The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Gene Analysis
2.3. Transcription Analysis
2.3.1. Reference Genes
2.3.2. Quantitative Reverse-Transcription PCR
3. Results
3.1. DNA Sequences Analysis
3.2. Gene Expression Analysis
3.2.1. Selection and Validation of Reference Genes
3.2.2. Expression Profiles of LmF3h_a and LmF3h_b
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lepiniec, L.; Debeaujon, I.; Routaboul, J.M.; Baudry, A.; Pourcel, L.; Nesi, N.; Caboche, M. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 2006, 57, 405–430. [Google Scholar] [CrossRef] [PubMed]
- Brunetti, C.; Di Ferdinando, M.; Fini, A.; Pollastri, S.; Tattini, M. Flavonoids as antioxidants and developmental regulators: Relative significance in plants and humans. Int. J. Mol. Sci. 2013, 14, 3540–3555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, N.U.; Park, J.; Jung, H.J.; Yoonkang Hur, Y.; Nou, S.-I. Anthocyanin biosynthesis for cold and freezing stress tolerance and desirable colour in Brassica rapa. Funct. Integr. Genom. 2015, 15, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.; Diwan, A.; Chandra, S. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Jarial, R.; Thakur, S.; Sakinah, M.; Zularisam, A.W.; Sharad, A.; Kanwar, S.S.; Singh, L. Potent anticancer antioxidant and antibacterial activities of isolated flavonoids from Asplenium nidus. J. King Saud Univ.-Sci. 2018, 30, 185–192. [Google Scholar] [CrossRef]
- Jaakola, L.; Määttä, K.; Pirttilä, A.M.; Törrönen, R.; Kärenlampi, S.; Hohtola, A. Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiol. 2002, 130, 729–739. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Cheng, F.; Wu, J.; Liu, B.; Zheng, S.N.; Liang, J.L.; Wang, X.W. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genom. 2014, 15, 426. [Google Scholar] [CrossRef] [Green Version]
- Grotewold, E. The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 2006, 57, 761–780. [Google Scholar] [CrossRef]
- Quattrocchio, F.; Wing, J.F.; Leppen, H.T.C.; Mol, J.N.M.; Koes, R.E. Regulatory genes controlling anthocyanin pigmentation are functionally conserved among plant species and have distinct sets of target genes. Plant Cell 1993, 5, 1497–1512. [Google Scholar] [CrossRef]
- Shirley, B. Flavonoid biosynthesis. A colorful model for genetics biochemistry cell biology and biotechnology. Plant Physiol. 2001, 126, 485–493. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Huang, K.; Liu, Y.; Jiao, T.; Ma, G.; Qian, Y.; Wang, P.; Dai, X.; Gao, L.; Xia, T. Functional Analysis of Two Flavanone-3-Hydroxylase Genes from Camellia sinensis: A Critical Role in Flavonoid Accumulation. Genes 2017, 8, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrier, B.; Coronado, C.; Kondorosi, A.; Ratet, P. Molecular characterization and expression of alfalfa (Medicago sativa L.) flavanone-3-hydroxylase and dihydroflavonol-4-reductase encoding genes. Plant Mol. Biol. 1995, 29, 773–786. [Google Scholar] [CrossRef] [PubMed]
- Cotting, R.M.; Hosfîeld, G.L. Flavanone 3-Hydroxylase: A Candidate Gene Product for the P Color Gene. USDA Pub. 2005, 48, 38–39. [Google Scholar]
- Shen, X.; Martens, S.; Chen, M.; Li, D.; Dong, J.; Tao, W. Cloning and characterization of a functional flavanone-3-hydroxylase gene from Medicago truncatula. Mol. Biol. Rep. 2009, 37, 3283–3289. [Google Scholar] [CrossRef]
- Cheng, H.; Wang, J.; Chu, S.; Yan, H.; Yu, D. Diversifying Selection on Flavanone 3- Hydroxylase and Isoflavone Synthase Genes in Cultivated Soybean and Its Wild Progenitors. PLoS ONE 2013, 8, e54154. [Google Scholar] [CrossRef] [Green Version]
