Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growing Media
2.2. Preparing of Bio-Nanofertilizers
2.3. Acclimatization Treatments
2.4. Measuring Photosynthetic Parameters
2.4.1. Chlorophyll Pigments
2.4.2. Chlorophyll Fluorescence
2.5. Biochemical Assessments
2.6. Analyses of Growing Media
2.7. Chemical Composition of Acclimatized Plants
2.8. Statistical Analyses
3. Results
3.1. Vegetative Growth of Acclimatized Plants
3.2. Photosynthetic Pigments and Its Fluorescence
3.3. Enzymatic Antioxidant Activities
3.4. Applied Nanofertilizers and Growing Medium
3.5. Chemical Composition of Acclimatized Plants
4. Discussion
4.1. Growth of Acclimatized Plants
4.2. Photosynthetic Pigments and Fluorescence
4.3. Antioxidant Enzymatic Activities of Banana Transplants
4.4. Growing Media and Acclimatized Plants
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, S.; Rana, V.S.; Pawar, R.; Lakra, J.; Racchapannavar, V.K. Nanofertilizers for sustainable fruit production: A review. Environ. Chem. Lett. 2021, 19, 1693–1714. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano- Fertilization as an Emerging Fertilization Technique: Why Can Modern Agriculture Benefit from Its Use? Plants 2021, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Jogaiah, S.; Singh, H.B.; Fraceto, L.F.; de Lima, R. Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement; A Volume in Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier Inc.: Amsterdam, Netherlands, 2021. [Google Scholar] [CrossRef]
- Al-Mamun, M.R.; Hasan, M.R.; Ahommed, M.S.; Bacchu, M.S.; Ali, M.R.; Khan, M.Z.H. Nanofertilizers towards sustainable agriculture and environment. Environ. Technol. Innov. 2021, 23, 101658. [Google Scholar] [CrossRef]
- Abdulhameed, M.F.; Taha, A.A.; Ismail, R.A. Improvement of cabbage growth and yield by nanofertilizers and nanoparticles. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100437. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Saharan, V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Sharma, S.S.; Rakshit, S.; Raliya, R.; Biswas, P. Chitosan-silicon nanofertilizer to enhance plant growth and yield in maize (Zea mays L.). Plant Physiol. Biochem. 2021, 159, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Sheoran, P.; Grewal, S.; Kumari, S.; Goel, S. Enhancement of growth and yield, leaching reduction in Triticum aestivum using biogenic synthesized zinc oxide nanofertilizer. Biocatal. Agric. Biotechnol. 2021, 32, 101938. [Google Scholar] [CrossRef]
- Abdel-Aziz, H.M.M.; Soliman, M.I.; Abo Al-Saoud, A.M.; El-Sherbeny, G.A. Waste-Derived NPK Nanofertilizer Enhances Growth and Productivity of Capsicum annuum L. Plants 2021, 10, 1144. [Google Scholar] [CrossRef] [PubMed]
- Cota-Ruiz, K.; Ye, Y.; Valdes, C.; Deng, C.; Wang, Y.; Hernández-Viezcas, J.A.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies. Sci. Total Environ. 2020, 742, 140572. [Google Scholar] [CrossRef]
- Moreno-Martín, G.; Sanz-Landaluze, J.; León-González, M.E.; Madrid, Y. Insights into the accumulation and transformation of Ch-SeNPs by Raphanus sativus and Brassica juncea: Effect on essential elements uptake. Sci. Total Environ. 2020, 725, 138453. [Google Scholar] [CrossRef]
- Voora, V.; Larrea, C. Global Market Report: Bananas. Sustainable Commodities Market Place Series 2020. Available online: https://www.iisd.org/system/files/publications/ssi-global-market-report-banana.pdf (accessed on 20 July 2021).
