRef]
- Kimura, R.; Okada, S.; Miura, H.; Kamichika, M. Relationships among the Leaf Area Index, Moisture Availability, and Spectral Reflectance in an Upland Rice Field. Agric. Water Manag. 2004, 69, 83–100. [Google Scholar] [CrossRef]
- Richardson, J.F.; Wiegand, C.L. Distinguishing Vegetation from Soil Background Information (by Gray Mapping of Landsat MSS Data). Photogramm. Eng. Remote Sens. 1977, 43, 1541–1552. [Google Scholar]
- Nuarsa, I.W.; Nishio, F.; Nishio, F.; Hongo, C.; Hongo, C. Relationship between Rice Spectral and Rice Yield Using Modis Data. J. Agric. Sci. 2011, 3, 80–88. [Google Scholar] [CrossRef] [Green Version]
- Natura 2000—Environment—European Commission. Available online: https://ec.europa.eu/environment/nature/natura2000/index_en.htm (accessed on 2 March 2022).
- Castillo, F.E.; Beltrán, L.R. Agroclimatología de España; Ministerio de Agricultura, Instituto Nacional de Investigaciones Agrarias: Madrid, Spain, 1977.
- Water Quality for Agriculture. Available online: https://www.fao.org/3/t0234e/t0234e00.htm (accessed on 22 December 2021).
- Osca Lluch, J.M. Cultivos Herbáceos Extensivos: Cereales; Colección Académica; Editorial UPV: Valencia, Spain, 2013; p. 255. [Google Scholar]
- Agroplast—Hersteller von Ersatzteilen Für Spritzmaschinen. Available online: https://agroplast.com.de/ (accessed on 2 March 2022).
- AGR-A6. Available online: http://www.qifeizn.com/EN/drone-A6.html (accessed on 22 December 2021).
- Lancashire, P.D.; Bleiholder, H.; Van Den Boom, T.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A Uniform Decimal Code for Growth Stages of Crops and Weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Onset HOBO and InTemp Data Loggers. Available online: https://www.onsetcomp.com/ (accessed on 22 December 2021).
- Sentinel-2—Missions—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-2 (accessed on 9 December 2021).
- Level-2A Algorithm—Sentinel-2 MSI Technical Guide—Sentinel Online. Available online: https://sentinels.copernicus.eu/web/sentinel/technical-guides/sentinel-2-msi/level-2a/algorithm (accessed on 9 December 2021).
- Planet | Homepage. Available online: https://www.planet.com/ (accessed on 9 December 2021).
- Private-Sector Small Constellation Satellite Data Product Pilot Evaluation|Earthdata. Available online: https://earthdata.nasa.gov/esds/csdap/csdap-pilot-evaluation (accessed on 14 January 2022).
- Maas, S.J.; Dunlap, J.R. Reflectance, Transmittance, and Absorptance of Light by Normal, Etiolated, and Albino Corn Leaves. Agron. J. 1989, 81, 105–110. [Google Scholar] [CrossRef]
- Mosleh, M.K.; Hassan, Q.K.; Chowdhury, E.H. Application of Remote Sensors in Mapping Rice Area and Forecasting Its Production: A Review. Sensors 2015, 15, 769–791. [Google Scholar] [CrossRef] [Green Version]
- Sadeh, Y.; Zhu, X.; Dunkerley, D.; Walker, J.P.; Zhang, Y.; Rozenstein, O.; Manivasagam, V.S.; Chenu, K. Fusion of Sentinel-2 and PlanetScope Time-Series Data into Daily 3 m Surface Reflectance and Wheat LAI Monitoring. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102260. [Google Scholar] [CrossRef]
- STATGRAPHICS. Data Analysis Solutions. Available online: https://www.statgraphics.com/ (accessed on 14 December 2021).
- Welcome to the QGIS Project! Available online: https://www.qgis.org/en/site/ (accessed on 14 December 2021).