- McClean, P.E.; Lee, R.K.; Otto, C.; Gepts, P.; Bassett, M.J. Molecular and phenotypic mapping of genes controlling seed coat pattern and colour in common bean (Phaseolus vulgaris L.). J. Hered. 2002, 93, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Weber, H.; Borisjuk, L.; Wobus, U. Molecular physiology of legume seed development. Ann. Rev. Plant Biol. 2005, 56, 253–279. [Google Scholar] [CrossRef]
- Bellaloui, N. Soybean seed phenol lignin and isoflavones partitioning as affected by seed node position and genotype differences. Food Nutr. Sci. 2012, 3, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Todd, J.J.; Vodkin, L.O. Pigmented soybean (Glycine max) seed coats accumulate proanthocyanidins during development. Plant Physiol. 1993, 102, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Devic, M.; Guilleminot, J.; Debeaujon, I.; Bechtold, N.; Bensaude, E.; Koornneef, M.; Pelletier, G.; Delseny, M. The BANYULS gene encodes a DFR-like protein and is a marker of early seed coat development. Plant J. 1999, 19, 387–398. [Google Scholar] [CrossRef]
- Debeaujon, I.; Peeters, A.J.M.; Léon-Kloosterziel, K.M.; Koornneef, M. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter–like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 2001, 13, 853–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, R.; Min, C.W.; Kim, S.W.; Wang, Y.; Agrawal, G.K.; Rakwal, R.; Kim, G.S.; Won Lee, W.B.; Ko, J.M.; Baek, I.Y.; et al. Comparative investigation of seed coats of brown- versus yellow-colored soybean seeds using an integrated proteomics and metabolomics approach. Proteomics 2014, 15, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, S.L.; Upadhyaya, H.D.; Chung, M.I.; Vita, P.; García-Lara, L.S.; Guajardo-Flores, D.; Gutiérrez-Uribe, J.A.; Serna-Saldívar, S.O.; Rajakumar, G.; Sahrawat, K.L.; et al. Exploiting Phenylpropanoid Derivatives to Enhance the Nutraceutical Values of Cereals and Legumes. Front. Plant Sci. 2016, 7, 763. [Google Scholar] [CrossRef] [PubMed]
- Atchinson, G.W.; Nevado, B.; Eastwood, R.J.; Contreras-Ortiz, N.; Reynel, C.; Madriñán, S.; Filatov, D.A.; Hughes, C.E. Lost crops of the Incas: Origins of domestication of the Andean pulse crop tarwi Lupinus mutabilis. Am. J. Bot. 2016, 103, 1592–1606. [Google Scholar] [CrossRef]
- Carvajal-Larenas, F.E.; Linnemann, A.R.; Nout, M.J.R.; Koziol, M.; Van Boekel, M.A.J.S. Lupinus mutabilis: Composition uses toxicology and debittering. Crit. Rev. Food Sci. Nutr. 2016, 56, 1454–1487. [Google Scholar] [CrossRef] [Green Version]
- Martins, J.M.N.; Talhinhas, P.; Sousa, R.B. Yield and seed chemical composition of Lupinus mutabilis in Portugal. Rev. Ciênc. Agrár. 2016, 39, 518–525. [Google Scholar] [CrossRef] [Green Version]
- Gulisano, A.; Alves, S.; Neves-Martins, J.; Trindade, L. Genetics and breeding of Lupinus mutabilis: An emerging protein crop. Front. Plant Sci. 2019, 10, 1385. [Google Scholar] [CrossRef]
- Guilengue, N.; Alves, S.; Talhinhas, P.; Neves-Martins, J. Genetic and genomic diversity in a tarwi (Lupinus mutabilis Sweet) germplasm collection and adaptability to Mediterranean climate conditions. Agronomy 2020, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Talhinhas, P.; Baroncelli, R.; Le Floch, G. Anthracnose of lupins caused by Colletotrichum lupini: A recent disease and a successful worldwide pathogen. J. Plant Pathol. 2016, 98, 5–14. [Google Scholar] [CrossRef]
