Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture
Abstract
:1. Introduction
- The surface characteristics of the fields;
- The sediment flux and threshold velocity on the different fields during the dust season;
- The influence of the field characteristics on the soil erodibility;
- A wind erosion risk assessment associated with different land use.
2. Materials and Methods
2.1. Study Area and Sites
2.2. Experimental Design
2.3. Computation of Parameters
2.3.1. Sediment Flux
2.3.2. Aerodynamic Roughness Length
2.3.3. Saltation Threshold
2.4. Soil Cover from UAV Imagery
3. Results
3.1. Wind Characteristics and Sediment Flux
3.2. Aerodynamic Roughness and Saltation Threshold
3.3. Cover Percentage
4. Discussion
4.1. Field Characteristics
4.2. Erodibility and the Influence of the Field Use on Wind Erosion
4.3. Risk Assessment for Land Use Types and Implications for Dryland Agriculture
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sterk, G.; Riksen, M.; Goossens, D. Dryland Degradation by Wind Erosion and its Control. Ann. Arid. Zone 2001, 40, 351–367. [Google Scholar]
- Sterk, G. Causes, consequences and control of wind erosion in Sahelian Africa: A review. Land Degrad. Dev. 2003, 14, 95–108. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Zobeck, T.M. Chemical Constituents of Fugitive Dust. Environ. Monit. Assess. 2007, 130, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Visser, S.M.; Sterk, G. Nutrient dynamics—wind and water erosion at the village scale in the Sahel. Land. Degrad. Dev. 2007, 18, 578–588. [Google Scholar] [CrossRef]
- Lawrence, C.; Neff, J.C. The contemporary physical and chemical flux of Aeolian dust: A synthesis of direct measurements of dust deposition. Chem. Geol. 2009, 267, 46–63. [Google Scholar] [CrossRef]
- Zobeck, T.; Bilbro, J.D. Crop Productivity and Surface Soil Properties of a Severely Wind-Eroded Soil. In Sustaining the Global Farm, Selected Papers from the 10th International Soil Conservation Organization Meeting; Stott, D.E., Mohtar, R.H., Steinhardt, G.C., Eds.; ISCO: West Lafayette, IN, USA, 1999; pp. 617–622. [Google Scholar]
- Bielders, C.L.; Rajot, J.-L.; Amadou, M. Transport of soil and nutrients by wind in bush fallow land and traditionally managed cultivated fields in the Sahel. Geoderma 2002, 109, 19–39. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 3005. [Google Scholar] [CrossRef]
- Yang, G.; Sun, R.; Jing, Y.; Xiong, M.; Li, J.; Chen, L. Global assessment of wind erosion based on a spatially distributed RWEQ model. Prog. Phys. Geogr. Earth Environ. 2021, 46, 28–42. [Google Scholar] [CrossRef]
- Shao, Y.P.; Wyrwoll, K.-H.; Chappell, A.; Huang, J.; Lin, Z.; McTainsh, G.H.; Mikami, M.; Tanaka, T.Y.; Wang, X.; Yoon, S. Dust cycle: An emerging core theme in Earth system science. Aeolian Res. 2011, 2, 181–204. [Google Scholar] [CrossRef]
- Tegen, I.; Werner, M.; Harrison, S.P.; Kohfeld, K.E. Relative importance of climate and land use in determining present and future global soil dust emission. Geophys. Res. Lett. 2004, 31, L05105. [Google Scholar] [CrossRef] [Green Version]
- Woodruff, N.P.; Siddoway, F.H. A Wind Erosion Equation. Soil Sci. Soc. Am. J. 1965, 29, 602–608. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Saleh, A.; Bilbro, J.D.; Schromberg, H.M.; Stout, J.E.; Zobeck, T.M.; Schomberg, H.M.; Stout, J.E.; Zobeck, T.M. Revised Wind Erosion Equation; United States Department of Agriculture: Big Spring, TX, USA, 1998.
