Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Soil Sampling
2.3. Laboratory Analyses
2.4. Soil Redistribution Assessment
2.5. Soil Quality Index (SQI) Assessment
2.6. Statistical Analysis and Modeling
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Variability of Soil Physicochemical Properties
3.3. Variability in Magnetic Susceptibility
3.4. Soil Loss and Deposition Rates
3.5. Correlation Analysis and Modeling
4. Conclusions
- Two factors, namely rangeland degradation and land conversion to dryland farming, have significantly changed the soil physicochemical properties in various slope positions during the past 50 years. CCE increased in the eroded positions (shoulder and backslope), whereas SOM, TN, Kava, and Pava decreased in these positions, especially in dryland farming, because of soil loss. The rehabilitation of the degraded soils with apple orchards significantly improved soil quality indicators.
- The restoration of drylands by orchards improved SQIs in different slope positions. The apple orchards increased SQI values in footslope (0.499, very high) and toeslope (0.498, very high) positions compared to drylands (0.369, moderate for footslope; 0.432, high for toeslope).
- Magnetic susceptibility is significantly reduced in dryland farming compared to rangeland due to soil erosion and deposition along the landscape. In the upper position, lower values for χlf were observed, whereas the highest χlf were found in the lower position due to the movement of magnetic particles associated with fine particles.
- Applying SMBM on the 137Cs inventory indicated the highest soil loss observed in the dryland and orchard cultivation regions. Thus, it can be concluded that land rehabilitation significantly decreased the soil loss rate in the recent two decades. In the steep slopes (i.e., shoulder and backslope) and the lower positions (i.e., footslope and toeslope) of three land uses, net soil loss and net deposition occurred, respectively.
- The correlation analysis showed that 137Cs well correlated with some soil properties known to be soil quality indicators (i.e., TN, Kava, Pava, SOM, bulk density, and CCE). The good agreement between 137Cs inventory and χlf confirmed the high potential of magnetic susceptibility, as an indicator, for evaluating soil redistribution along the hillslope. Additionally, the random forest models revealed that CCE, TN, Kava, Pava, and ρb were the most important variables, explaining 75% of the variability of 137Cs inventory in the study area.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rodrigo Comino, J.; Iserloh, T.; Morvan, X.; Malam Issa, O.; Naisse, C.; Keesstra, S.D.; Cerdà, A.; Prosdocimi, M.; Arnáez, J.; Lasanta, T.; et al. Soil erosion processes in European vineyards: A qualitative comparison of rainfall simulation measurements in Germany, Spain and France. Hydrology 2016, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Ayoubi, S.; Emami, N.; Ghaffari, N.; Honarjoo, N.; Sahrawat, K.L. Pasture degradation effects on soil quality indicators at different hillslope positions in a semiarid region of western Iran. Environ. Earth Sci. 2014, 71, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Kooch, Y.; Moghimian, N.; Wirth, S.; Noghre, N. Effects of grazing management on leaf litter decomposition and soil microbial activities in northern Iranian rangeland. Geoderma 2020, 361, 114100. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bottega, E.L.; Bakhshandeh, E.; Owliaie, H.R.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Scholten, T.; Xu, M. Spatial variability of soil quality within management zones: Homogeneity and purity of delineated zones. Catena 2022, 209, 105835. [Google Scholar] [CrossRef]