- Talhinhas, P.; Neves-Martins, J.; Oliveira, H. Evaluation of anthracnose resistance in Lupinus spp. germplasm. Rev. Ciênc. Agrár. 2016, 39, 550–570. [Google Scholar] [CrossRef] [Green Version]
- Guilengue, N.; Neves-Martins, J.; Talhinhas, P. Response to anthracnose in a tarwi (Lupinus mutabilis) collection is influenced by anthocyanin pigmentation. Plants 2020, 9, 583. [Google Scholar] [CrossRef] [PubMed]
- Statler, G.D. Resistance of bean plants to Fusarium solani f. sp. phaseoli. Plant Dis. Rep. 1970, 54, 698–699. [Google Scholar]
- Harris, H.B.; Burns, R.E. Relationship between tannin content of sorghum grain and preharvest seed molding. Agron. J. 1973, 65, 957–959. [Google Scholar] [CrossRef]
- Stasz, T.E.; Harman, G.E.; Marx, G.A. Time and Site of Infection of Resistant and Susceptible Germinating Pea Seeds by Pythium ultimum. Phytopathology 1980, 70, 730–733. [Google Scholar] [CrossRef] [Green Version]
- Islam, F.M.A.; Rengifo, J.; Redden, R.J.; Basford, K.E.; Beebe, S.E. Association Between Seed Coat Polyphenolics (Tannins) and Disease Resistance in Common Bean. Plant Foods Hum. Nutr. 2003, 58, 285–297. [Google Scholar] [CrossRef]
- Lima, A.; Oliveira, J.; Saúde, F.; Mota, J.; Ferreira, R.B. Proteins in Soy Might Have a Higher Role in Cancer Prevention than Previously Expected: Soybean Protein Fractions Are More Effective MMP-9 Inhibitors Than Non-Protein Fractions, Even in Cooked Seeds. Nutrients 2017, 9, 201. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.J.; Yuan, S.H.; Chang, S.K. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Food Sci. 2007, 72, S167–S177. [Google Scholar] [CrossRef]
- Xiao, C.W. Health Effects of Soy Protein and Isoflavones in Humans. J. Nutr. 2008, 138, 1244S–1249S. [Google Scholar] [CrossRef] [Green Version]
- Zhang., R.F.; Zhang, F.X.; Zang, M.W.; Wei, Z.C.; Yang, C.Y.; Zhang, Y.; Tang, X.J.; Deng, Y.Y.; Chi, J.W. Phenolic Composition and Antioxidant Activity in Seed Coats of 60 Chinese Black Soybean (Glycine max L. Merr.) Varieties. J. Agric. Food Chem. 2011, 59, 5935–5944. [Google Scholar] [CrossRef]
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomerand, I.; Oren-Shamir, M.; Galili, S. Determination of phenolic compounds, flavonoids, and antioxidant activity colored chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef]
- Ariza-Nieto, M.; Blair, M.W.; Welch, R.M.; Glahn, R.P. Screening of bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J. Agric. Food Chem. 2007, 55, 7950–7956. [Google Scholar] [CrossRef] [PubMed]
- Blair, M.W.; Izquierdo, P.; Astudillo, C.; Grusak, M.A. A legume biofortification quandary: Variability and genetic control of seed coat micronutrient accumulation in common beans. Front. Plant Sci. 2013, 4, 275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishili, F.J.; Fulton, J.; Shehu, M.; Kushwaha, S.; Marfo, K.; Jamal, M.; Kergna, A.; De Borer, J.L. Consumer preferences for quality characteristics along the cowpea value chain in Nigeria Ghana and Mali. Agribusiness 2009, 25, 16–35. [Google Scholar] [CrossRef] [Green Version]
- Kläsener, G.R.; Ribeiro, N.D.; Casagrande, C.R.; Arns, F.D. Consumer preference and the technological and nutritional quality of different bean colours. Acta Sci. Agron. 2020, 42, e43689. [Google Scholar] [CrossRef]
- Mohan, V.; Ruchi, V.; Gayathri, R.; Bai, M.R.; Shobana, S.; Anjana, R.M.; Unnikrishnan, R.; Sudha, V. Hurdles in Brown Rice Consumption. In Brown Rice; Manickavasagan, A., Santhakumar, C., Venkatachalapathy, N., Eds.; Springer: Cham, Switzerland; New York, NY, USA, 2017; pp. 255–269. [Google Scholar] [CrossRef]
