Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia
Abstract
:1. Introduction
2. Seed and Pod
3. Stem (Determinate Growth Habit)
4. Leaf
5. Nodulation and Symbiotic Nitrogen Fixation
6. Collections of Germplasm with Identified Genotypes
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Winter, P.; Kahl, G. Molecular marker technologies for plant improvement. World J. Microbiol. Biotechnol. 1995, 11, 438–448. [Google Scholar] [CrossRef] [PubMed]
- Govindaraj, M.; Vetriventhan, M.; Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015, 2015, 431487. [Google Scholar] [CrossRef] [Green Version]
- Weeden, N.F. Genetic changes accompanying the domestication of Pisum sativum: Is there a common genetic basis to the ‘domestication syndrome’ for legumes? Ann. Bot. 2007, 100, 1017–1025. [Google Scholar] [CrossRef] [Green Version]
- Mendel, G. Versuche über Pflanzenhybriden. Verh. Nat. Ver. Brünn 1866, 4, 3–47. [Google Scholar]
- Hellens, R.P.; Moreau, C.; Lin-Wang, K.; Schwinn, K.E.; Thomson, S.J.; Fiers, M.W.E.; Frew, T.J.; Murray, S.R.; Hofer, J.M.; Jacobs, J.M.E.; et al. Identification of Mendel’s white flower character. PLoS ONE 2010, 5, e13230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerard, J. The Herball or Historie of Plantes; John Norton: London, UK, 1597. [Google Scholar]
- PGene. Pisum Gene List. Available online: http://data.jic.ac.uk/pgene/ (accessed on 13 January 2022).
- Aubert, G.; Burstin, J.; Lejeune-Hénaut, I.; Donnadieu, C.; Jacquin, F.; Marty, A.; Charrel, H.; Deulvot, C. Highly-multiplexed SNP genotyping for genetic mapping and germplasm diversity studies in pea. BMC Genom. 2010, 11, 468. [Google Scholar]
- Berdnikov, V.A.; Rozov, S.M.; Swiecicki, W.K.; Timmerman-Vaughan, G.M.; Ellis, T.H.N.; Weeden, N.F. A consensus linkage map for Pisum sativum. Pisum Genet. 1998, 30, 1–3. [Google Scholar]
- Gostimsky, S.; Toshchakova, E.; Konovalov, F. A CAPS marker set for mapping in linkage group III of pea (Pisum sativum L.). Cell. Mol. Biol. Lett. 2005, 10, 163–171. [Google Scholar]
- Rameau, C.; Ellis, N.; Haurogne, K.; Laucou, V. Genetic mapping in pea. I. RAPD-based linkage map of Pisum sativum. Theor. Appl. Genet. 1998, 97, 905–915. [Google Scholar]
- Święcicki, W.K.; Wolko, B.; Irzykowska, L. The genetic linkage map of pea (Pisum sativum L.) based on molecular, biochemical and morphological markers. Pisum Genet. 2001, 33, 13–18. [Google Scholar]
- Timmerman-Vaughan, G.M.; Frew, T.J.; McCallum, J.A.; Gilpin, B.J. A linkage map of the pea (Pisum sativum L.) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor. Appl. Genet. 1997, 95, 1289–1299. [Google Scholar]
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the genomic era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, C.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Maxted, N.; Ambrose, M. Peas (Pisum L.). In Plant Genetic Resources of Legumes in the Mediterranean; Maxted, N., Bennett, S.J., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 181–190. [Google Scholar]
- Hellwig, T.; Abbo, S.; Ophir, R. Phylogeny and disparate selection signatures suggest two genetically independent domestication events of pea (Pisum L.). Plant J. 2022; in press. [Google Scholar] [CrossRef]
- Ladizinsky, G. Seed dispersal in relation to domestication of Middle East legumes. Econ. Bot. 1979, 33, 284–289. [Google Scholar] [CrossRef]
- Ambrose, M.J.; Ellis, T.H.N. Ballistic seed dispersal and associated seed shadow in wild Pisum germplasm. Pisum Genet. 2008, 40, 5–10. [Google Scholar]