- Müller, M.M.; Guimaraes, M.F.; Desjardins, T.; Mitja, D. The relationship between pasture degradation and soil properties in the Brazilian Amazon: A case study. Agric. Ecosyst. Environ. 2004, 103, 279–288. [Google Scholar] [CrossRef]
- Lopes, V.S.; Cardoso, I.M.; Fernandes, O.R.; Rocha, G.C.; Simas, F.N.B.; de Melo Moura, W.; Santana, F.C.; Veloso, G.V.; da Luz, J.M.R. The establishment of a secondary forest in a degraded pasture to improve hydraulic properties of the soil. Soil Tillage Res. 2020, 198, 104538. [Google Scholar] [CrossRef]
- Vaezi, A.R.; Zarrinabadi, E.; Auerswald, K. Interaction of land use, slope gradient and rain sequence on runoff and soil loss from weakly aggregated semi-arid soils. Soil Tillage Res. 2017, 172, 22–31. [Google Scholar] [CrossRef]
- Hosseinalizadeh, M.; Alinejad, M.; Behbahani, A.M.; Khormali, F.; Kariminejad, N.; Pourghasemi, H.R. A review on the gully erosion and land degradation in Iran. In Gully Erosion Studies from India and Surrounding Regions; Springer: Cham, Switzerland, 2020; pp. 393–403. [Google Scholar]
- Bouhlassa, S.; Bouhsane, N. Assessment of areal water and tillage erosion using magnetic susceptibility: The approach and its application in Moroccan watershed. Environ. Sci. Pollut. Res. 2019, 26, 25452–25466. [Google Scholar] [CrossRef]
- Mohammed, S.; Abdo, H.G.; Szabo, S.; Pham, Q.B.; Holb, I.J.; Linh, N.T.T.; Anh, D.T.; Alsafadi, K.; Mokhtar, A.; Kbibo, I.; et al. Estimating human impacts on soil erosion considering different hillslope inclinations and land uses in the coastal region of Syria. Water 2020, 12, 2786. [Google Scholar] [CrossRef]
- Mohammed, S.; Alsafadi, K.; Talukdar, S.; Kiwan, S.; Hennawi, S.; Alshihabi, O.; Sharaf, M.; Harsanyie, E. Estimation of soil erosion risk in southern part of Syria by using RUSLE integrating geo informatics approach. Remote Sens. Appl. Soc. Environ. 2020, 20, 100375. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J. Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrol. Hydrobiol. 2020, 20, 59–72. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Liu, B.; Liu, G.; Wilson, G. Effects of gully erosion and gully filling on soil depth and crop production in the black soil region, northeast China. Environ. Earth Sci. 2013, 68, 1723–1732. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.; Yoder, D.; McCool, D. RUSLE revisited: Status, questions, answers, and the future. J. Soil Water Conserv. 1994, 49, 213–220. [Google Scholar]
- Taghizadeh-Mehrjardi, R.; Bawa, A.; Kumar, S.; Zeraatpisheh, M.; Amirian-Chakan, A.; Akbarzadeh, A. Soil erosion spatial prediction using digital soil mapping and RUSLE methods for Big Sioux River watershed. Soil Syst. 2019, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Safwan, M.; Alaa, K.; Omran, A.; Quoc, B.P.; Nguyen, T.T.L.; Van, N.T.; Duong, T.A.; Endre, H. Predicting soil erosion hazard in Lattakia Governorate (W Syria). Int. J. Sediment Res. 2021, 36, 207–220. [Google Scholar] [CrossRef]
- Quijano, L.; Gaspar, L.; Navas, A. Spatial patterns of SOC, SON, 137Cs and soil properties as affected by redistribution processes in a Mediterranean cultivated field (Central Ebro Basin). Soil Tillage Res. 2016, 155, 318–328. [Google Scholar] [CrossRef] [Green Version]