- Riksen, M.; Brouwer, F.; de Graaff, J. Soil conservation policy measures to control wind erosion in northwestern Europe. Catena 2003, 52, 309–326. [Google Scholar] [CrossRef]
- Lyles, L. Predicting and Controlling Wind Erosion. Agric. Hist. 1985, 59, 205–214. [Google Scholar]
- Funk, R.; Engel, W. Investigations with a field wind tunnel to estimate the wind erosion risk of row crops. Soil Tillage Res. 2015, 145, 224–232. [Google Scholar] [CrossRef]
- Tibke, G. 5. Basic principles of wind erosion control. Agric. Ecosyst. Environ. 1988, 22–23, 103–122. [Google Scholar] [CrossRef]
- Toure, A.A.; Rajot, J.-L.; Garba, Z.; Marticorena, B.; Petit, C.; Sebag, D. Impact of very low crop residues cover on wind erosion in the Sahel. Catena 2011, 85, 205–214. [Google Scholar] [CrossRef]
- López, M.V.; Gracia, R.; Arrúe, J.L. Effects of reduced tillage on soil surface properties affecting wind erosion in semiarid fallow lands of Central Aragón. Eur. J. Agron. 2000, 12, 191–199. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Tatarko, J.; Kucharski, M.; Dong, Z. PM2.5 and PM10 emissions from agricultural soils by wind erosion. Aeolian Res. 2015, 19, 171–182. [Google Scholar] [CrossRef]
- Fister, W.; Ries, J.B. Wind erosion in the central Ebro Basin under changing land use management. Field experiments with a portable wind tunnel. J. Arid Environ. 2009, 73, 996–1004. [Google Scholar] [CrossRef]
- Fryrear, D.W. Soil Cover and Wind Erosion. Trans. ASAE 1985, 28, 781–784. [Google Scholar] [CrossRef]
- Findlater, P.A.; Carter, D.J.; Scott, B. A model to predict the effects of prostrate ground cover on wind erosion. Aust. J. Soil Res. 1990, 28, 609–622. [Google Scholar] [CrossRef]
- Lancaster, N.; Baas, A. Influence of vegetation cover on sand transport by wind: Field studies at Owens Lake, California. Earth Surf. Process. Landf. 1998, 23, 69–82. [Google Scholar] [CrossRef]
- Bilbro, J.D.; Fryrear, D.W. Wind Erosion Losses as Related to Plant Silhouette and Soil Cover. Agron. J. 1994, 86, 550–553. [Google Scholar] [CrossRef]
- Nordstrom, K.F.; Hotta, S. Wind erosion from cropland in the USA: A review of problems, solutions and prospects. Geoderma 2004, 121, 157–167. [Google Scholar] [CrossRef]
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—rainfall and wind-induced soil erosion methodology. Biomass Bioenergy 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Lin, X.; Niu, J.; Yu, X.; Berndtsson, R.; Wu, S.; Xie, S. Maize residue effects on PM2.5, PM10, and dust emission from agricultural land. Soil Tillage Res. 2021, 205, 104738. [Google Scholar] [CrossRef]
- Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy 2020, 10, 732. [Google Scholar] [CrossRef]
- Burri, K.; Gromke, C.; Lehning, M.; Graf, F. Aeolian sediment transport over vegetation canopies: A wind tunnel study with live plants. Aeolian Res. 2011, 3, 205–213. [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Alvarez, L.; Epstein, H. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA. Biogeochemistry 2007, 85, 317–332. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, W.; Zhou, B.; Okin, G.S. Drone-Based Remote Sensing for Research on Wind Erosion in Drylands: Possible Applications. Remote Sens. 2021, 13, 283. [Google Scholar] [CrossRef]
- Eckardt, F.D.; Bekiswa, S.; Von Holdt, J.; Jack, C.; Kuhn, N.J.; Mogane, F.; Murray, J.E.; Ndara, N.; Palmer, A. South Africa’s agricultural dust sources and events from MSG SEVIRI. Aeolian Res. 2020, 47, 100637. [Google Scholar] [CrossRef]
- DAFF. Abstract of Agricultural Statistics; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2018.
