Precision Genome Editing Toolbox: Applications and Approaches for Improving Rice’s Genetic Resistance to Pathogens
Abstract
:1. Introduction
2. Advancements in Genome Editing Technologies
2.1. Zinc Finger Nucleases (ZFNs)
2.2. TALENs
2.3. CRISPR/Cas System
3. Genome Editing Strategies for Biotic Stress Tolerance
4. Applications of Genome Editing Technologies in Rice for Enhancing Biotic Stress Tolerance
4.1. Fungal Disease Resistance
4.2. Bacterial Disease Resistance
4.3. Virus Disease Resistance
5. Other Potential Targets
6. Concerns Associated with Genome Editing in Rice
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances, and prospects. Signal Transduct. Target. Ther. 2020, 5, 1. [Google Scholar] [CrossRef]
- Khalil, A.M. The genome editing revolution: Review. J. Genet. Eng. Biotechnol. 2020, 18, 68. [Google Scholar] [CrossRef] [PubMed]
- Valin, H.; Sands, R.D.; Van der Mensbrugghe, D.; Nelson, G.C.; Ahammad, H.; Blanc, E.; Bodirsky, B.; Fujimori, S.; Hasegawa, T.; Havlik, P.; et al. The future of food demand: Understanding differences in global economic models. Agri. Econ. 2014, 45, 51–67. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2019: Highlights (ST/ESA/SER.A/423). Available online: https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf (accessed on 9 January 2022).
- Ahmar, S.; Gill, R.A.; Jung, K.H.; Faheem, A.; Qasim, M.U.; Mubeen, M.; Zhou, W. Conventional and molecular techniques from simple breeding to speed breeding in crop plants: Recent advances and future outlook. Int. J. Mol. Sci. 2020, 21, 2590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Low, L.-Y.; Yang, S.-K.; Kok, D.-X.A.; Ong-Abdullah, J.; Tan, N.-P.; Lai, K.-S. Transgenic plants: Gene constructs, vector and transformation method. In New Visions in Plant Science; Çelik, Ö., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef]
- Xu, K.; Segal, D.J.; Zhang, Z. Precise genome editing techniques and applications. Front. Genet. 2020, 11, 412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamburova, V.S.; Nikitina, E.V.; Shermatov, S.E.; Buriev, Z.T.; Kumpatla, S.P.; Emani, C.; Abdurakhmonov, I.Y. Genome editing in plants: An overview of tools and applications. Inter. J. Agron. 2017, 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Achary, V.M.M.; Reddy, M.K. CRISPR-Cas9 mediated mutation in GRAIN WIDTH and WEIGHT2 (GW2) locus improves aleurone layer and grain nutritional quality in rice. Sci. Rep. 2021, 11, 21941. [Google Scholar] [CrossRef]
- Mishra, R.; Joshi, R.K.; Zhao, K. Genome editing in rice: Recent advances, challenges, and future implications. Front. Plant. Sci. 2018, 9, 1361. [Google Scholar] [CrossRef]
- Zafar, K.; Sedeek, K.E.M.; Rao, G.S.; Khan, M.Z.; Amin, I.; Kamel, R.; Mukhtar, Z.; Zafar, M.; Mansoor, S.; Mahfouz, M.M. Genome editing technologies for rice improvement: Progress, prospects, and safety concerns. Front. Genome Ed. 2020, 2, 5. [Google Scholar] [CrossRef]
- Mehta, S.; Lal, S.K.; Sahu, K.P.; Venkatapuram, A.K.; Kumar, M.; Sheri, V.; Varakumar, P.; Vishwakarma, C.; Yadav, R.; Jameel, M.R.; et al. CRISPR/Cas9-Edited Rice: A New Frontier for Sustainable Agriculture. In New Frontiers in Stress Management for Durable Agriculture; Rakshit, A., Singh, H., Singh, A., Singh, U., Fraceto, L., Eds.; Springer: Singapore, 2020; pp. 427–458. [Google Scholar] [CrossRef]
- Tabassum, J.; Ahmad, S.; Hussain, B.; Mawia, A.M.; Zeb, A.; Ju, L. Applications and Potential of Genome-Editing Systems in Rice Improvement: Current and Future Perspectives. Agronomy 2021, 11, 1359. [Google Scholar] [CrossRef]