- La Manna, L.; Gaspar, L.; Tarabini, M.; Quijano, L.; Navas, A. 137Cs inventories along a climatic gradient in volcanic soils of Patagonia: Potential use for assessing medium term erosion processes. Catena 2019, 181, 104089. [Google Scholar] [CrossRef]
- Junge, B.; Mabit, L.; Dercon, G.; Walling, D.E.; Abaidoo, R.; Chikoye, D.; Stahr, K. First use of the 137 Cs technique in Nigeria for estimating medium-term soil redistribution rates on cultivated farmland. Soil Tillage Res. 2010, 110, 211–220. [Google Scholar] [CrossRef]
- Afshar, F.A.; Ayoubi, S.; Jalalian, A. Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran. J. Environ. Radioact. 2010, 101, 606–614. [Google Scholar] [CrossRef]
- Rahimi, M.R.; Ayoubi, S.; Abdi, M.R. Magnetic susceptibility and Cs-137 inventory variability as influenced by land use change and slope positions in a hilly, semiarid region of west-central Iran. J. Appl. Geophys. 2013, 89, 68–75. [Google Scholar] [CrossRef]
- Ayoubi, S.; Sadeghi, N.; Afshar, F.A.; Abdi, M.R.; Zeraatpisheh, M.; Rodrigo-Comino, J. Impacts of oak deforestation and rainfed cultivation on soil redistribution processes across hillslopes using 137 Cs techniques. For. Ecosyst. 2021, 8, 32. [Google Scholar] [CrossRef]
- Zapata, F. Field Application of the Cs-137 Technique in Soil Erosion and Sedimentation. Special Issue. Soil Tillage Res. 2003, 69, 153. [Google Scholar] [CrossRef]
- Lacoste, M.; Michot, D.; Viaud, V.; Evrard, O.; Walter, C. Combining 137Cs measurements and a spatially distributed erosion model to assess soil redistribution in a hedgerow landscape in northwestern France (1960–2010). Catena 2014, 119, 78–89. [Google Scholar] [CrossRef]
- Sadiki, A.; Faleh, A.; Navas, A.; Bouhlassa, S. Using magnetic susceptibility to assess soil degradation in the Eastern Rif, Morocco. Earth Surf. Processes Landf. 2009, 34, 2057–2069. [Google Scholar] [CrossRef] [Green Version]
- Menshov, O.; Kruglov, O.; Vyzhva, S.; Nazarok, P.; Pereira, P.; Pastushenko, T. Magnetic methods in tracing soil erosion, Kharkov Region, Ukraine. Studia Geophys. Geod. 2018, 62, 681–696. [Google Scholar] [CrossRef]
- Nael, M.; Khademi, H.; Hajabbasi, M. Response of soil quality indicators and their spatial variability to land degradation in central Iran. Appl. Soil Ecol. 2004, 27, 221–232. [Google Scholar] [CrossRef]
- Józefowska, A.; Pietrzykowski, M.; Woś, B.; Cajthaml, T.; Frouz, J. The effects of tree species and substrate on carbon sequestration and chemical and biological properties in reforested post-mining soils. Geoderma 2017, 292, 9–16. [Google Scholar] [CrossRef]
- Wang, J.; Yang, R.; Feng, Y. Spatial variability of reconstructed soil properties and the optimization of sampling number for reclaimed land monitoring in an opencast coal mine. Arab. J. Geosci. 2017, 10, 46. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Shi, T.; He, L.; Hu, W.; Wu, G. Assessing toxic metal chromium in the soil in coal mining areas via proximal sensing: Prerequisites for land rehabilitation and sustainable development. Geoderma 2022, 405, 115399. [Google Scholar] [CrossRef]
- Guan, Y.; Zhou, W.; Bai, Z.; Cao, Y.; Huang, Y.; Huang, H. Soil nutrient variations among different land use types after reclamation in the Pingshuo opencast coal mine on the Loess Plateau, China. Catena 2020, 188, 104427. [Google Scholar] [CrossRef]
- Andrews, S.; Flora, C.; Mitchell, J.; Karlen, D. Growers’ perceptions and acceptance of soil quality indices. Geoderma 2003, 114, 187–213. [Google Scholar] [CrossRef]