- Bassett, M.J. Genetics of Seed Coat Color and Pattern in Common Bean. In Plant Breeding Reviews; Janick, J., Ed.; Wiley: New York, NY, USA, 2007; Volume 28, pp. 239–315. [Google Scholar] [CrossRef]
- Gillman, J.D.; Tetlow, A.; Lee, J.D.; Shannon, J.G.; Bilyeu, K. Loss-of-function mutations affecting a specific Glycine max R2R3 MYB transcription factor result in brown hilum and brown seed coats. BMC Plant Biol. 2011, 11, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, K.; Jeong, N.; Moon, J.K.; Lee, Y.H.; Lee, S.H.; Kim, H.M.; Hwang, C.H.; Back, K.; Palmer, R.G.; Jeong, S.C. Genetic analysis of genes controlling natural variation of seed coat and flower colors in soybean. J. Hered. 2010, 101, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Ubayasena, L.; Vijayan, P.; Bett, K.E.; Gray, G.R.; Küster, H.; Warkentin, T.D. Gene expression profiles of seed coats and bio-chemical properties of seed coats and cotyledons of two field pea (Pisum sativum) cultivars contrasting in green cotyledon bleaching resistance. Euphytica 2015, 193, 49–65. [Google Scholar] [CrossRef]
- IBPGR. Lupin Descriptors; FAO: Rome, Italy, 1981. [Google Scholar]
- Hane, J.K.; Ming, Y.; Kamphuis, L.G.; Nelson, M.N.; Carg, G.; Atkins, C.A.; Bayer, P.E.; Bravo, A.; Bringans, S.; Cannon, S.; et al. Comprehensive draft genome sequence for lupin (Lupinus angustifolius) an emerging health food: Insights into plant–microbe interactions and legume evolution. Plant Biotechnol. J. 2016, 15, 318–330. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kelley, L.; Mezulis, S.; Yates, C.; Wass, M.; Sternberg, M. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [Green Version]
- Zabala, G.; Vodkin, L.O. Methylation Affects Transposition and Splicing of a Large CACTA Transposon from a MYB Transcription Factor Regulating Anthocyanin Synthase Genes in Soybean Seed coats. PLoS ONE 2014, 9, e111959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, A.; Cabral, A.; Fino, J.; Azinheira, H.G.; Loureiro, A.; Talhinhas, P.; Pires, A.S.; Várzea, V.; Moncada, P.; Oliveira, H.; et al. Comparative validation of conventional and RNA-seq data-derived reference genes for qPCR expression studies of Colletotrichum kahawae. PLoS ONE 2016, 11, e0150651. [Google Scholar] [CrossRef] [Green Version]
- Taylor, C.M.; Jost, R.; Erskine, W.; Nelson, M.N. Identifying Stable Reference Genes for RT-qPCR Normalisation in Gene Expression Studies of Narrow-Leafed Lupin (Lupinus angustifolius L.). PLoS ONE 2016, 11, e0148300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kroc, M.; Koczyk, G.; Kamel, K.A.; Czepiel, K.; Fedorowicz-Strońska, O.; Krajewski, P.; Kosińska, J.; Podkowiński, J.; Wilczura, P.; Święcicki, W. Transcriptome-derived investigation of biosynthesis of quinolizidine alkaloids in narrow-leafed lupin (Lupinus angustifolius L.) highlights candidate genes linked to iucundus locus. Sci. Rep. 2019, 9, 2231. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.; Xiao, P.; Chen, D.; Xu, L.; Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. 2012, 80, 75–84. [Google Scholar] [CrossRef]
- Pfaffl, M.W.; Tichopad, A.; Prgomet, C.; Neuvians, T.P. Determination of stable housekeeping genes differentially regulated target genes and sample integrity: BestKeeper-excel-based tool using pair-wise correlations. Biotechnol. Lett. 2004, 26, 509–515. [Google Scholar] [CrossRef]