- Wada, N.; Ueta, R.; Osakabe, Y.; Osakabe, K. Precision genome editing in plants: State-of-the-art in CRISPR/Cas9-based genome engineering. BMC Plant Biol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ceasar, S.A.; Rajan, V.; Prykhozhij, S.V.; Berman, J.N.; Ignacimuthu, S. Insert, remove or replace: A highly advanced genome editing system using CRISPR/Cas9. Biochim. Biophys. Acta Bioenerg. 2016, 1863, 2333–2344. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, S.; Amaishi, Y.; Maki, I.; Enoki, T.; Mineno, J. Highly efficient genome editing for single-base substitutions using optimized ssODNs with Cas9-RNPs. Sci. Rep. 2019, 9, 1–11. [Google Scholar] [CrossRef]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, C.; Teoh, S.L.; Das, S. The smart programmable CRISPR technology: A next-generation genome editing tool for investigators. Curr. Drug Targets 2017, 18, 1653–1663. [Google Scholar] [CrossRef] [PubMed]
- Bortesi, L.; Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv. 2015, 33, 41–52. [Google Scholar] [CrossRef]
- Mao, Z.; Bozzella, M.; Seluanov, A.; Gorbunova, V. Comparison of nonhomologous end joining and homologous recombination in human cells. DNA Repair 2008, 7, 1765–1771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lieber, M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79, 181–211. [Google Scholar] [CrossRef] [Green Version]
- Rouet, P.; Smih, F.; Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 1994, 14, 8096–8106. [Google Scholar] [CrossRef] [PubMed]
- Puchta, H. The repair of double-strand breaks in plants: Mechanisms and consequences for genome evolution. J. Exp. Bot. 2005, 56, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Miyaoka, Y.; Berman, J.R.; Cooper, S.B.; Mayerl, S.J.; Chan, A.H.; Zhang, B.; Karlin-Neumann, G.A.; Conklin, B.R. Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci. Rep. 2016, 6, 23549. [Google Scholar] [CrossRef]
- Mengiste, T.; Paszkowski, J. Prospects for the precise engineering of plant genomes by homologous recombination. Biol. Chem. 1999, 380, 749–758. [Google Scholar] [CrossRef]
- Vergunst, A.C.; Hooykaas, P.J.J. Recombination in the plant genome and its application in biotechnology. Crit. Rev. Plant. Sci. 1999, 18, 1–31. [Google Scholar] [CrossRef]
- Randhawa, S.; Sengar, S. The evolution and history of gene editing technologies. Prog. Mol. Biol. Transl. Sci. 2021, 178, 1–62. [Google Scholar] [CrossRef]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porteus, M.H.; Carroll, D. Gene targeting using zinc-finger nucleases. Nat. Biotechnol. 2005, 23, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Bitinaite, J.; Wah, D.A.; Aggarwal, A.K.; Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 1998, 95, 10570–10575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolfe, S.A.; Nekludova, L.; Pabo, C.O. DNA recognition by Cys2His2 Zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 2000, 29, 183–212. [Google Scholar] [CrossRef]
- Urnov, F.D.; Rebar, E.J.; Holmes, M.C.; Zhang, H.S.; Gregory, P.D. Genome editing with engineered zinc finger nucleases. Nat. Rev. Genet. 2010, 11, 636–646. [Google Scholar] [CrossRef]
- Petolino, J.F. Genome editing in plants via designed zinc-finger nucleases. Vitr. Cell. Dev. Biol. Plant. 2015, 51, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pattanayak, V.; Ramirez, C.L.; Joung, J.K.; Liu, D.R. Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat. Methods 2011, 8, 765–770. [Google Scholar] [CrossRef] [Green Version]
- Boch, J.; Scholze, H.; Schornack, S.; Landgraf, A.; Hahn, S.; Kay, S.; Lahaye, T.; Nickstadt, A.; Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009, 326, 1509–1512. [Google Scholar] [CrossRef] [PubMed]
- Moscou, M.J.; Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 2009, 326, 1501. [Google Scholar] [CrossRef] [PubMed]