- Kosterin, O.E.; Zaytseva, O.O.; Bogdanova, V.S.; Ambrose, M.J. New data on three molecular markers from different cellular genomes in Mediterranean accessions reveal new insights into phylogeography of Pisum sativum L. subsp. elatuis (Bieb.) Schmalh. Genet. Resour. Crop Evol. 2010, 57, 733–739. [Google Scholar] [CrossRef]
- Eglitis, A. Paksaugu sēlekcija un seklkopiba. In Par Augstām Ražām; Riga, Latvia, 1959; pp. 61–68. [Google Scholar]
- Khangildin, V.K.; Khangildin, W.V. Some results of genetic research with peas. Tr. Bashkirskogo NIISKh 1969, 3, 40–61. [Google Scholar]
- Ayeh, K.O.; Lee, Y.; Ambrose, M.J.; Hvoslef-Eide, A.K. Characterization and structural analysis of wild type and a non-abscission mutant at the development funiculus (Def) locus in Pisum sativum L. BMC Plant Biol. 2009, 9, 76. [Google Scholar] [CrossRef] [Green Version]
- Zelenov, A.N. Nonshattering attribute of peas seeds. Zernobobovye i Krupyanye Kul′tury 2013, 2, 79–85. [Google Scholar]
- Lamichaney, A.; Parihar, A.K.; Dixit, G.P.; Singh, A.K.; Kumar, N.; Revanasidda; Singh, N.P. Intact funiculus in mature harvested seeds of field pea (Pisum sativum L.): Preliminary investigation and possible implications. Crop Sci. 2021, 61, 2863–2871. [Google Scholar] [CrossRef]
- Bhattacharyya, M.K.; Smith, A.M.; Ellis, T.H.N.; Hedley, C.; Martin, C. The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 1990, 60, 115–122. [Google Scholar] [CrossRef]
- Faostat. 2019. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 November 2021).
- FGBNU Rosinformagrotekh. State Register for Selection Achievements Admitted for Usage (National List); FGBNU Rosinformagrotekh: Moscow, Russia, 2021; Volume 1, pp. 38–43, 175–179. [Google Scholar]
- Hufford, M.B.; Berny Mier y Teran, J.C.; Gepts, P. Crop biodiversity: An unfinished magnum opus of nature. Ann. Rev. Plant Biol. 2019, 70, 727–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krylova, E.A.; Khlestkina, E.K.; Burlyaeva, M.O.; Vishnyakova, M.A. Determinate growth habit of grain legumes: Role in domestication and selection, genetic control. Ecol. Genet. 2020, 18, 43–58. [Google Scholar] [CrossRef]
- Makasheva, R.K.; Drozd, A.M. Determinate growth habit (det) in peas: Isolation, symbolization and linkage. Pisum Newslett. 1987, 19, 31–32. [Google Scholar]
- Sinjushin, A.A.; Volovikov, E.A.; Ash, O.A.; Khartina, G.A. Mutation determinate habit has a semidominant mode of inheritance in pea. Zernobobovye i Krupyanye Kul′tury 2016, 4, 15–22. [Google Scholar]
- Popova, I.A. Characterization of selected mutant lines of vegetable pea. In Chemical Mutagenesis and Production of Breeding Material; Nauka: Moscow, Russia, 1972; pp. 261–264. [Google Scholar]
- Fadeeva, A.N.; Abrosimova, T.A. Perspectives of breeding of marrowfat pea varieties. Breed. Seed Prod. Veg. Crops 2009, 43, 140–143. [Google Scholar]
- Besedin, A.G. Varieties and basic techniques of pea cultivation in Kuban. Veg. Crops Russ. 2013, 1, 86–89. [Google Scholar] [CrossRef]
- Ushakov, V.A.; Kotlyar, I.P.; Pronina, E.P. New cultivars of vegetable pea for conveyor expansion. Potato Veg. 2014, 12, 30–31. [Google Scholar]
- Kondykov, I.V.; Zotikov, V.I.; Zelenov, A.N.; Kondykova, N.N.; Uvarov, V.N. Biology and Breeding of Determinate Forms of Pea; Kartush: Orel, Russia, 2006; pp. 1–120. [Google Scholar]