- Moeletsi, M.E.; Walker, S. Rainy season characteristics of the Free State Province of South Africa with reference to rain-fed maize production. Water SA 2012, 38, 775–782. [Google Scholar] [CrossRef] [Green Version]
- Vos, H.C.; Fister, W.; von Holdt, J.R.; Eckardt, F.D.; Palmer, A.R.; Kuhn, N.J. Assessing the PM10 emission potential of sandy, dryland soils in South Africa using the PI-SWERL. Aeolian Res. 2021, 53, 100747. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Holmes, P. Dynamic controls on wind erosion and dust generation on west-central Free State agricultural land, South Africa. Earth Surf. Process. Landf. 2011, 36, 827–838. [Google Scholar] [CrossRef]
- Jones, A.; Breuning-Madsen, H.; Brossard, M.; Dampha, A.; Deckers, J.; Dewitte, O.; Gallali, T.; Hallett, S.; Jones, R.; Kilasara, M.; et al. Soil Atlas of Africa; European Commission, Publications Office of the European Union: Luxembourg, 2013; ISBN 978-92-79-26715-4. [Google Scholar]
- Meek, B.D.; Rechel, E.R.; Carter, L.M.; DeTar, W.R.; Urie, A.L. Infiltration Rate of a Sandy Loam Soil: Effects of Traffic, Tillage, and Plant Roots. Soil Sci. Soc. Am. J. 1992, 56, 908–913. [Google Scholar] [CrossRef]
- Patle, G.T.; Sikar, T.T.; Rawat, K.S.; Singh, S.K. Estimation of infiltration rate from soil properties using regression model for cultivated land. Geol. Ecol. Landsc. 2019, 3, 1–13. [Google Scholar] [CrossRef]
- Hensley, M.; Le Roux, P.; Preez, C.D.U.; van Huyssteen, C.W.; Kotze, E.; Van Rensburg, L. Soils: The Free State’s Agricultural Base. S. Afr. Geogr. J. 2006, 88, 11–21. [Google Scholar] [CrossRef]
- DAFF. Production Guidline for Wheat; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2016.
- Fryrear, D.W. A field dust sampler. J. Soil Water Conserv. 1986, 41, 117–120. [Google Scholar]
- Goossens, D.; Offer, Z.Y. Wind tunnel and field calibration of six aeolian dust samplers. Atmos. Environ. 2000, 34, 1043–1057. [Google Scholar] [CrossRef]
- Yang, X.; Wang, M.; He, Q.; Mamtimin, A.; Huo, W.; Yang, F.; Zhou, C. Estimation of sampling efficiency of the Big Spring Number Eight (BSNE) sampler at different heights based on sand particle size in the Taklimakan Desert. Geomorphology 2018, 322, 89–96. [Google Scholar] [CrossRef]
- Klose, M.; Gill, T.E.; Etyemezian, V.; Nikolich, G.; Ghodsi Zadeh, Z.; Webb, N.P.; Van Pelt, R.S. Dust emission from crusted surfaces: Insights from field measurements and modelling. Aeolian Res. 2019, 40, 1–14. [Google Scholar] [CrossRef]
- Webb, N.P.; Chappell, A.; Edwards, B.L.; McCord, S.E.; Van Zee, J.W.; Cooper, B.F.; Courtright, E.M.; Duniway, M.C.; Sharratt, B.S.; Tedela, N.; et al. Reducing Sampling Uncertainty in Aeolian Research to Improve Change Detection. J. Geophys. Res. Earth Surf. 2019, 124, 1366–1377. [Google Scholar] [CrossRef] [Green Version]
- Ellis, J.T.; Li, B.; Farrell, E.J.; Sherman, D.J. Protocols for characterizing aeolian mass-flux profiles. Aeolian Res. 2009, 1, 19–26. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Feng, G.; Wendling, L. Loss of soil and PM10 from agricultural fields associated with high winds on the Columbia Plateau. Earth Surf. Process. Landf. 2007, 32, 621–630. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Stout, J.E.; Hagen, L.J.; Vories, E.D. Wind Erosion: Field Measurement and Analysis. Trans. ASAE 1991, 34, 155–160. [Google Scholar] [CrossRef]
- Li, J.; Okin, G.S.; Herrick, J.; Belnap, J.; Munson, S.; Miller, M.E. A simple method to estimate threshold friction velocity of wind erosion in the field. Geophys. Res. Lett. 2010, 37, L10402. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Vaddella, V. Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Res. 2014, 15, 227–234. [Google Scholar] [CrossRef]