- Gamez, R.M.; Rodríguez, F.; Vidal, N.M.; Ramirez, S.; Alvarez, R.V.; Landsman, D.; Mariño-Ramírez, L. Banana (Musa acuminata) transcriptome profiling in response to rhizobacteria: Bacillus amyloliquefaciens Bs006 and Pseudomonas fluorescens Ps006. Genomics 2019, 20, 378. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Bei, S.; Li, B.; Zhang, J.; Christie, P.; Li, X. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota. Appl. Soil Ecol. 2019, 136, 67–79. [Google Scholar] [CrossRef]
- Othman, S.H.; Abdullah, N.A.; Nordin, N.; Shah, N.N.A.; Nor, M.Z.M.; Yunos, F.M. Shelf life extension of Saba banana: Effect of preparation, vacuum packaging, and storage temperature. Food Packag. Shelf Life 2021, 28, 100667. [Google Scholar] [CrossRef]
- Sperança, M.A.; Mayorquín-Guevara, J.E.; da Cruz, M.C.P.; Teixeira, G.H.D.; Pereira, F.M.V. Biofortification quality in bananas monitored by energy-dispersive X-ray fluorescence and chemometrics. Food Chem. 2021, 362, 130172. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Mensah, R.A.; Liu, F.; Tian, N.; Qi, Q.; Yeh, K.W.; Xuhan, X.; Cheng, C.; Lai, Z. Effects of Piriformospora indica on rooting and growth of tissue-cultured banana (Musa acuminata cv. Tianbaojiao) transplants. Sci. Hortic. 2019, 257, 108649. [Google Scholar] [CrossRef]
- Araújo, R.C.; Rodrigues, F.A.; Nadal, M.C.; Ribeiro, M.D.; Antonio, C.A.C.; Rodrigues, V.A.; de Souza, A.C.; Pasqual, M.; Doria, J. Acclimatization of Musa spp. transplants using endophytic Bacillus spp. and Buttiauxella agrestis strains. Microbiol. Res. 2021, 248, 126750. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Jin, X.; Ma, H.; Deng, Y.; Huang, J.; Yin, L. Changes of plant biomass partitioning, tissue nutrients and carbohydrates status in magnesium-deficient banana transplants and remedy potential by foliar application of magnesium. Sci. Hortic. 2020, 268, 109377. [Google Scholar] [CrossRef]
- Islam, M.A.; Sayeed, K.M.A.; Alam, M.J.; Rahman, M.A. Effect of nitrogen and potassium on growth parameters of banana. J. Biosci. Agric. Res. 2020, 26, 2159–2169. [Google Scholar] [CrossRef]
- Moreira, F.M.; Cairo, P.A.R.; Borges, A.L.; da Silva, L.D.; Haddad, F. Investigating the ideal mixture of soil and organic compound with Bacillus sp. and Trichoderma asperellum inoculations for optimal growth and nutrient content of banana transplants. S. Afr. J. Bot. 2021, 137, 249–256. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Hossain, M.M.; Sharma, M.; Dobránszki, J.; Cardoso, J.C.; Songjun, Z. Acclimatization of in Vitro-derived Dendrobium. Hortic. Plant J. 2017, 3, 110–124. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant 1962, 15, 473–495. [Google Scholar] [CrossRef]
- Moran, R.; Porath, D. Chlorophyll determination in intact tissue using N,N-Dimethyl formamide. Plant Physiol. 1982, 69, 1370–1381. [Google Scholar] [CrossRef] [Green Version]