- Shevchenko, A.M. Breeding cultivars of pea having new morphobiological types. Sel. i Semenovod. 1989, 5, 20–22. [Google Scholar]
- Zelenov, A.N.; Kondykov, I.V.; Uvarov, V.N. Vavilov principles in pea breeding in the XXI century. Zernobobovye i Krupyanye Kul′tury 2012, 4, 19–27. [Google Scholar]
- Kondykov, I.V.; Uvarov, V.N.; Butrimova, N.A.; Kondykova, N.N. Prospects of use of the morphotype lupinoid in peas breeding. Zernobobovye i Krupyanye Kul′tury 2013, 1, 15–19. [Google Scholar]
- Zelenov, A.A.; Zelenov, A.N.; Naumkina, T.S.; Novikova, N.E.; Zadorin, A.M.; Budarina, G.A.; Bobkov, C.V. Creation and using in breeding of genetic diversity of dissected leaf morphotype of peas. Zernobobovye i Krupyanye Kul′tury 2017, 2, 8–16. [Google Scholar]
- Mikić, A.; Mihailović, V.; Ćupina, B.; Kosev, V.; Warkentin, T.; McPhee, K.; Ambrose, M.; Hofer, J.; Ellis, N. Genetic background and agronomic value of leaf types in pea (Pisum sativum L.). Ratar. Povrt. 2011, 48, 275–284. [Google Scholar] [CrossRef]
- Amelin, A.V. Photosynthetic properties of plants in the aspect of selection of peas with a mustachioed leaf shape. Rep. Russ. Acad. Agric. Sci. 1997, 5, 9. [Google Scholar]
- Kof, E.M.; Oorzhak, A.S.; Vinogradova, I.A.; Kalibernaya, Z.V. The rates of shoot and root growth in intact plants of pea mutants in leaf morphology. Russ. J. Plant Physiol. 2006, 53, 128–138. [Google Scholar] [CrossRef]
- Goldman, J.L.; Gritton, E.T. Evaluation of the afila-tendrilled acacia (afaf-tactac) pea foliage type under minimal competition. Crop Sci. 1992, 32, 851–855. [Google Scholar] [CrossRef]
- Bertholdsson, N.O. The influence of pea plant ideotypes on seed protein content and seed yield. J. Agron. Crop Sci. 1990, 164, 54–67. [Google Scholar] [CrossRef]
- Novikova, N.E. On the effect of reduced leaves on plant productivity in peas. Sel. Seed Prod. 2000, 2, 4. [Google Scholar]
- Bugrei, I.V. The structure of pea leaves of the leafless variety. Int. Res. J. 2020, 11, 163–166. [Google Scholar]
- Novikova, N.E.; Lakhanov, A.P.; Amelin, A.V. Physiological changes in pea plants during long-term breeding for higher seed productivity. Dokl. VASKhNIL 1989, 9, 16–19. [Google Scholar]
- Zelenov, A.N.; Zadorin, A.M.; Zelenov, A.А. The first results of breeding pea varieties of chameleon morphotype. Zernobobovye i Krupyanye Kul′tury 2018, 2, 10–17. [Google Scholar]
- Marx, G.A. A suite of mutants that modify pattern formation in pea leaves. Plant Mol. Biol. Rep. 1987, 5, 311–335. [Google Scholar] [CrossRef]
- Zadorin, A.M.; Uvarov, V.N.; Zelenov, A.N.; Zelenov, A.A. Promising morphotypes of peas. Agriculture 2014, 4, 24–25. [Google Scholar]
- Zelenov, A.N.; Zadorin, A.M.; Uvarov, V.N.; Zelenov, A.A. Genetic sources for pea breeding on increase in bioenergy potential of plants and methods of work with them. Zemledelie 2016, 4, 29–33. [Google Scholar]
- Zelenov, A.N.; Zotikov, V.I.; Naumkina, T.S.; Novikova, N.E.; Schetinin, V.Y.; Borzenkova, G.A.; Bobkov, S.V.; Zelenov, A.A.; Azarova, E.F.; Uvarova, O.V. Biological potential and prospects of selection of dissected leaf morphotype of peas. Zernobobovye i Krupyanye Kul′tury 2013, 4, 3–11. [Google Scholar]
- Zelenov, A.N.; Zotikov, V.I.; Shchetinin, V.Y.; Kondykov, I.V. Prospects for the cultivation of non-traditional morphotypes of peas. Feed Prod. 2008, 3, 27–29. [Google Scholar]
- Zelenov, A.A.; Novikova, N.E. Physiological features of the dissected pea morphotype in pure and mixed crops. Zernobobovye i Krupyanye Kul′tury 2015, 1, 15–20. [Google Scholar]