- Vandesompele, J.; De Preter, K.; Pattyn, F.; Poppe, B.; Van Roy, N.; De Paepe, A.; Speleman, F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002, 3, research0034.1. [Google Scholar] [CrossRef] [Green Version]
- Andersen, C.L.; Jensen, J.L.; Orntoft, T.F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets. Cancer Res. 2004, 64, 5245–5250. [Google Scholar] [CrossRef] [Green Version]
- Hellemans, J.; Mortier, G.; De Paepe, A.; Speleman, F.; Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007, 8, R19. [Google Scholar] [CrossRef] [Green Version]
- Silver, N.; Best, S.; Jiang, J.; Thein, S.L. Selection of housekeeping genes for genes expression studies in human reticulocytes using real time PCR. BMC Mol. Biol. 2006, 7, 33. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, J.M.; Ramakers, C.; Hoogaars, W.M.; Karlen, Y.; Bakker, O.; Van den Hoff, M.J.; Moorman, A.F. Amplification efficiency: Linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009, 37, e45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Wisman, E.; Hartmann, U.; Sagasser, M.; Baumann, E.; Palme, K.; Hahlbrock, K.; Saedler, H.; Weisshaar, B. Knock-out mutants from an En-1 mutagenized Arabidopsis thaliana population generate phenylpropanoid biosynthesis phenotypes. Proc. Natl. Acad. Sci. USA 1998, 95, 12432–12437. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Tian, N.; Long, J.; Chen, Y.; Qin, Y.; Feng, J.; Xiao, W.; Liu, S. Molecular cloning and characterization of a flavanone 3-Hydroxylase gene from Artemisia annua L. Plant Physiol. Biochem. 2016, 105, 29–36. [Google Scholar] [CrossRef] [Green Version]
- Himi, E.; Maekawa, M.; Noda, K. Differential Expression of Three Flavanone 3-Hydroxylase Genes in Grains and Coleoptiles of Wheat. Intern. J. Plant Genom. 2011, 2011, 369460. [Google Scholar] [CrossRef] [Green Version]
- Itoh, Y.; Higeta, D.; Suzuki, A.; Yoshida, H.; Ozeki, Y. Excision of Transposable Elements from the Chalcone Isomerase and Dihydroflavonol 4-Reductase Genes May Contribute to the Variegation of the Yellow-Flowered Carnation (Dianthus caryophyllus). Plant Cell Physiol. 2002, 43, 578–585. [Google Scholar] [CrossRef] [Green Version]
- Nishihara, M.; Yamada, E.; Saito, M.; Fujita, K.; Takahashi, H.; Nakatsuka, T. Molecular characterization of mutations in white-flowered torenia plants. BMC Plant Biol. 2014, 14, 86. [Google Scholar] [CrossRef] [Green Version]
- LPWG. Legume phylogeny and classification in the 21st century: Progress, prospects and lessons for other species–rich clades. Taxon 2013, 62, 217–248. [Google Scholar] [CrossRef]
- Lavin, M.; Herendeen, P.S.; Wojciechowski, M.F. Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst. Biol. 2005, 54, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Shirley, B.W.; Kubasek, W.L.; Storz, G.; Bruggemann, E.; Koornneef, M.; Ausubel, F.M.; Goodman, H.M. Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 1995, 8, 659–671. [Google Scholar] [CrossRef] [PubMed]
- Koornneef, M. Mutations affecting the testa colour in Arabidopsis. Inf. Serv. 1990, 27, 1–4. [Google Scholar]
- Park, K.I.; Nitasaka, E.; Hoshino, A. Anthocyanin mutants of Japanese and common morning glories exhibit normal proanthocyanidin accumulation in seed coats. Plant Biotechnol. 2018, 35, 259–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, L.; Li, B.; Pandey, M.K.; Wu, Y.; Lei, Y.; Yan, L.; Dai, X.; Jiang, H.; Zhang, J.; Wei, G.; et al. Transcriptome Analysis of a New Peanut Seed Coat Mutant for the Physiological Regulatory Mechanism Involved in Seed Coat Cracking and Pigmentation. Front. Plant Sci. 2016, 7, 1491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himi, E.; Noda, K. Red grain colour gene (R) of wheat is a Myb-type transcription factor. Euphytica 2005, 143, 239–242. [Google Scholar] [CrossRef]