- Gillette, D.A. Threshold friction velocities for dust production for agricultural soils. J. Geophys. Res. Atmos. 1988, 93, 12645–12662. [Google Scholar] [CrossRef] [Green Version]
- Gillette, D.A.; Adams, J.; Endo, A.; Smith, D.; Kihl, R. Threshold velocities for input of soil particles into the air by desert soils (Mojave). J. Geophys. Res. 1980, 85, 5621–5630. [Google Scholar] [CrossRef]
- Van Pelt, R.S.; Peters, P.; Visser, S.M. Laboratory wind tunnel testing of three commonly used saltation impact sensors. Aeolian Res. 2009, 1, 55–62. [Google Scholar] [CrossRef]
- Wiggs, G.F.S.; Baird, A.J.; Atherton, R.J. The dynamic effects of moisture on the entrainment and transport of sand by wind. Geomorphology 2004, 59, 13–30. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Fryrear, D.W. Chemical and Physical Characteristics of Windblown Sediment II. Chemical Characteristics and Total Soil and Nutrient Discharge. Trans. ASAE 1986, 29, 1037–1041. [Google Scholar] [CrossRef]
- Webb, N.P.; Strong, C.L.; Chappell, A.; Marx, S.K.; McTainsh, G.H. Soil organic carbon enrichment of dust emissions: Magnitude, mechanisms and its implications for the carbon cycle. Earth Surf. Process. Landf. 2013, 38, 1662–1671. [Google Scholar] [CrossRef]
- Mendez, M.J.; Funk, R.; Buschiazzo, D.E. Field wind erosion measurements with Big Spring Number Eight (BSNE) and Modified Wilson and Cook (MWAC) samplers. Geomorphology 2011, 129, 43–48. [Google Scholar] [CrossRef]
- Stout, J.E.; Zobeck, T.M. Intermittent saltation. Sedimentology 1997, 44, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Stout, J.E.; Zobeck, T.M. The Wolfforth Field Experiment: A Wind Erosion Study. Soil Sci. 1996, 161, 616–632. [Google Scholar] [CrossRef]
- Wilson, M.F.J.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale Terrain Analysis of Multibeam Bathymetry Data for Habitat Mapping on the Continental Slope. Mar. Geod. 2007, 30, 3–35. [Google Scholar] [CrossRef] [Green Version]
- Bielders, C.L.; Vrieling, A.; Rajot, J.-L.; Skidmore, E.L. On-farm evaluation of field-scale soil losses by wind erosion under traditional management in the Sahel. Soil erosion research for the 21st century. In proceedings of the International Symposium, Honolulu, HI, USA, 3–5 January 2001. [Google Scholar] [CrossRef]
- Greeley, R.; Iversen, J.D. Wind as a Geological Process on Earth, Mars, Venus and Titan; Cambridge University Press: Cambridge, UK, 1985; ISBN 9780521359627. [Google Scholar]
- Vos, H.C.; Fister, W.; Eckardt, F.D.; Palmer, A.; Kuhn, N.J. Physical Crust Formation on Sandy Soils and Their Potential to Reduce Dust Emissions from Croplands. Land 2020, 9, 503. [Google Scholar] [CrossRef]
- Fryrear, D.W. Soil Ridges-Clods and Wind Erosion. Trans. ASAE 1984, 27, 445–448. [Google Scholar] [CrossRef]
- Liu, M.-X.; Wang, J.-A.; Yan, P.; Liu, L.-Y.; Ge, Y.-Q.; Li, X.-Y.; Hu, X.; Song, Y.; Wang, L. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil Tillage Res. 2006, 90, 242–249. [Google Scholar] [CrossRef]
- Sterk, G.; Herrmann, L.; Bationo, A. Wind-blown nutrient transport and soil productivity changes in southwest Niger. Land Degrad. Dev. 1996, 7, 325–335. [Google Scholar] [CrossRef]
- Santra, P.; Moharana, P.C.; Kumar, M.; Soni, M.L.; Pandey, C.B.; Chaudhari, S.K.; Sikka, A.K. Crop production and economic loss due to wind erosion in hot arid ecosystem of India. Aeolian Res. 2017, 28, 71–82. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.S.; Schillinger, W.F.; Bary, A.I.; Cogger, C.G. Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids. Aeolian Res. 2018, 32, 53–59. [Google Scholar] [CrossRef]
- Sharratt, B.S.; Collins, H.P. Wind Erosion Potential Influenced by Tillage in an Irrigated Potato–Sweet Corn Rotation in the Columbia Basin. Agron. J. 2018, 110, 842–849. [Google Scholar] [CrossRef]