- Zelenov, A.N.; Naumkina, T.S.; Shchetinin, V.Y.; Zadorin, A.M.; Zelenov, A.A. Advantages and prospects of use of the suprade odd-pinnate form of pea. Zernobobovye i Krupyanye Kul′tury 2014, 3, 12–19. [Google Scholar]
- Sidorova, K.K.; Glyanenko, M.N.; Mishchenko, T.M.; Vlasova, E.Y.; Shumny, V.K. Symbiotic nitrogen fixation in legumes as a genetic and selection trait. Vavilov J. Genet. Breed. 2015, 19, 50–57. [Google Scholar] [CrossRef]
- Govorov, L.I. The peas of Afghanistan. Bull. Appl. Bot. 1928, 19, 497–522. [Google Scholar]
- Razumovskaya, Z.G. Nodule formation in various pea cultivars. Mikrobiologiya 1937, 6, 321–328. [Google Scholar]
- Sidorova, K.K.; Shumnyi, V.K. A collection of symbiotic mutants in pea Pisum sativum L.: Creation and genetic study. Russ. J. Genet. 2003, 39, 406–413. [Google Scholar] [CrossRef]
- Tsyganov, V.E.; Tsyganova, A.V. Symbiotic regulatory genes controlling nodule development in Pisum sativum L. Plants 2020, 9, 1741. [Google Scholar] [CrossRef] [PubMed]
- Benedito, V.A.; Torres-Jerez, I.; Murray, J.D.; Andriankaja, A.; Allen, S.; Kakar, K.; Wandrey, M.; Verdier, J.; Zuber, H.; Ott, T.; et al. A gene expression atlas of the model legume Medicago truncatula. Plant J. 2008, 55, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Mun, T.; Bachmann, A.; Gupta, V.; Stougaard, J.; Andersen, S.U. Lotus Base: An integrated information portal for the model legume Lotus japonicus. Sci. Rep. 2016, 6, 39447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonali, R.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 2020, 32, 15–41. [Google Scholar]
- Gianinazzi-Pearson, V. Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell 1996, 8, 1871–1883. [Google Scholar] [CrossRef] [Green Version]
- Borisov, A.Y.; Danilova, T.N.; Koroleva, T.A.; Kuznetsova, E.V.; Madsen, L.; Mofett, M.; Rozov, S.M. Regulatory genes of garden pea (Pisum sativum L.) controlling the development of nitrogen-fixing nodules and arbuscular mycorrhiza: A review of basic and applied aspects. Appl. Biochem. Microbiol. 2007, 43, 237–243. [Google Scholar] [CrossRef]
- Küster, H.; Vieweg, M.F.; Manthey, K.; Baier, M.C.; Hohnjec, N.; Perlick, A.M. Identification and expression regulation of symbiotically activated legume gene. Phytochemistry 2007, 68, 8–18. [Google Scholar] [CrossRef]
- Shtark, O.Y.; Zhukov, V.A.; Provorov, N.A.; Tikhonovich, I.A.; Borisov, A.Y. Intimate associations of beneficial soil microbes with host plants. In Soil Microbiology and Sustainable Crop Production; Springer: Berlin, Germany, 2010; pp. 119–196. [Google Scholar]
- Borisov, A.Y.; Naumkina, T.S.; Shtark, O.Y.; Danilova, T.N.; Tsyganov, V.E. Effectiveness of combined inoculation of pea (Pisum sativum L.) with arbuscular mycorrhizal fungi and rhizobia. Dokl. RASKhN 2004, 2, 12–14. [Google Scholar]
- Shtark, O.Y.; Danilova, T.N.; Naumkina, T.S.; Vasilchikov, A.G.; Chebotar, V.K.; Kazakov, A.E.; Zhernakov, A.I.; Nemankin, T.A.; Prilepskaya, N.A.; Borisov, A.Y.; et al. Analysis of pea (Pisum sativum L.) source material for breeding of cultivars with high symbiotic potential and choice of criteria for its evaluation. Ecol. Genet. 2006, 4, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, V.; Zorin, E.; Zhernakov, A.; Afonin, A.; Akhtemova, G.; Bovin, A.; Dolgikh, A.; Gorshkov, A.; Gribchenko, E.; Ivanova, K.; et al. Transcriptomic analysis of sym28 and sym29 supernodulating mutants of pea (Pisum sativum L.) under complex inoculation with beneficial microorganisms. Biol. Commun. 2021, 66, 181–197. [Google Scholar] [CrossRef]