- Nabiollahi, K.; Golmohamadi, F.; Taghizadeh-Mehrjardi, R.; Kerry, R.; Davari, M. Assessing the effects of slope gradient and land use change on soil quality degradation through digital mapping of soil quality indices and soil loss rate. Geoderma 2018, 318, 16–28. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Bakhshandeh, E.; Hosseini, M.; Alavi, S.M. Assessing the effects of deforestation and intensive agriculture on the soil quality through digital soil mapping. Geoderma 2020, 363, 114139. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA—Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Gee, G.; Bauder, J. Particle size analysis by hydrometer: A simplified method for routine textural analysis and a sensitivity test of measurement parameters. Soil Sci. Soc. Am. J. 1979, 43, 1004–1007. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of digestion method for determining soil organic matter and a proposed modification of the chromic acid titration. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Richard, H.L.; Suarez, D.L. Carbonates and gypsum. In Methods of Soil Analysis, Part 3. Chemical Methods; Spark, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; ASA/SSSA: Madison, WI, USA, 1996; pp. 437–474. [Google Scholar]
- Yeomans, J.C.; Bremner, J.M. Carbon and nitrogen analysis of soils by automated combustion techniques. Commun. Soil Sci. Plant Anal. 1991, 22, 843–850. [Google Scholar] [CrossRef]
- Carter, M.R.; Gregorich, E.G. Soil Sampling and Methods of Analysis; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Dearing, J.A.; Dann, R.; Hay, K.; Lees, J.; Loveland, P.; Maher, B.A.; O’grady, K. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int. 1996, 124, 228–240. [Google Scholar] [CrossRef] [Green Version]
- Walling, D.; He, Q.; Appleby, P. Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations. In Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides; Springer: Dordrecht, The Netherlands, 2002; pp. 111–164. [Google Scholar]
- Swan ARH, S.M. Introduction to Geological Data Analysis, Blackwell Science; University of Portsmouth: Oxford, UK, 1995. [Google Scholar]
- Peters, J.; De Baets, B.; Verhoest, N.E.; Samson, R.; Degroeve, S.; De Becker, P.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Jafari, A.; Tajik, S.; Finke, P. Digital mapping of soil properties using multiple machine learning in a semi-arid region, central Iran. Geoderma 2019, 338, 445–452. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Ayoubi, S.; Ahmadi, M.; Abdi, M.R.; Afshar, F.A. Relationships of 137Cs inventory with magnetic measures of calcareous soils of hilly region in Iran. J. Environ. Radioact. 2012, 112, 45–51. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M.; Ayoubi, S.; Srinivasarao, C.; Wani, S. Role of deforestation and hillslope position on soil quality attributes of loess-derived soils in Golestan province, Iran. Agric. Ecosyst. Environ. 2009, 134, 178–189. [Google Scholar] [CrossRef]
- Paz-Gonzalez, A.; Vieira, S.; Castro, M.T.T. The effect of cultivation on the spatial variability of selected properties of an umbric horizon. Geoderma 2000, 97, 273–292. [Google Scholar] [CrossRef]
- López-Granados, F.; Jurado-Expósito, M.; Atenciano, S.; García-Ferrer, A.; de la Orden, M.S.; García-Torres, L. Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 2002, 246, 97–105. [Google Scholar] [CrossRef]