- Dewir, Y.H.; Chakrabarty, D.; Ali, M.B.; Hahn, E.J.; Paek, K.Y. Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets. Plant Growth Regul. 2005, 46, 41–251. [Google Scholar] [CrossRef]
- Hafez, Y.M.; Bacsó, R.; Király, Z.; Künstler, A.; Király, L. Up-Regulation of Antioxidants in Tobacco by Low Concentrations of H2O2 Suppresses Necrotic Disease Symptoms. Phytopathology 2012, 102, 848–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aebi, H. Catalase in vitro. Methods Enzymo. 1984, 105, 121–126. [Google Scholar]
- Malik, C.P.; Singh, M.B. Plant Emynology and Histoenzymology. Kalyani Publishers; Indian and Printed in Navin; Shanndara: Delhi, India, 1980; pp. 54–56. [Google Scholar]
- Hammerschmidt, R.; Nuckles, E.M.; Kuc, J. Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiol. Plant Pathol. 1982, 20, 73–82. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Agron. No. 9, Part 2, 2nd ed.; Page, A.L., Keeney, D.R., Baker, D.E., Miller, R.H., Ellis, R., Jr., Rhoades, J.D., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Page, A.L.; Miller, R.H.; Keeny, D.R. Methods of Soil Analysis, Part II, Agronomy Monographs ASA and SSSA, 2nd ed.; Madison Book Company: Madison, WI, USA, 1982. [Google Scholar]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- USDA. Soil Survey Laboratory Methods Manual Soil Survey Investigation Report; No. 42, Version 4; USDA-NRCS: Lincoln, Nebraska, 2004. [Google Scholar]
- Dernovics, M.; Stefanka, Z.; Fodor, P. Improving selenium extraction by sequential enzymatic processes for Se-speciation of selenium-enriched Agaricus bisporus. Anal. Bioanal Chem. 2002, 372, 473–480. [Google Scholar] [CrossRef]
- Helaly, M.N.; El-Metwally, M.A.; El-Hoseiny, E.H.; Elsheery, N.I. Effect of nanoparticles on biological contamination of in vitro cultures and organogenic regeneration of banana. Aust. J. Crop Sci. 2014, 8, 612–624. [Google Scholar]
- Mahmoud, L.M.; Dutt, M.; Shalan, A.M.; El-Kady, M.E.; El-Boray, M.S.; Shabana, Y.M.; Grosser, J.W. Silicon nanoparticles mitigate oxidative stress of in vitro-derived banana (Musa acuminata Grand Nainâ) under simulated water deficit or salinity stress. S. Afr. J. Bot. 2020, 132, 155–163. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Sofy, M.R.; Aldaej, M.I.; Mohamed, H.I. Silicon alleviates copper toxicity in flax plants by up-regulating antioxidant defense and secondary metabolites and decreasing oxidative damage. Sustainability 2020, 12, 4732. [Google Scholar] [CrossRef]
- Hasanin, M.; Hashem, A.H.; Lashin, I.; Hassan, S.A.M. In vitro improvement and rooting of banana plantlets using antifungal nanocomposite based on myco-synthesized copper oxide nanoparticles and starch. Biomass Convers. Biorefinery 2021. [Google Scholar] [CrossRef]