- Wang, W.; Yao, X.; Yao, X.F.; Tian, Y.C.; Liu, X.J.; Ni, J.; Cao, W.X.; Zhu, Y. Estimating Leaf Nitrogen Concentration with Three-Band Vegetation Indices in Rice and Wheat. Field Crops Res. 2012, 129, 90–98. [Google Scholar] [CrossRef]
- Yin, X.; Kropff, M.J.; Goudriaan, J. Differential Effects of Day and Night Temperature on Development to Flowering in Rice. Ann. Bot. 1996, 77, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Stuerz, S.; Asch, F. Responses of Rice Growth to Day and Night Temperature and Relative Air Humidity—Dry Matter, Leaf Area, and Partitioning. Plants 2019, 8, 521. [Google Scholar] [CrossRef] [Green Version]
- Ohsumi, A.; Hamasaki, A.; Nakagawa, H.; Homma, K.; Horie, T.; Shiraiwa, T. Response of Leaf Photosynthesis to Vapor Pressure Difference in Rice (Oryza sativa L.) Varieties in Relation to Stomatal and Leaf Internal Conductance. Plant Prod. Sci. 2008, 11, 184–191. [Google Scholar] [CrossRef]
- Mohammed, A.R.; Tarpley, L. Characterization of Rice (Oryza sativa L.) Physiological Responses to a-Tocopherol, Glycine Betaine or Salicylic Acid Application. J. Agric. Sci. 2011, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.H.H.; Murata, N. Glycinebetaine Protects Plants against Abiotic Stress: Mechanisms and Biotechnological Applications. Plant Cell Environ. 2011, 34, 499–505. [Google Scholar] [CrossRef]
- Ju, J.; Yamamoto, Y.; Wang, Y.; Shan, Y.; Dong, G.; Miyazaki, A.; Yoshida, T. Genotypic Differences in Dry Matter Accumulation, Nitrogen Use Efficiency and Harvest Index in Recombinant Inbred Lines of Rice under Hydroponic Culture. Plant Prod. Sci. 2009, 12, 208–216. [Google Scholar] [CrossRef]
- Bueno, C.S.; Lafarge, T. Higher Crop Performance of Rice Hybrids than of Elite Inbreds in the Tropics: 1. Hybrids Accumulate More Biomass during Each Phenological Phase. Field Crops Res. 2009, 112, 229–237. [Google Scholar] [CrossRef]
- Cui, B.; Zhao, Q.; Huang, W.; Song, X.; Ye, H.; Zhou, X. A New Integrated Vegetation Index for the Estimation of Winter Wheat Leaf Chlorophyll Content. Remote Sens. 2019, 11, 974. [Google Scholar] [CrossRef] [Green Version]
- Khurana, S.C.; McLaren, J.S. The Influence of Leaf Area, Light Interception and Season on Potato Growth and Yield. Potato Res. 1982, 25, 329–342. [Google Scholar] [CrossRef]
- Evans, L.T. Physiological Basis of Crop Yield. In Crop Physiology: Some Case Histories; Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Peng, S. Single-Leaf and Canopy Photosynthesis of Rice. Stud. Plant Sci. 2000, 7, 213–228. [Google Scholar]
- Oh-e, I.; Saitoh, K.; Kuroda, T. Effects of High Temperature on Growth, Yield and Dry-Matter Production of Rice Grown in the Paddy Field. Plant Prod. Sci. 2007, 10, 412. [Google Scholar] [CrossRef]
- Khan, S.; Anwar, S.; Ashraf, M.Y.; Khaliq, B.; Sun, M.; Hussain, S.; Gao, Z.Q.; Noor, H.; Alam, S. Mechanisms and Adaptation Strategies to Improve Heat Tolerance in Rice. A Review. Plants 2019, 8, 508. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.U.; Moon, K.; Lee, B.W. Climatic Constraints to Yield and Yield Components of Temperate Japonica Rice. Agron. J. 2021, 113, 3489–3497. [Google Scholar] [CrossRef]
- Ono, K.; Maruyama, A.; Kuwagata, T.; Mano, M.; Takimoto, T.; Hayashi, K.; Hasegawa, T.; Miyata, A. Canopy-Scale Relationships between Stomatal Conductance and Photosynthesis in Irrigated Rice. Glob. Change Biol. 2013, 19, 2209–2220. [Google Scholar] [CrossRef]
