Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zhonglv 5 Development
2.2. Basic Agronomic Characteristics of Zhonglv 5
3. Results
3.1. Assessment of Disease Resistance and Drought Tolerance
3.2. Evaluation of the Yield and Adaptability of Zhonglv 5 in Different Eco-Regions
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avav, T.; Ugese, F.D. Studies on reproductive abscission and seed yield of mung bean (Vigna radiata) in sub-humid savanna of Nigeria. Afr. J. Food Agric. Nutr. Dev. 2009, 9, 1751–1760. [Google Scholar]
- Tomooka, N.; Vaughan, D.A.; Moss, H.; Maxted, N. The Asian Vigna: The Genus Vigna sugenus Ceratotropis Genetic Resource; KIuwer Academic Publishers: London, UK, 2003. [Google Scholar]
- Amanullah; Khalid, S.; Khalil, F.; Elshikh, M.S.; Alwahibi, M.S.; Alkahtani, J.; Imranuddin; Imran. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes. Sci. Rep. 2021, 11, 12585. [Google Scholar] [CrossRef] [PubMed]
- Hondrade, R.F.; Hondrade, E.; Zheng, L.; Elazegui, F.; Duque, J.L.J.E.; Mundt, C.C.; Vera Cruz, C.M.; Garrett, K.A. Cropping system diversification for food production in Mindanao rubber plantations: A rice cultivar mixture and rice intercropped with mung bean. Peer J. 2017, 5, e2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarlak, S.; Aghaalikhani, M.; Zand, B. Effect of plant density and mixing ratio on crop yield in sweet corn/mung bean inter-cropping. Pak. J. Biol. Sci. 2008, 11, 2128–2133. [Google Scholar] [CrossRef]
- Zang, H.; Yang, X.; Feng, X.; Qian, X.; Hu, Y.; Ren, C.; Zeng, Z. Rhizo deposition of nitrogen and carbon by mung bean (Vigna radiata L.) and its contribution to intercropped Oats (Avena nuda L.). PLoS ONE 2015, 10, e0121132. [Google Scholar] [CrossRef]
- Xie, H.C.; Chen, J.L.; Cheng, D.F.; Zhou, H.B.; Sun, J.R.; Liu, Y.; Francis, F. Impact of wheat-mung bean intercropping on English grain aphid (Hemiptera: Aphididae) populations and its natural enemy. J. Econ. Entomol. 2012, 105, 854–859. [Google Scholar] [CrossRef]
- Tiwari, B.; Kalim, S.; Bangar, P.; Kumari, R.; Kumar, S.; Gaikwad, A.; Bhat, K.V. Physiological, biochemical, and molecular responses of thermotolerance in moth bean (Vigna aconitifolia [Jacq.] Marechal). Turk. J. Agric. For. 2018, 42, 176–184. [Google Scholar] [CrossRef]
- Khattak, G.S.S.; Ashraf, M.; Saeed, I.; Alam, B. A new high yielding mung bean (Vigna radiata (L.) Wilczek) variety “Ramzan” for the agro climatic conditions of NWFP. Pak. J. Bot. 2006, 38, 301–310. [Google Scholar]
- Kim, D.K.; Lee, Y.S.; Lee, J.Y.; Bak, G.C.; Bang, G.P.; Park, I.J.; Moon, J.K.; Oh, Y.J.; Min, K.S. A new high-yielding mung bean cultivar, “Soseon” suitable for sprout with small seed. Korean J. Breed. 2004, 36, 383–384. [Google Scholar]
- Lee, Y.S.; Lee, J.Y.; Kim, D.K.; Yoon, C.Y.; Bak, G.C.; Park, I.J.; Bang, G.P.; Moon, J.K.; Oh, Y.J.; Moon, J.-K. A new high-yielding mung bean cultivar, “Samgang” with lobed leaflet. Korean J. Breed. 2004, 36, 183–184. [Google Scholar]
- Tian, J.; Cheng, X.Z.; Fan, B.J.; Wang, L.X.; Liu, J.J.; Liu, C.Y.; Wang, S.H.; Cao, Z.M.; Chen, H.L.; Wang, Y.; et al. Current situation and development trend of mung bean varieties in China. Crops 2021, 6, 15–21. (In Chinese) [Google Scholar]
- Alharby, H.F.; Al-Zahrani, H.S.; Hakeem, K.R.; Iqbal, M. Identification of physiological and biochemical markers for salt (NaCl) stress in the seedlings of mung bean [Vigna radiata (L.) Wilczek] genotypes. Saudi J. Biol. Sci. 2019, 26, 1053–1060. [Google Scholar] [CrossRef] [PubMed]
- Azeem, F.; Ijaz, U.; Ali, M.A.; Hussain, S.; Zubair, M.; Manzoor, H.; Abid, M.; Zameer, R.; Kim, D.S.; Golokhvast, K.S.; et al. Genome-wide identification and expression profiling of Potassium transport-related genes in Vigna radiata under abiotic stresses. Plants 2021, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Dutta, P.; Bera, A.K. Screening of mung bean genotypes for drought tolerance. Legum. Res. 2008, 31, 145–148. [Google Scholar]