- Tikhonovich, I.A. Genetics of Symbiotic Nitrogen Fixation with the Basics of Breeding; Nauka: Saint Petersburg, Russia, 1998; pp. 1–198. [Google Scholar]
- Borisov, A.Y.; Shtark, O.Y.; Zhukov, V.A.; Nemankin, T.A.; Naumkina, T.S.; Pinaev, A.G.; Akhtemova, G.A.; Voroshilova, V.A.; Ovchinnikova, E.S.; Rychagova, T.S.; et al. Interaction of legumes with beneficial soil microorganisms: From plant genes to varieties. Agric. Biol. 2011, 46, 41–47. [Google Scholar]
- Shtark, O.Y.; Borisov, A.Y.; Zhukov, V.A.; Tikhonovich I., A. Mutually beneficial legume symbioses with soil microbes and their potential for plant production. Symbiosis 2012, 58, 51–62. [Google Scholar] [CrossRef]
- Naumkina, T.S.; Borisov, A.Y.; Shtark, O.Y.; Vasil’chikov, A.G.; Moloshonok, A.A.; Barbashov, M.V.; Donskaya, M.V. Use of symbioses of pod-bearing plants for building of highly effective plant-microbic systems for adaptive plant growing. Agrar. Russ. 2011, 3, 35–37. [Google Scholar]
- Shtark, O.Y.; Zhukov, V.A.; Sulima, A.S.; Singh, R.; Naumkina, T.S.; Akhtemova, G.A.; Borisov, A.Y. Prospects for the use of multi-component symbiotic systems of the legumes. Ecol. Genet. 2015, 13, 33–46. [Google Scholar] [CrossRef] [Green Version]
- Inge-Vechtomov, S.G. From chromosome theory to the template principle. Russ. J. Genet. 2015, 51, 323–333. [Google Scholar] [CrossRef]
- Ambrose, M.J. Pisum Genetic Stocks Catalogue; John Innes Centre: Norwich, UK, 1996. [Google Scholar]
- Sinjushin, A.A.; Ash, O.A.; Khartina, G.A. Germplasm collection of a garden pea (Pisum sativum L.) and its application in researches. Proc. Appl. Bot. Genet. Breed. 2016, 177, 47–60. [Google Scholar] [CrossRef]
- Vishnyakova, M.A.; Alexandrova, T.G.; Buravtseva, T.V.; Burlyaeva, M.O.; Egorova, G.P.; Semenova, E.V.; Seferova, I.V.; Stepanova, I.L.; Yankov, I.I. International collaboration of VIR as an important factor of replenishing the collection of grain legume genetic resources. Proc. Appl. Bot. Genet. Breed. 2018, 179, 23–38. [Google Scholar] [CrossRef]
- Prilyuk, L.V. Genetic collection of pea—Formation, use. Genetika 1994, 30, 126–127. [Google Scholar]
- Blixt, S. Mutation genetics in Pisum. Agric. Hort. Genet. 1972, 30, 1–293. [Google Scholar]
- Semenova, E.V.; Vishnyakova, M.A. Genetic diversity of VIR’s pea collection and features of its use in today’s breeding practice. In Proceedings of the Conference 125 Years of Applied Botany in Russia, Saint Petersburg, Russia, 25–28 November 2019; pp. 55–56. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sinjushin, A.; Semenova, E.; Vishnyakova, M. Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia. Agronomy 2022, 12, 544. https://doi.org/10.3390/agronomy12030544
Sinjushin A, Semenova E, Vishnyakova M. Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia. Agronomy. 2022; 12(3):544. https://doi.org/10.3390/agronomy12030544
Chicago/Turabian StyleSinjushin, Andrey, Elena Semenova, and Margarita Vishnyakova. 2022. "Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia" Agronomy 12, no. 3: 544. https://doi.org/10.3390/agronomy12030544
APA StyleSinjushin, A., Semenova, E., & Vishnyakova, M. (2022). Usage of Morphological Mutations for Improvement of a Garden Pea (Pisum sativum): The Experience of Breeding in Russia. Agronomy, 12(3), 544. https://doi.org/10.3390/agronomy12030544