- Gicheru, P.; Gachene, C.; Mbuvi, J.; Mare, E. Effects of soil management practices and tillage systems on surface soil water conservation and crust formation on a sandy loam in semi-arid {Kenya}. Soil Tillage Res. 2004, 75, 173–184. [Google Scholar] [CrossRef]
- Funk, R.; Reuter, H.; Hoffmann, C.; Engel, W.; Oettl, D. Effect of Moisture on Fine Dust Emission from Tillage Operations on Agricultural Soils. Earth Surf. Proc. Land. 2008, 33, 1851–1863. [Google Scholar] [CrossRef]
- López, M.V.; Sabre, M.; Gracia, R.; Arrúe, J.L.; Gomes, L. Tillage effects on soil surface conditions and dust emission by wind erosion in semiarid {Aragón} ({NE} {Spain}). Soil Tillage Res. 1998, 45, 91–105. [Google Scholar] [CrossRef] [Green Version]
- Bunn, J.A. Government Policy, Wind Erosion, And Economic Viability In Semi-Arid Agriculture: The Case Of The Southern Texas High Plains. J. Agric. Appl. Econ. 1998, 30, 339–351. [Google Scholar] [CrossRef] [Green Version]
- Rajot, J.-L. Wind blown sediment mass budget of Sahelian village land units in Niger. Bull. Soc. Géol. Fr. 2001, 172, 523–531. [Google Scholar] [CrossRef]
- Raupach, M.R.; Gillette, D.A.; Leys, J.F. The effect of roughness elements on wind erosion threshold. J. Geophys. Res. Atmos. 1993, 98, 3023–3029. [Google Scholar] [CrossRef]
Field | Stubble Laying | Stubble Standing |
---|---|---|
Sunflower | 2–5 cm | 10 to 20 cm |
Maize | 0–10 cm | 30 cm |
Peanut | 0–2 cm | None |
Fallow | None | None |
Field | Average Clay % | Average Silt % | Average Sand % | Average TOC % |
---|---|---|---|---|
Maize field | 12.3 | 3.0 | 84.7 | 0.227 |
Sunflower field | 10.2 | 2.7 | 87.1 | 0.200 |
Groundnut field | 8.7 | 2.6 | 88.8 | 0.184 |
Fallow field | 17.1 | 4.1 | 78.8 | 0.318 |
Field | Aerodynamic Roughness Length (mm) | Saltation Threshold Velocity (m s−1) | Minutes That Threshold Is Exceeded (%) | Days That Threshold Is Exceeded (%) | ||||
---|---|---|---|---|---|---|---|---|
Mean | n | σ | Mean | n | σ | |||
Maize field | 31.1 | 46 | 9.66 | >7.7 | <2.1% | <30% | ||
Sunflower field | 1.9 | 410 | 1.25 | 5.96 | 61 | 2.22 | 6.1% | 45% |
Groundnut field | 0.8 | 1203 | 0.76 | 5.95 | 36 | 1.15 | 8.8% | 62% |
Fallow field | 3.0 | 794 | 10.0 | 6.54 | 11 | 2.48 | 6.1% | 45% |
Maize Field | Sunflower Field | Groundnut Field | Fallow Field | |||||
---|---|---|---|---|---|---|---|---|
Cover | 66% | ±7% | 38% | ±5% | 11% | ±0.4% | 40% | ±0.5% |
Soil | 34% | 62% | 89% | 60% |
Maize Field | Sunflower Field | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Crop | Crust | Track | Crop | Crust | Track | |||||||
Fraction of field | 82% | 6% | 12% | 55% | 16% | 30% | ||||||
Cover | 85% | ±8% | 39% | ±7% | 37% | ±6% | 48% | ±7% | 26% | ±2% | 22% | ±3% |
Soil | 15% | 61% | 63% | 52% | 74% | 78% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vos, H.C.; Karst, I.G.; Eckardt, F.D.; Fister, W.; Kuhn, N.J. Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture. Agronomy 2022, 12, 457. https://doi.org/10.3390/agronomy12020457
Vos HC, Karst IG, Eckardt FD, Fister W, Kuhn NJ. Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture. Agronomy. 2022; 12(2):457. https://doi.org/10.3390/agronomy12020457
Chicago/Turabian StyleVos, Heleen C., Isabel G. Karst, Frank D. Eckardt, Wolfgang Fister, and Nikolaus J. Kuhn. 2022. "Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture" Agronomy 12, no. 2: 457. https://doi.org/10.3390/agronomy12020457
APA StyleVos, H. C., Karst, I. G., Eckardt, F. D., Fister, W., & Kuhn, N. J. (2022). Influence of Crop and Land Management on Wind Erosion from Sandy Soils in Dryland Agriculture. Agronomy, 12(2), 457. https://doi.org/10.3390/agronomy12020457