- Jankele, R.; Svoboda, P. TAL effectors: Tools for DNA targeting. Brief. Funct. Genom. 2014, 13, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Mak, A.N.; Bradley, P.; Bogdanove, A.J.; Stoddard, B.L. TAL effectors: Function, structure, engineering and applications. Curr. Opin. Struct. Biol. 2013, 23, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joung, J.K.; Sander, J.D. TALENs: A widely applicable technology for targeted genome editing. Nat. Rev. Mol. Cell Biol. 2013, 14, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Gaj, T.; Gersbach, C.A.; Barbas, C.F., III. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013, 31, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, K.; Chattopadhyay, A.; Pratap, D. The evolution of CRISPR/Cas9 and their cousins: Hope or hype? Biotechnol. Lett. 2018, 43, 2329. [Google Scholar] [CrossRef]
- Makarova, K.S.; Grishin, N.V.; Shabalina, S.A.; Wolf, Y.I.; Koonin, E.V. A putative RNA-interference-based immune system in prokaryotes: Computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action. Biol. Direct. 2006, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Brouns, S.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; van der Oost, J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 2008, 321, 960–964. [Google Scholar] [CrossRef] [Green Version]
- Mushtaq, M.; Ahmad Dar, A.; Skalicky, M.; Tyagi, A.; Bhagat, N.; Basu, U.; Bhat, B.A.; Zaid, A.; Ali, S.; Dar, T.-U.-H.; et al. CRISPR-based genome editing tools: Insights into technological breakthroughs and future challenges. Genes 2021, 12, 797. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.I.; Ahmad, M.J.; Asif, A.R.; Adnan, M.; Iqbal, M.K.; Mehmood, K.; Muhammad, S.A.; Bhuiyan, A.A.; Elokil, A.; Du, X.; et al. A review of CRISPR-based genome editing: Survival, evolution, and challenges. Curr. Issues Mol. Biol. 2018, 28, 47–68. [Google Scholar] [CrossRef] [Green Version]
- Mccarty, N.S.; Graham, A.E.; Studená, L.; Ledesma-Amaro, R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat. Commun. 2020, 11, 1281. [Google Scholar] [CrossRef]
- Arora, L.; Narula, A. Gene editing and crop improvement using CRISPR-Cas9 system. Front. Plant Sci. 2017, 8, 1932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaganathan, D.; Ramasamy, K.; Sellamuthu, G.; Jayabalan, S.; Venkataraman, G. CRISPR for crop improvement: An update review. Front. Plant Sci. 2018, 9, 985. [Google Scholar] [CrossRef]
- Montecillo, J.A.V.; Chu, L.L.; Bae, H. CRISPR-Cas9 system for plant genome editing: Current approaches and emerging developments. Agronomy 2020, 10, 1033. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR-Cas9 structures and mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.Y.; Wang, C.; Lee, H.K.; Yoo, K.H.; Zeng, X.; Kuhns, T.; Yang, C.M.; Mohr, T.; Liu, C.; Hennighausen, L. CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat. Commun. 2017, 8, 15464. [Google Scholar] [CrossRef]
- Carroll, D. Genome engineering with zinc-finger nucleases. Genetics 2011, 188, 773–782. [Google Scholar] [CrossRef] [Green Version]
- Wolf, S.; Wu, W.; Jones, C.; Perwitasari, O.; Mahalingam, S.; Tripp, R.A.; Chan, M.C. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science 2014, 343, 1247997. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahas, A.; Aman, R.; Mahfouz, M. CRISPR-Cas13d mediates robust RNA virus interference in plants. Genome Biol. 2019, 20, 263. [Google Scholar] [CrossRef] [Green Version]
- Rees, H.A.; Liu, D.R. Base editing: Precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 2018, 19, 770–788. [Google Scholar] [CrossRef] [PubMed]
- Matsoukas, I.G. Prime editing: Genome editing for rare genetic diseases without double-strand breaks or donor DNA. Front. Genet. 2020, 11, 528. [Google Scholar] [CrossRef]
- Schenke, D.; Cai, D. Applications of CRISPR/Cas to improve crop disease resistance: Beyond inactivation of susceptibility factors. iScience 2020, 23, 101478. [Google Scholar] [CrossRef] [PubMed]
- Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.; Chadha-Mohanty, P. Novel alleles of rice eIF4G generated by CRISPR/Cas9-targeted mutagenesis confer resistance to Rice tungro spherical virus. Plant Biotechnol. J. 2018, 16, 1918–1927. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.-J.; Venkatesh, J.; Lee, J.-H.; Kim, J.; Lee, H.-E.; Kim, D.-S.; Kang, B.-C. Genome editing of eIF4E1 in tomato confers resistance to Pepper mottle virus. Front. Plant Sci. 2020, 11, 1098. [Google Scholar] [CrossRef] [PubMed]
- Moury, B.; Lebaron, C.; Szadkowski, M.; Ben Khalifa, M.; Girardot, G.; Bi, B.A.B.; Koné, D.; Nitiema, L.W.; Fakhfakh, H.; Gallois, J.-L. Knock-out mutation of eukaryotic initiation factor 4E2 (eIF4E2) confers resistance to Pepper veinal mottle virus in tomato. Virology 2020, 539, 11–17. [Google Scholar] [CrossRef]
- Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.-S.; Li, C.; Nguyen, H.; Liu, B.; et al. Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat. Biotechnol. 2019, 37, 1344–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Kim, P.; Yu, L.; Cai, G.; Chen, S.; Alfano, J.R.; Zhou, J.-M. Activation-dependent destruction of a co-receptor by a Pseudomonas syringae effector dampens plant immunity. Cell Host Microbe 2016, 20, 504–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez, E.; El Ghoul, H.; Mundy, J.; Petersen, M. Making sense of plant autoimmunity and negative regulators. FEBS J. 2016, 283, 1385–1391. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.-G.; Zhao, K. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [PubMed]
- Kuai, X.; MacLeod, B.J.; Després, C. Integrating data on the Arabidopsis NPR1/NPR3/NPR4 salicylic acid receptors; a differentiating argument. Front. Plant Sci. 2015, 6, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fister, A.S.; Landherr, L.; Maximova, S.N.; Guiltinan, M.J. Transient expression of CRISPR/Cas9 machinery targeting TcNPR3 enhances defense response in Theobroma cacao. Front. Plant Sci. 2018, 9, 268. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Deng, K.; Cheng, Y.; Zhong, Z.; Tian, L.; Tang, X.; Tang, A.; Zheng, X.; Zhang, T.; Qi, Y.; et al. CRISPR-Cas9 based genome editing reveals new insights into MicroRNA function and regulation in rice. Front. Plant Sci. 2017, 8, 1598. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, A.; Purohit, J.; Tiwari, K.K.; Deshmukh, R. Targeting transcription factors for plant disease resistance: Shifting paradigm. Curr. Sci. 2019, 117, 1598–1607. [Google Scholar] [CrossRef]
- Alagoz, Y.; Gurkok, T.; Zhang, B.; Unver, T. Manipulating the biosynthesis of bioactive compound alkaloids for next generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci. Rep. 2016, 6, 30910. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Li, R.; Li, X.; Fu, D.; Zhu, B.; Tian, H.; Luo, Y.; Zhu, H. Multiplexed CRISPR/Cas9-mediated metabolic engineering of γ-aminobutyric acid levels in Solanum lycopersicum. Plant Biotechnol. J. 2018, 16, 415–427. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Zhou, H.; Zhou, X.; Li, F. Control of plant viruses by CRISPR/Cas system-mediated adaptive immunity. Front. Microbiol. 2020, 11, 593700. [Google Scholar] [CrossRef] [PubMed]
- Varanda, C.M.; Félix, M.; Campos, M.D.; Patanita, M.; Materatski, P. Plant viruses: From targets to tools for CRISPR. Viruses 2021, 3, 141. [Google Scholar] [CrossRef] [PubMed]
- Gil Lee, H.; Kim, D.H.; Choi, Y.-R.; Yu, J.; Hong, S.-A.; Seo, P.J.; Bae, S. Enhancing plant immunity by expression of pathogen-targeted CRISPR-Cas9 in plants. Gene Genome Ed. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Singh, R.K.; Chattopadhyay, A.; Pundey, S.K. Status and Perspectives of Biological Control of Rice Diseases. In Microbial Empowerment in Agriculture; Sarma, B.K., Singh, A., Eds.; Biotech Books: New Delhi, India, 2016; Volume 1, pp. 335–372. [Google Scholar]