- Abou Elyazid, D.M.A.; Salama, A.M.; Zanaty, A.F.M.E.; Abdalla, N. In Vitro Propagation and Acclimatization of Banana Plants: Antioxidant Enzymes, Chemical Assessments and Genetic Stability of Regenerates as a Response to Copper Sulphate. Plants 2021, 10, 1853. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Sofy, M.R.; Mohamed, H.I. Role of ascorbic acid, glutathione and proline applied as singly or in sequence combination in improving chickpea plant through physiological change and antioxidant defense under different levels of irrigation intervals. Molecules 2020, 25, 1702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Beltagi, H.S.; Ahmad, I.; Basit, A.; Shehata, W.F.; Hassan, U.; Shah, S.T.; Haleema, B.; Jalal, A.; Amin, R.; Khalid, M.A.; et al. Ascorbic acid enhances growth and yield of sweet peppers (Capsicum annum) by mitigating salinity stress. Gesunde Pflanzen 2022, 74, 1–11. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ahmad, I.; Basit, A.; Abd El-Lateef, H.M.; Yasir, M.; Shah, S.T.; Ullah, I.; Mohamed, M.E.M.; Ali, I.; Ali, F.; et al. Effect of azospirillum and azotobacter species on the performance of cherry tomato under different salinity levels. Gesunde Pflanzen 2022, 74, 1–13. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Taha, N.A.; Taher, D.I.; Metwaly, M.M.; El-Beltagi, H.S.; Rezk, A.A.; El-Ganainy, S.M.; Shehata, W.F.; El-Ramady, H.R.; Bayoumi, Y.A. Paclobutrazol improves the quality of tomato seedlings to be resistant to Alternaria solani Blight disease: Biochemical and histological perspectives. Plants 2022, 11, 425. [Google Scholar] [CrossRef]
- Seliem, M.K.; Hafez, Y.M.; El-Ramady, H.R. Using Nano—Selenium in Reducing the Negative Effects of High Temperature Stress on Chrysanthemum morifolium Ramat. J. Sus. Agric. Sci. 2020, 46, 47–59. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Y.; Jiao, T.; Zhang, Y.; Chen, J.; Gao, Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice (Oryza sativa L.) Transplants and the Relevant Physiological Responses. Int. J. Environ. Res. Public Health 2020, 17, 1260. [Google Scholar] [CrossRef] [Green Version]
- Kohatsu, M.; Lange, C.L.; Pelegrino, M.T.; Pieretti, J.C.; Tortella, G.; Rubilar, O.; Batista, B.L.; Seabra, A.B.; de Jesus, T.A. Foliar spraying of biogenic CuO nanoparticles protects the defense system and photosynthetic pigments of lettuce (Lactuca sativa). J. Clean Prod. 2021, 324, 129264. [Google Scholar] [CrossRef]
- Shalaby, T.A.; Abd-Alkarim, E.; El-Aidy, F.; Hamed, E.; Sharaf-Eldin, M.; Taha, N.; El-Ramady, H.; Bayoumi, Y.; Dos Reis, A.R. Nano-selenium, silicon and H2O2 boost growth and productivity of cucumber under combined salinity and heat stress. Ecotoxicol. Environ. Saf. 2021, 212, 111962. [Google Scholar] [CrossRef]