- Kumar, S.; Ayachit, G.; Sahoo, L. Screening of mung bean for drought tolerance and transcriptome profiling between drought-tolerant and susceptible genotype in response to drought stress. Plant Physiol. Biochem. 2020, 157, 229–238. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.X.; Cheng, X.Z.; Wang, S.H. Advances in research on genetic resources, breeding and genetics of mung bean (Vigna radiata L.). Sci. Agric. Sin. 2009, 42, 1519–1527. (In Chinese) [Google Scholar]
- Somta, P.; Sommanas, W.; Srinives, P. Molecular diversity assessment of AVRDC—The World Vegetable Center elite-parental mung beans. Breed. Sci. 2009, 59, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Park, S.J.; Anderson, T.R. AC Harosprout mung bean. Can. J. Plant Sci. 1997, 77, 111–112. [Google Scholar] [CrossRef]
- Talekar, N.S.; Hu, W.J. Morphological characters in Vigna glabrescens resistant to Agromyzids (Diptera: Agromyzidae). J. Econ. Entomol. 1993, 86, 1287–1290. [Google Scholar] [CrossRef]
- Chen, L.-R.; Ko, C.-Y.; Folk, W.R.; Lin, T.-Y. Chilling susceptibility in mungbean varieties is associated with their differentially expressed genes. Bot. Stud. 2017, 58, 7. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.T.; Wang, S.H.; Wei, J.J.; Pan, X.W.; Chen, H.L.; Wang, L.X.; Cheng, X.Z. High yield, high resistance and wide adapability of mung bean cultivar Zhonglv 5 and its application potential. China Seed. 2020, 6, 83–86. (In Chinese) [Google Scholar]
- Wang, K.; Huang, M.; Yang, S.; Li, X.; Gao, Y.; Yang, P.; Gao, J.; Gao, X. Study on nutritional characteristics and antioxidant capacity of mung bean during germination. Czech J. Food Sci. 2021, 39, 469–478. [Google Scholar] [CrossRef]
- Yao, Y.; Cheng, X.; Wang, L.; Wang, S.; Ren, G. Biological Potential of Sixteen Legumes in China. Int. J. Mol. Sci. 2011, 12, 7048–7058. [Google Scholar] [CrossRef] [Green Version]
- Yundaeng, C.; Somta, P.; Chen, J.; Yuan, X.; Chankaew, S.; Chen, X. Fine mapping of QTL conferring Cercospora leaf spot disease resistance in mungbean revealed TAF5 as candidate gene for the resistance. Theor. Appl. Genet. 2021, 134, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Sun, S.; Tian, J.; Duan, C.; Zhu, Z. First report of Paramyrothecium foliicola causing leaf spot on Vigna radiata L. in China. Plant Dis. 2021, 105, 1207. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.K.; Nair, R.M.; Lee, J.; Lee, S.-H. Genomic resources in mungbean for future breeding programs. Front. Plant Sci. 2015, 6, 626. [Google Scholar] [CrossRef] [Green Version]
- Ha, J.; Shim, S.; Lee, T.; Lee, E.; Yang, X.; Jeong, H.; Kim, M.Y.; Lee, S.-H. Transcriptomic and biochemical analyses of the accumulation of sucrose in mungbean (Vigna radiata (L.) Wilczek) leaves after pod removal. Theor. Appl. Genet. 2020, 133, 2355–2362. [Google Scholar] [CrossRef]
- Hu, Y.G. Current situation and development countermeasures of industrial technology extension system of mung bean in Mingguang city. Mod. Agric. Sci. Technol. 2019, 10, 238–239. (In Chinese) [Google Scholar]
- Zhu, X.; Hu, W.L.; Yang, H.Y.; Xu, Y.; Xiang, Z.; Yang, L.; Yang, P.C. Analysis of suitable agronomic traits for mechanized harvesting mung bean varieties (Lines) in Nanyang Basin. Crops 2021, 4, 93–98. (In Chinese) [Google Scholar]
- Zhang, H.J.; Guo, Y.T.; Zhou, J.L.; Wang, S.M.; Cheng, X.Z. Analysis on the causes of mung bean price fluctuation in recent years. Agric. Econ. 2012, 4, 30–34. (In Chinese) [Google Scholar]