- Wilding, L. Spatial variability: Its documentation, accomodation and implication to soil surveys. In Proceedings of the Soil Spatial Variability, Las Vegas, NV, USA, 30 November–1 December 1984; pp. 166–194. [Google Scholar]
- Zolfaghari, Z.; Ayoubi, S.; Mosaddeghi, M.R. Spatial variability of some soil shrinkage indices in hilly calcareous region of western Iran. Soil Tillage Res. 2015, 150, 180–191. [Google Scholar] [CrossRef]
- Seibert, J.; Stendahl, J.; Sørensen, R. Topographical influences on soil properties in boreal forests. Geoderma 2007, 141, 139–148. [Google Scholar] [CrossRef]
- Solon, J.; Degórski, M.; Roo-Zielińska, E. Vegetation response to a topographical-soil gradient. Catena 2007, 71, 309–320. [Google Scholar] [CrossRef]
- Norouzi, M.; Ayoubi, S.; Jalalian, A.; Khademi, H.; Dehghani, A. Predicting rainfed wheat quality and quantity by artificial neural network using terrain and soil characteristics. Acta Agric. Scand. Sect. B Soil Plant Sci. 2010, 60, 341–352. [Google Scholar] [CrossRef]
- Rodrigo-Comino, J.; Keshavarzi, A.; Zeraatpisheh, M.; Gyasi-Agyei, Y.; Cerdà, A. Determining the best ISUM (Improved stock unearthing Method) sampling point number to model long-term soil transport and micro-topographical changes in vineyards. Comput. Electron. Agric. 2019, 159, 147–156. [Google Scholar] [CrossRef]
- Burst, M.; Chauchard, S.; Dambrine, E.; Dupouey, J.-L.; Amiaud, B. Distribution of soil properties along forest-grassland interfaces: Influence of permanent environmental factors or land-use after-effects? Agric. Ecosyst. Environ. 2020, 289, 106739. [Google Scholar] [CrossRef]
- Karchegani, P.M.; Ayoubi, S.; Mosaddeghi, M.R.; Honarjoo, N. Soil organic carbon pools in particle-size fractions as affected by slope gradient and land use change in hilly regions, western Iran. J. Mt. Sci. 2012, 9, 87–95. [Google Scholar] [CrossRef]
- Pedrol, N.; Souza-Alonso, P.; Puig, C.G.; González, L.; Covelo, E.F.; Asensio, V.; Forján, R.; Andrade, L. Improving soil fertility to support grass–legume revegetation on lignite mine spoils. Commun. Soil Sci. Plant Anal. 2014, 45, 1565–1582. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Lal, R. Carbon and nitrogen pools in reclaimed land under forest and pasture ecosystems in Ohio, USA. Geoderma 2010, 157, 196–205. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, K.; Bai, Z.; Cheng, H.; Liu, F. The development of topsoil properties under different reclaimed land uses in the Pingshuo opencast coalmine of Loess Plateau of China. Ecol. Eng. 2017, 100, 237–245. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhao, Z.; Niu, S.; Li, X.; Wang, Y.; Bai, Z. Reclamation promotes the succession of the soil and vegetation in opencast coal mine: A case study from Robinia pseudoacacia reclaimed forests, Pingshuo mine, China. Catena 2018, 165, 72–79. [Google Scholar] [CrossRef]
- Li, B.; Tang, H.; Wu, L.; Li, Q.; Zhou, C. Relationships between the soil organic carbon density of surface soils and the influencing factors in differing land uses in Inner Mongolia. Environ. Earth Sci. 2012, 65, 195–202. [Google Scholar] [CrossRef]
- Mohammed, S.; Hassan, E.; Abdo, H.G.; Szabo, S.; Mokhtar, A.; Alsafadi, K.; Al-Khouri, I.; Rodrigo-Comino, J. Impacts of rainstorms on soil erosion and organic matter for different cover crop systems in the western coast agricultural region of Syria. Soil Use Manag. 2021, 37, 196–213. [Google Scholar] [CrossRef]
- Kizilkaya, R.; Dengiz, O. Variation of land use and land cover effects on some soil physico-chemical characteristics and soil enzyme activity. Zemdirb.-Agric. 2010, 97, 15–24. [Google Scholar]