- Mykhaylenko, N.F.; Zolotareva, E.K. The Effect of Copper and Selenium Nanocarboxylates on Biomass Accumulation and Photosynthetic Energy Transduction Efficiency of the Green Algae Chlorella Vulgaris. Nanoscale Res. Lett. 2017, 12, 147. [Google Scholar] [CrossRef] [Green Version]
- El-Beltagi, H.S.; Hashem, F.A.; Maze, M.; Shalaby, T.A.; Shehata, W.F.; Taha, N.M. Control of gas emissions (N2O and CO2) associated with applied different rates of nitrogen and their influences on growth, productivity, and physio-biochemical attributes of green bean plants grown under different irrigation methods. Agronomy 2022, 12, 249. [Google Scholar] [CrossRef]
- Da Costa, M.V.; Kevat, N.; Sharma, P.K. Copper Oxide Nanoparticle and Copper (II) Ion Exposure in Oryza sativa Reveals Two Different Mechanisms of Toxicity. Water Air Soil Pollut. 2020, 231, 258. [Google Scholar] [CrossRef]
- Ortas, İ.; Rafique, M.; Akpinar, C.; Kacar, Y.A. Growth media and mycorrhizal species effect on acclimatization and nutrient uptake of banana plantlets. Sci. Hortic. 2017, 217, 55–60. [Google Scholar] [CrossRef]
Treatments (mg L−1) | Growing Medium pH | Salinity of Growing Medium (dS m−1) |
---|---|---|
T1: Control | 5.42 | 0.435 |
T2: Nano-Se (25) | 5.32 | 0.446 |
T3: Nano-Se (50) | 5.41 | 0.479 |
T4: Nano-Se (75) | 5.77 | 0.330 |
T5: Nano-Se (100) | 5.52 | 0.329 |
T6: Nano-Cu (50) | 5.27 | 0.413 |
T7: Nano-Cu (100) | 5.25 | 0.410 |
Treatments (mg L−1) | F0 | FM | FV | FV/FM | FV/F0 |
---|---|---|---|---|---|
T1: Control | 375 ± 4.73 f | 1517 ± 8.08 f | 1142 ± 4.58 b | 0.75 ± 0.02 a | 3.04 ± 0.07 a |
T2: Nano-Se (25) | 396 ± 7.21 e | 1541 ± 3.06 e | 1145 ± 8.50 b | 0.74 ± 0.02 b | 2.89 ± 0.04 b |
T3: Nano-Se (50) | 422 ± 7.37 d | 1569 ± 4.04 d | 1147 ± 7.21 b | 0.73 ± 0.01 c | 2.71 ± 0.04 c |
T4: Nano-Se (75) | 460 ± 6.11 c | 1592 ± 4.36 c | 1132 ± 9.00 c | 0.71 ± 0.01 d | 2.46 ± 0.04 d |
T5: Nano-Se (100) | 474 ± 4.16 b | 1600 ± 5.51 c | 1126 ± 6.66 d | 0.70 ± 0.01 d | 2.37 ± 0.05 d |
T6: Nano-Cu (50) | 451 ± 8.00 c | 1644 ± 8.19 b | 1193 ± 3.66 a | 0.72 ± 0.02 c | 2.65 ± 0.04 c |
T7: Nano-Cu (100) | 502 ± 10.79 a | 1694 ± 7.09 a | 1192 ± 2.21 a | 0.70 ± 0.04 d | 2.37 ± 0.06 d |
L.S.D 0.05 | 12.62 | 10.62 | 5.40 | 0.01 | 0.08 |
Doses | N | P | K | Fe | Mn | Zn | Cu | Se |
---|---|---|---|---|---|---|---|---|
T1: Control | 112 ± 1.00 g | 14.60 ± 0.10 b | 191.56 ± 2.95 c | 232 ± 1.55 d | 17.5 ± 0.50 c | 28.00 ± 2.00 ab | 6.77 ± 0.25 d | 0.0015 ± 0.0001 e |
T2: Nano-Se (25) | 126 ± 1.00 f | 11.62 ± 0.07 c | 184.43 ± 0.51 d | 240 ± 1.52 c | 15.6 ± 0.40 d | 27.53 ± 0.56 ab | 7.72 ± 0.10 c | 0.0023 ± 0.0001 d |
T3: Nano-Se (50) | 154 ± 1.00 e | 10.89 ± 0.10 e | 230.40 ± 0.52 b | 265 ± 1.00 a | 19.50 ± 0.50 b | 23.50 ± 0.50 c | 4.95 ± 0.04 e | 0.0033 ± 0.0002 c |