- Shao, Y.; Tang, F.; Huang, Y.; Xu, F.; Chen, Y.; Tong, C.; Chen, H.; Bao, J. Analysis of Genotype×Environment interactions for polyphenols and antioxidant capacity of rice by association mapping. J. Agric. Food Chem. 2014, 62, 5361–5368. [Google Scholar] [CrossRef] [PubMed]
- Akond, A.S.M.G.M.; Khandaker, L.; Berthold, J.; Gates, L.; Peters, K.; Delong, H.; Hossain, K. Anthocyanin total polyphenols and antioxidant activity of common bean. Am. J. Food Technol. 2011, 6, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Agostini-Costa, T.S.; Teodoro, A.F.P.; Alves, R.B.N.; Braga, L.R.; Ribeiro, I.F.; Silva, J.P.; Quintana, L.G.; Burle, M.L. Total phenolics flavonoids tannins and antioxidant activity of lima beans conserved in a Brazilian genebank. Ciênc. Rural 2015, 45, 335–341. [Google Scholar] [CrossRef] [Green Version]
Reference Gene | Primer Name and Direction | Primer Sequence | Tm 1 (°C) | Size (bp) | Eff 2 | Eff 2 (%) |
---|---|---|---|---|---|---|
Ubiquitin C (Ubc) | LangUBC-F | 5′ CTGACAGCCCACTGAATTGTGA 3′ | 60.8 | 108.0 | 1.952 | 0.930 |
LangUBC-R | 5′ TCTTGGGCATAGCAGCAAGC 3′ | 61.0 | ||||
Helicase (Hel) | LangHEL-F | 5′ TTGTACGAGGTCGGTGCTCT 3′ | 60.9 | 127.0 | 1.947 | 0.927 |
LangHEL-R | 5′ ACAAGCAACCAAATATTGCACCATA 3′ | 60.0 | ||||
Alcohol dehydrogenase class-3 (Adh3) | LangADH3-F | 5′ AGCACACAGCGTAGGCATC 3′ | 58.0 | 91.0 | 1.957 | 0.932 |
LangADH3-R | 5′ AGTTGATGAGTACATAACCCACA 3′ | 58.0 | ||||
ATP synthase (ATPsyn) | LangATPsyn-F | 5′ AGTATGCTGTTCCTGTTCGTCA 3′ | 59.0 | 145 | -- | -- |
LangATPsyn-R | 5′ ATGGTGATCTTCTCCTTCTTTAG 3′ | 59.0 | ||||
Alpha tubulin (αTub) | LangTUBA-F | 5′ CGGGTTAGAAAGTTGGCGGA 3′ | 58.0 | 101 | 1.944 | 0.926 |
LangTUBA-R | 5′ CAACAAGAGAGATCCCAAACC 3′ | 58.0 |
Gene of Interest | Primer Name and Direction | Primer Sequence | Tm 1 (°C) | Size (bp) | Eff 2 | Eff (%) |
---|---|---|---|---|---|---|
F3h_a | LmutF3h_a-F | 5′ GGAACTATTATCAGAAGCAATGGG 3′ | 60.0 | 120 | 1.988 | 0.947 |
LmutF3h_a-R | 5′ AAGTGTAAGATCAGGTTGAGGG 3′ | 60.0 | ||||
F3h_b | LmutF3h_a-F | 5′ TACCCTAAATGTCCACAACCTG 3′ | 60.0 | 129 | 1.926 | 0.917 |
LmutF3h_a-R | 5′ TCCAAGTCTTTCCATTATCCCT 3′ | 60.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guilengue, N.; Azinheira, H.G.; Alves, S.; Neves-Martins, J.; Talhinhas, P.; Morais-Cecílio, L. The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour. Agronomy 2022, 12, 450. https://doi.org/10.3390/agronomy12020450
Guilengue N, Azinheira HG, Alves S, Neves-Martins J, Talhinhas P, Morais-Cecílio L. The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour. Agronomy. 2022; 12(2):450. https://doi.org/10.3390/agronomy12020450
Chicago/Turabian StyleGuilengue, Norberto, Helena G. Azinheira, Sofia Alves, João Neves-Martins, Pedro Talhinhas, and Leonor Morais-Cecílio. 2022. "The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour" Agronomy 12, no. 2: 450. https://doi.org/10.3390/agronomy12020450
APA StyleGuilengue, N., Azinheira, H. G., Alves, S., Neves-Martins, J., Talhinhas, P., & Morais-Cecílio, L. (2022). The Analysis of Partial Sequences of the Flavonone 3 Hydroxylase Gene in Lupinus mutabilis Reveals Differential Expression of Two Paralogues Potentially Related to Seed Coat Colour. Agronomy, 12(2), 450. https://doi.org/10.3390/agronomy12020450