- Shahriari, A.; Khormali, F.; Kehl, M.; Ayoubi, S.; Welp, G. Effect of a long-term cultivation and crop rotations on organic carbon in loess derived soils of Golestan Province, Northern Iran. Int. J. Plant Prod. 2011, 5, 147–151. [Google Scholar]
- Bakhshandeh, E.; Hossieni, M.; Zeraatpisheh, M.; Francaviglia, R. Land use change effects on soil quality and biological fertility: A case study in northern Iran. Eur. J. Soil Biol. 2019, 95, 103119. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Ayoubi, S.; Mirbagheri, Z.; Mosaddeghi, M.R.; Xu, M. Spatial prediction of soil aggregate stability and soil organic carbon in aggregate fractions using machine learning algorithms and environmental variables. Geoderma Reg. 2021, 27, e00440. [Google Scholar] [CrossRef]
- Gol, C.; Dengiz, O. Effect of modifying land cover and long-term agricultural practices on the soil characteristics in native forest-land. J. Environ. Biol. 2008, 29, 667–682. [Google Scholar]
- Karimi, A.; Haghnia, G.H.; Ayoubi, S.; Safari, T. Impacts of geology and land use on magnetic susceptibility and selected heavy metals in surface soils of Mashhad plain, northeastern Iran. J. Appl. Geophys. 2017, 138, 127–134. [Google Scholar] [CrossRef]
- Ng, S.L.; Chan, L.S.; Lam, K.C.; Chan, W.K. Heavy metal contents and magnetic properties of playground dust in Hong Kong. Environ. Monit. Assess. 2003, 89, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Rijal, M.L.; Porsch, K.; Appel, E.; Kappler, A. Magnetic signature of hydrocarbon-contaminated soils and sediments at the former oil field Hänigsen, Germany. Studia Geophys. Geod. 2012, 56, 889–908. [Google Scholar] [CrossRef]
- Ayoubi, S.; Samadi, M.J.; Khademi, H.; Shirvani, M.; Gyasi-Agyei, Y. Using magnetic susceptibility for predicting hydrocarbon pollution levels in a petroleum refinery compound in Isfahan Province, Iran. J. Appl. Geophys. 2020, 172, 103906. [Google Scholar] [CrossRef]
- Ayoubi, S.; Abazari, P.; Zeraatpisheh, M. Soil great groups discrimination using magnetic susceptibility technique in a semi-arid region, central Iran. Arab. J. Geosci. 2018, 11, 616. [Google Scholar] [CrossRef]
- Hu, X.-F.; Su, Y.; Ye, R.; Li, X.-Q.; Zhang, G.-L. Magnetic properties of the urban soils in Shanghai and their environmental implications. Catena 2007, 70, 428–436. [Google Scholar] [CrossRef]
- Royall, D. Use of mineral magnetic measurements to investigate soil erosion and sediment delivery in a small agricultural catchment in limestone terrain. Catena 2001, 46, 15–34. [Google Scholar] [CrossRef]
- MULLINS, C.E. Magnetic susceptibility of the soil and its significance in soil science—A review. J. Soil Sci. 1977, 28, 223–246. [Google Scholar] [CrossRef]
- Theocharopoulos, S.; Florou, H.; Walling, D.; Kalantzakos, H.; Christou, M.; Tountas, P.; Nikolaou, T. Soil erosion and deposition rates in a cultivated catchment area in central Greece, estimated using the 137Cs technique. Soil Tillage Res. 2003, 69, 153–162. [Google Scholar] [CrossRef]
- Sac, M.; Uğur, A.; Yener, G.; Özden, B. Estimates of soil erosion using cesium-137 tracer models. Environ. Monit. Assess. 2008, 136, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Karchegani, P.M.; Ayoubi, S.; Lu, S.G.; Honarju, N. Use of magnetic measures to assess soil redistribution following deforestation in hilly region. J. Appl. Geophys. 2011, 75, 227–236. [Google Scholar] [CrossRef]