T4: Nano-Se (75) | 490 ± 1.52 b | 10.33 ± 0.15 f | 183.50 ± 0.50 d | 200 ± 2.00 e | 17.00 ± 0.50 c | 17.67 ± 0.65 d | 5.16 ± 0.14 e | 0.0036 ± 0.0001 b |
T5: Nano-Se (100) | 518 ± 1.52 a | 11.07 ± 0.02 d | 236.86 ± 0.15 a | 197 ± 2.02 e | 20.73 ± 0.75 a | 19.03 ± 0.47 d | 4.35 ± 0.14 f | 0.0057 ± 0.0001 a |
T6: Nano-Cu (50) | 252 ± 1.00 c | 15.75 ± 0.05 a | 197.90 ± 0.40 c | 266 ± 1.06 a | 20.10 ± 0.3 ab | 28.52 ± 0.45 a | 64.42 ± 0.51 b | 0.0016 ± 0.0001 e |
T7: Nano-Cu (100) | 182 ± 1.00 d | 15.91 ± 0.10 a | 237.86 ± 0.15 a | 255 ± 2.00 b | 7.76 ± 0.25 e | 26.45 ± 0.50 b | 141.8 ± 0.20 a | 0.0031 ± 0.0001 c |
LSD 0.05 | 2.05 | 0.16 | 2.06 | 2.99 | 0.85 | 1.57 | 0.43 | 0.001 |
Doses | N | P | K | Fe | Mn | Zn | Cu | Se |
---|---|---|---|---|---|---|---|---|
T1: Control | 4621 ± 3.6 d | 273 ± 1.00 c | 1982 ± 1.00 d | 3900 ± 10.00 f | 78.0 ± 1.00 g | 240 ± 1.00 c | 112 ± 1.52 c | 0.206 ± 0.003 g |
T2: Nano-Se (25) | 4620 ± 3.5 d | 168 ± 1.52 f | 1902 ± 2.00 f | 3235 ± 5.00 g | 139 ± 1.00 f | 249 ± 1.00 bc | 99 ± 1.00 d | 0.340 ± 0.001 e |
T3: Nano-Se (50) | 4901 ± 17 b | 210 ± 1.00 d | 2180 ± 2.00 c | 5425 ± 5.00 e | 206 ± 1.00 d | 275 ± 1.00 bc | 98 ± 1.00 de | 0.509 ± 0.002 b |
T4: Nano-Se (75) | 5320 ± 2.0 a | 189 ± 1.00 c | 1919 ± 1.00 e | 8025 ± 5.00 a | 200 ± 1.00 e | 265 ± 1.52 bc | 96 ± 1.00 e | 1.610 ± 0.002 a |
T5: Nano-Se (100) | 4760 ± 3.5 c | 168 ± 1.52 f | 2265 ± 1.00 b | 5925 ± 5.00 d | 210 ± 1.00 c | 264 ± 1.00 bc | 97 ± 1.00 de | 0.456 ± 0.012 c |
T6: Nano-Cu (50) | 4901 ± 8.0 b | 279 ± 6.02 b | 1743 ± 1.00 g | 6075 ± 5.00 c | 387 ± 1.00 b | 285 ± 1.00 b | 128 ± 2.00 b | 0.256 ± 0.001 f |
T7: Nano-Cu (100) | 4060± 5.0 e | 289 ± 5.56 a | 2318 ± 1.00 a | 6325 ± 45.00 b | 434 ± 1.00 a | 328 ± 58.60 a | 160 ± 2.00 a | 0.406 ± 0.001 d |
LSD 0.05 | 13.88 | 5.73 | 12.10 | 10.46 | 1.75 | 38.83 | 2.50 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shalaby, T.A.; El-Bialy, S.M.; El-Mahrouk, M.E.; Omara, A.E.-D.; El-Beltagi, H.S.; El-Ramady, H. Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium. Agronomy 2022, 12, 539. https://doi.org/10.3390/agronomy12020539
Shalaby TA, El-Bialy SM, El-Mahrouk ME, Omara AE-D, El-Beltagi HS, El-Ramady H. Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium. Agronomy. 2022; 12(2):539. https://doi.org/10.3390/agronomy12020539
Chicago/Turabian StyleShalaby, Tarek A., Said M. El-Bialy, Mohammed E. El-Mahrouk, Alaa El-Dein Omara, Hossam S. El-Beltagi, and Hassan El-Ramady. 2022. "Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium" Agronomy 12, no. 2: 539. https://doi.org/10.3390/agronomy12020539
APA StyleShalaby, T. A., El-Bialy, S. M., El-Mahrouk, M. E., Omara, A. E. -D., El-Beltagi, H. S., & El-Ramady, H. (2022). Acclimatization of In Vitro Banana Seedlings Using Root-Applied Bio-Nanofertilizer of Copper and Selenium. Agronomy, 12(2), 539. https://doi.org/10.3390/agronomy12020539