- Chen, S.; Liu, S.; Yin, M.; Zheng, X.; Chu, G.; Xu, C.; Wang, D.; Zhang, X. Seasonal Changes in Crop Growth and Grain Yield of Different Japonica Rice Cultivars in Southeast China. Agron. J. 2020, 112, 215–227. [Google Scholar] [CrossRef]
- Kim, J.; Shon, J.; Lee, C.K.; Yang, W.; Yoon, Y.; Yang, W.H.; Kim, Y.G.; Lee, B.W. Relationship between Grain Filling Duration and Leaf Senescence of Temperate Rice under High Temperature. Field Crops Res. 2011, 122, 207–213. [Google Scholar] [CrossRef]
- Hisyam, B.; Alam, M.A.; Naimah, N.; Jahan, M.S. Roles of Glycinebetaine on Antioxidants and Gene Function in Rice Plants under Water Stress. Asian J. Plant Sci. 2017, 16, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Gausman, H.W. Leaf reflectance of near-infrared. Photogramm. Eng. 1974, 40, 183–191. [Google Scholar]
- Walter-Shea, E.A.; Norman, J.M. Leaf Optical Properties. In Photon-Vegetation Interactions; Myneni, R.B., Ross, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 230–251. [Google Scholar]
Sentinel-2 | Planet | ||
---|---|---|---|
DATE | DAS | DATE | DAS |
20 April 2021 | −34 | 8 July 2021 | 45 |
30 May 2021 | 6 | 13 July 2021 | 50 |
9 June 2021 | 16 | 29 July 2021 | 66 |
14 June 2021 | 21 | 7 August 2021 | 75 |
24 June 2021 | 31 | 25 August 2021 | 93 |
4 July 2021 | 41 | 26 September 2021 | 125 |
14 July 2021 | 51 | ||
19 July 2021 | 56 | ||
29 July 2021 | 66 | ||
28 August 2021 | 96 | ||
2 September 2021 | 101 | ||
12 September 2021 | 111 | ||
17 September 2021 | 116 | ||
7 October 2021 | 136 | ||
12 October 2021 | 141 |
Parameters | GB Plants | Control Plants | p Value |
---|---|---|---|
Plant height (cm) | 80.1 | 79.2 | ns |
Panicle length (cm) | 16.7 | 15.6 | ns |
Days to 50% panicle emergence | 75 | 74 | ns |
Panicle per m2 | 321 a | 305 b | ** |
Filled grain per panicle | 96 a | 92 b | ** |
Weight of 1000 grains (g) | 35.8 a | 34.5 b | ** |
Grain length (mm) | 8.10 | 8.05 | ns |
Grain width (mm) | 4.12 | 4.04 | ns |
Grain yield (kg·ha−1) | 10767 a | 9523 b | ** |
NDVI | GNDVI | EVI2 | NCMI | |
---|---|---|---|---|
NIR | 0.82 | 0.80 | 0.94 | 0.83 |
Red | −0.96 | −0.81 | −0.74 | −0.90 |
Green | −0.70 | −0.90 | −0.59 | −0.83 |
Average | 0.82 | 0.83 | 0.76 | 0.85 |
r2 | |
---|---|
Blue | 0.13 |
Green | 0.56 |
Red | 0.63 |
NIR | 0.79 |
NCMI | 0.77 |
NDVI | 0.72 |
GNDVI | 0.72 |
EVI2 | 0.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
San Bautista, A.; Fita, D.; Franch, B.; Castiñeira-Ibáñez, S.; Arizo, P.; Sánchez-Torres, M.J.; Becker-Reshef, I.; Uris, A.; Rubio, C. Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine. Agronomy 2022, 12, 708. https://doi.org/10.3390/agronomy12030708
San Bautista A, Fita D, Franch B, Castiñeira-Ibáñez S, Arizo P, Sánchez-Torres MJ, Becker-Reshef I, Uris A, Rubio C. Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine. Agronomy. 2022; 12(3):708. https://doi.org/10.3390/agronomy12030708
Chicago/Turabian StyleSan Bautista, Alberto, David Fita, Belén Franch, Sergio Castiñeira-Ibáñez, Patricia Arizo, María José Sánchez-Torres, Inbal Becker-Reshef, Antonio Uris, and Constanza Rubio. 2022. "Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine" Agronomy 12, no. 3: 708. https://doi.org/10.3390/agronomy12030708
APA StyleSan Bautista, A., Fita, D., Franch, B., Castiñeira-Ibáñez, S., Arizo, P., Sánchez-Torres, M. J., Becker-Reshef, I., Uris, A., & Rubio, C. (2022). Crop Monitoring Strategy Based on Remote Sensing Data (Sentinel-2 and Planet), Study Case in a Rice Field after Applying Glycinebetaine. Agronomy, 12(3), 708. https://doi.org/10.3390/agronomy12030708