- Khormali, F.; Ajami, M. Pedogenetic investigation of soil degradation on a deforested loess hillslope of Golestan Province, Northern Iran. Geoderma 2011, 167, 274–283. [Google Scholar] [CrossRef]
- Fujiyoshi, R.; Sawamura, S. Mesoscale variability of vertical profiles of environmental radionuclides (40K, 226Ra, 210Pb and 137Cs) in temperate forest soils in Germany. Sci. Total Environ. 2004, 320, 177–188. [Google Scholar] [CrossRef]
- Gaspar, L.; Quijano, L.; Lizaga, I.; Navas, A. Effects of land use on soil organic and inorganic C and N at 137Cs traced erosional and depositional sites in mountain agroecosystems. Catena 2019, 181, 104058. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, K.; Zhang, Z.; Qiu, Q. Identifying soil redistribution patterns by magnetic susceptibility on the black soil farmland in Northeast China. Catena 2015, 129, 103–111. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Zeraatpisheh, M.; Jafari, A.; Bodaghabadi, M.B.; Ayoubi, S.; Taghizadeh-Mehrjardi, R.; Toomanian, N.; Kerry, R.; Xu, M. Conventional and digital soil mapping in Iran: Past, present, and future. Catena 2020, 188, 104424. [Google Scholar] [CrossRef]
- Mohammed, S.; Al-Ebraheem, A.; Holb, I.J.; Alsafadi, K.; Dikkeh, M.; Pham, Q.B.; Linh, N.T.T.; Szabo, S. Soil management effects on soil water erosion and runoff in central Syria—A comparative evaluation of general linear model and random forest regression. Water 2020, 12, 2529. [Google Scholar] [CrossRef]
Variable (Unit) | Rangeland (n = 24) | Dryland Farming (n = 24) | Apple orchard (n = 24) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | CV (%) | Skew | Min | Max | Mean | CV (%) | Skew | Min | Max | Mean | CV (%) | Skew | KS | ||
Radionuclide property | 137CS(Bqm−2) | 1026 | 1782 | 1411.50 | 19.76 | −0.06 | 509 | 2099.60 | 1166.80 | 26.61 | 0.51 | 619.50 | 1417.50 | 1000.8 | 24.61 | 0.12 | 0.14 |
Soil chemical properties | Pava (mg kg−1) | 30.61 | 48.91 | 35.82 | 17.54 | 1.10 | 19.18 | 42.67 | 32.16 | 28.19 | −0.15 | 45.27 | 83.24 | 65.43 | 18.10 | 0.02 | 0.12 |
Kava (mg kg−1) | 294.66 | 667.59 | 445.65 | 26.72 | 0.35 | 240.60 | 532.06 | 362.18 | 26.97 | 0.53 | 294.66 | 548.29 | 407.25 | 21.07 | 0.30 | 0.10 | |
EC (dS m−1) | 1.09 | 1.40 | 1.27 | 5.97 | −0.56 | 1.02 | 1.50 | 1.19 | 13.26 | 0.63 | 0.98 | 1.33 | 1.15 | 10.34 | 0.26 | 0.19 | |
pH (−log[H+]) | 7.60 | 7.80 | 7.70 | 0.81 | 0.13 | 7.60 | 7.74 | 7.64 | 0.67 | 0.71 | 7.50 | 7.71 | 7.60 | 1.16 | 0.01 | 0.20 | |
CCE (%) | 17.50 | 35.50 | 27.99 | 20.13 | −0.51 | 18 | 40.50 | 30.88 | 24.40 | −0.43 | 23.50 | 45 | 35.39 | 21.45 | −0.40 | 0.22 | |
SOM (%) | 1.09 | 2.35 | 1.55 | 24 | 0.79 | 1.03 | 2.18 | 1.55 | 21.43 | 0.44 | 1.47 | 2.29 | 1.83 | 12.22 | 0.35 | 0.19 | |
TN (%) | 0.09 | 0.30 | 0.20 | 39.67 | 0.02 | 0.05 | 0.30 | 0.16 | 64.10 | 0.37 | 0.12 | 0.40 | 0.28 | 38.14 | −0.10 | 0.21 | |
Soil physical properties | ρb (g cm−3) | 1.04 | 1.80 | 1.45 | 16.98 | −0.19 | 1.20 | 1.88 | 1.60 | 14.39 | −0.49 | 1.16 | 1.89 | 1.50 | 16.18 | 0.05 | 0.17 |
Sand (%) | 20.30 | 37.20 | 32.14 | 13.61 | −1.11 | 19.22 | 37.90 | 26.46 | 21.97 | 0.51 | 18.54 | 36.88 | 28.83 | 17.18 | 0.42 | 0.10 | |
Clay (%) | 42.25 | 66.65 | 53.20 | 13.99 | 0.60 | 40.38 | 58.04 | 46.65 | 9.20 | 0.57 | 38.46 | 59.50 | 46.72 | 10.35 | 0.93 | 0.11 | |
Silt (%) | 10.66 | 27.18 | 17.45 | 26.30 | 0.81 | 9.14 | 38.48 | 26.89 | 28.73 | −0.49 | 13.20 | 33.94 | 24.45 | 21.44 | 0.0041 | 0.10 | |
Magnetic properties | χlf (10−8 m3 kg−1) | 20.0 | 30.0 | 24.68 | 14.15 | 0.22 | 24.0 | 29.0 | 26.75 | 6.06 | −0.34 | 22.0 | 29.50 | 26.69 | 6.62 | −0.62 | 0.14 |