- Wang, L.Z.; Gao, F.J.; Hua, F.J.; Cao, P.P. Study on salt tolerance of different mung bean varieties at germination stage. Shandong Agric. Sci. 2015, 47, 31–35. (In Chinese) [Google Scholar]
- He, L.Q.; Yang, X.L.; Zhang, L. Difference analysis of Cadmium accumulation in green bean varieties under different Cadmium content background values. Hunan Agric. Sci. 2018, 11, 19–22. (In Chinese) [Google Scholar]
- Chen, G.Z.; Luo, G.L.; Liu, H.L.; Lai, X.M.; Liu, L.L. Adaptability test of mung bean varieties intercropping with young Shatang Tangerine. China Seed 2017, 4, 50–51. (In Chinese) [Google Scholar]
- Luo, G.; Li, J.C.; Cheng, Y.H. High-efficiency cultivation techniques of inter-cropping Mung bean in sugarcane. Crops Res. 2020, 34, 173–175. (In Chinese) [Google Scholar]
Locus (City/Province) | Yield Performance (kg/ha) | Yield Increase (%) | |
---|---|---|---|
Zhonglv 5 | Control (Jilv 2) | ||
Harbin (Heilongjiang) | 631.5 | 547.5 | 15.4 |
Baicheng (Jilin) | 1183.5 | 1017.0 | 16.3 |
Shenyang (Liaoning) | 1743.0 | 1347.0 | 29.3 |
Wengniuteqi (Inner Mongolia) | 1074.0 | 1023.0 | 5.1 |
Fangshan (Beijing) | 2227.5 | 2122.5 | 4.9 |
Yulin (Shaanxi) | 1573.5 | 1296.0 | 21.4 |
Datong (Shanxi) | 1717.5 | 1251.0 | 37.2 |
Shihezi (Xinjiang) | 2323.5 | 1923.0 | 20.9 |
Taixing (Jiangsu) | 1989.0 | 1915.5 | 3.9 |
Changsa (Hunan) | 1414.5 | 1375.5 | 2.8 |
Lijiang (Yunnan) | 1249.5 | 1080.0 | 15.6 |
Average | 1557.0 | 1354.5 | 15.0 |
Locus | Yield (kg/ha) | Year | Inter Crop | Locus | Yield (kg/ha) | Year | Inter Crop |
---|---|---|---|---|---|---|---|
Nanning (Guangxi) | 1540.5 | 2013 | Sugarcane (D *) | Chongzuo (Guangxi) | 1369.5 | 2014 | Sugarcane (D) |
964.5 | 2014 | Sugarcane (S **) | 1080.0 | 2014 | Sugarcane (S) | ||
900.0 | 2015 | Sugarcane (S) | 1024.5 | 2016 | Sugarcane (S) | ||
1297.5 | 2015 | Sugarcane (S) | 1074.0 | 2014 | Sugarcane (D) | ||
1794.0 | 2015 | Sugarcane (D) | 1131.0 | 2014 | Sugarcane (S) | ||
1248.0 | 2016 | Sugarcane (S) | 1200.0 | 2014 | Sugarcane (D) | ||
1417.5 | 2016 | Sugarcane (D) | 897.0 | 2016 | Sugarcane (S) | ||
966.0 | 2015 | Cassava (S) | 750.0 | 2019 | Sugarcane (S) | ||
1428.0 | 2015 | Cassava (D) | 1342.5 | 2017 | Maize (S) | ||
1528.5 | 2016 | Cassava (S) | Hefei (Anhui) | 1837.5 | 2013 | Young peach tree | |
1473.0 | 2016 | Cassava (D) | 886.5 | 2014 | Maize (S) | ||
825.0 | 2017 | Wild grape | 954.0 | 2015 | Maize (S) | ||
Beihai (Guangxi) | 1057.5 | 2015 | Dragon fruit tree | Nanyang (Henan) | 346.5 | 2015 | Maize (S) |
1102.5 | 2016 | Dragon fruit tree | Siyang (Jiangsu) | 1875.0 | 2018 | Peach tree | |
979.5 | 2017 | Cassava (S) | Jiaonan (Shandong) | 513.0 | 2014 | Pine tree | |
Hechi (Guangxi) | 1387.5 | 2017 | Maize (S) | Qingdao (Shanodng) | 1086.0 | 2014 | Maize (S) |
Yulin (Guangxi) | 888.0 | 2014 | Dragon fruit tree | 655.5 | 2015 | Maize (S) | |
1209.0 | 2014 | Wild grape | Linfen (Shanxi) | 621.0 | 2014 | Maize (S) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, S.; Luo, G.; Zhang, J.; Chen, Y.; Chen, H.; Cheng, X. Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5”. Agronomy 2022, 12, 707. https://doi.org/10.3390/agronomy12030707
Wang L, Wang S, Luo G, Zhang J, Chen Y, Chen H, Cheng X. Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5”. Agronomy. 2022; 12(3):707. https://doi.org/10.3390/agronomy12030707
Chicago/Turabian StyleWang, Lixia, Suhua Wang, Gaoling Luo, Jintao Zhang, Yanhua Chen, Honglin Chen, and Xuzhen Cheng. 2022. "Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5”" Agronomy 12, no. 3: 707. https://doi.org/10.3390/agronomy12030707
APA StyleWang, L., Wang, S., Luo, G., Zhang, J., Chen, Y., Chen, H., & Cheng, X. (2022). Evaluation of the Production Potential of Mung Bean Cultivar “Zhonglv 5”. Agronomy, 12(3), 707. https://doi.org/10.3390/agronomy12030707