χhf (10−8 m3 kg−1) | 19.0 | 29.0 | 23.63 | 14.49 | 0.20 | 23.0 | 28.0 | 25.63 | 6.39 | −0.17 | 20.0 | 28.0 | 25.33 | 7.05 | −0.79 | 0.12 |
Land Use | Rangeland (n = 24) | Dryland Farming (n = 24) | Apple Orchard (n = 24) | Pr > F | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SQIn | 0.372 b | 0.336 b | 0.429 a | 0.0002 * | |||||||||
Shoulder | backslope | footslope | toeslope | Shoulder | backslope | footslope | toeslope | Shoulder | backslope | footslope | toeslope | ||
0.306 c | 0.326 c | 0.399 b | 0.458 a | 0.267 c | 0.276 c | 0.369 b | 0.432 a | 0.345 b | 0.372 b | 0.499 a | 0.498 a | 0.0001 * |
Index | Indicator Method | SSF | Soil Quality Grades | ||||
---|---|---|---|---|---|---|---|
I (Very High) | II (High) | III (Moderate) | IV (Low) | V (Very Low) | |||
SQIn | TDS | Linear | >0.459 | 0.400–0.459 | 0.341–0.400 | 0.281–0.341 | <0.281 |
Variable | 137CS | SOM | Kava | CCE | TN | ρb | Pava | χlf |
---|---|---|---|---|---|---|---|---|
Apple orchard (n = 24) | ||||||||
137CS | 1 | |||||||
SOM | 0.87 ** | 1 | ||||||
Kava | 0.85 ** | 0.66 ** | 1 | |||||
CCE | −0.95 ** | −0.87 ** | −0.74 ** | 1 | ||||
TN | 0.95 ** | 0.77 ** | −0.83 ** | −0.87 ** | 1 | |||
ρb | 0.99 ** | 0.86 ** | 0.91 ** | −0.93 ** | 0.95 ** | 1 | ||
Pava | 0.89 ** | 0.84 ** | 0.84 ** | −0.94 ** | 0.94 ** | 0.98 ** | 1 | * |
χlf | 0.42 ** | 0.26 | 0.84 ** | −0.41 * | 0.53 ** | 0.47 ** | 0.55 ** | 1 |
Dryland farming (n = 24) | ||||||||
137CS | 1 | |||||||
SOM | 0.83 ** | 1 | ||||||
Kava | 0.96 ** | 0.89 ** | 1 | |||||
CCE | −0.98 ** | −0.85 ** | −0.97 ** | 1 | ||||
TN | 0.91 ** | 0.79 ** | 0.93 ** | −0.93 ** | 1 | |||
ρb | 0.90 ** | 0.64 ** | 0.83 ** | −0.90 ** | 0.83 ** | 1 | ||
Pava | 0.93 ** | 0.71 ** | 0.90 ** | −0.94 ** | 0.93 ** | 0.97 ** | 1 | |
χlf | 0.47 * | 0.39 | 0.44 * | −0.45 * | 0.27 | −0.43 * | 0.33 | 1 |
Rangeland (n = 24) | ||||||||
137CS | 1 | |||||||
SOM | 0.80 ** | 1 | ||||||
Kava | 0.94 ** | 0.90 ** | 1 | |||||
CCE | −0.84 ** | −0.87 ** | −0.92 ** | 1 | ||||
TN | 0.96 ** | 0.82 ** | 0.96 ** | −0.85 ** | 1 | |||
ρb | 0.99 ** | 0.78 ** | 0.93 ** | −0.83 ** | 0.96 ** | 1 | ||
Pava | 0.82 ** | 0.84 ** | 0.88 ** | −0.92 ** | 0.84 ** | 0.81 ** | 1 | |
χlf | 0.42 * | 0.3 | 0.34 | 0.37 | 0.35 | 0.38 | 0.44 * | 1 |
Variable | mtry | ntree | RMSE ± SD | R2 ± SD | MAE ± SD |
---|---|---|---|---|---|
137CS inventory | 13 | 500 | 111.29 ± 26.85 | 0.94 ± 0.04 | 89.58 ± 23.75 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayoubi, S.; Mohammadi, A.; Abdi, M.R.; Abbaszadeh Afshar, F.; Wang, L.; Zeraatpisheh, M. Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran. Agronomy 2022, 12, 451. https://doi.org/10.3390/agronomy12020451
Ayoubi S, Mohammadi A, Abdi MR, Abbaszadeh Afshar F, Wang L, Zeraatpisheh M. Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran. Agronomy. 2022; 12(2):451. https://doi.org/10.3390/agronomy12020451
Chicago/Turabian StyleAyoubi, Shamsollah, Ameneh Mohammadi, Mohammad Reza Abdi, Farideh Abbaszadeh Afshar, Lin Wang, and Mojtaba Zeraatpisheh. 2022. "Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran" Agronomy 12, no. 2: 451. https://doi.org/10.3390/agronomy12020451
APA StyleAyoubi, S., Mohammadi, A., Abdi, M. R., Abbaszadeh Afshar, F., Wang, L., & Zeraatpisheh, M. (2022). Assessment of Soil Redistribution Following Land Rehabilitation with an Apple Orchard in Hilly Regions of Central Iran. Agronomy, 12(2), 451. https://doi.org/10.3390/agronomy12020451