- Ning, X.; Yunyu, W.; Aihong, L. Strategy for use of rice blast resistance genes in rice molecular breeding. Rice Sci. 2020, 27, 263–277. [Google Scholar] [CrossRef]
- Xie, K.; Yang, Y. RNA-guided genome editing in plants using a CRISPR-Cas system. Mol. Plant. 2013, 6, 1975–1983. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, X.; Liang, X.; Zhou, X.; Yang, F.; Liu, J.; He, S.Y.; Guo, Z. Alternative splicing of rice WRKY62 and WRKY76 transcription factor genes in pathogen defense. Plant Physiol. 2016, 171, 1427–1442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Chen, J.; Wang, M.; Ren, Y.; Wang, S.; Lei, C.; Cheng, Z.; Sodmergen. Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J. Exp. Bot. 2018, 69, 1051–1064. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, G.; Usman, B.; Peng, H.; Zhao, N.; Yuan, R.; Liu, Y.; Li, R. Knockout of Pi21 by CRISPR/Cas9 and iTRAQ-based proteomic analysis of mutants revealed new insights into M. oryzae resistance in elite rice line. Genes 2020, 11, 735. [Google Scholar] [CrossRef]
- Li, S.; Shen, L.; Hu, P.; Liu, Q.; Zhu, X.; Qian, Q.; Wang, K.; Wang, Y. Developing disease-resistant thermosensitive male sterile rice by multiplex gene editing. J. Integr. Plant Biol. 2019, 61, 1201–1205. [Google Scholar] [CrossRef]
- Li, W.; Zhu, Z.; Chern, M.; Yin, J.; Yang, C.; Ran, L.; Cheng, M.; He, M.; Wang, K.; Wang, J.; et al. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance. Cell 2017, 170, 114–126.e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z.; Yin, J.; Chern, M.; Zhu, X.; Yang, C.; He, K.; Liu, Y.; He, M.; Wang, J.; Song, L.; et al. New insights into bsr-d1-mediated broad-spectrum resistance to rice blast. Mol. Plant Pathol. 2020, 21, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.R.; Varanavasiappan, S.; Kokiladevi, E.; Ramanathan, A.; Kumar, K.K. Genome editing of rice PFT1 gene to study its role in rice sheath blight disease resistance. Int. J. Curr. Microbiol. App. Sci. 2019, 8, 2356–2364. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Q.; Cao, Y.; Zhang, Y.; Chen, D.; Lou, X.; Cheng, S.; Cao, L. The OsMPK15 negatively regulates Magnaporthe oryza and Xoo disease resistance via SA and JA signaling pathway in rice. Front. Plant Sci. 2019, 10, 752. [Google Scholar] [CrossRef]
- Liang, Y.; Han, Y.; Wang, C.; Jiang, C.; Xu, J.-R. Targeted deletion of the USTA and UvSLT2 genes efficiently in Ustilaginoidea virens with the CRISPR-Cas9 system. Front. Plant Sci. 2018, 9, 699. [Google Scholar] [CrossRef]
- Yamato, T.; Handa, A.; Arazoe, T.; Kuroki, M.; Nozaka, A.; Kamakura, T.; Ohsato, S.; Arie, T.; Kuwata, S. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus. Sci. Rep. 2019, 9, 7427. [Google Scholar] [CrossRef]
- Fukuoka, S.; Saka, N.; Koga, H.; Ono, K.; Shimizu, T.; Ebana, K.; Hayashi, N.; Takahashi, A.; Hirochika, H.; Okuno, K.; et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 2009, 325, 998–1001. [Google Scholar] [CrossRef]
- Foster, A.J.; Martin-Urdiroz, M.; Yan, X.; Wright, H.S.; Soanes, D.M.; Talbot, N.J. CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Sci. Rep. 2018, 8, 14355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arazoe, T. Genome editing using CRISPR/Cas9 system in the rice blast fungus. In Magnaporthe Oryzae, Methods in Molecular Biology; Jacob, S., Ed.; Humana Press: New York, NY, USA, 2021; p. 2356. [Google Scholar] [CrossRef]
- Chattopadhyay, A.; Nagaich, D.; Lima, J.M.; Verma, A.; Tiwari, K.K. Molecular Aspects of Bacterial Blight Resistance in Rice: Recent Advancement. In Biotic Stress Management in Rice; Shamim, M., Singh, K.N., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2017; pp. 17–45. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, R.; Sengupta, D.; Das, S.N.; Pandey, M.K.; Bohra, A.; Sharma, N.K.; Sinha, P.; Sk, H.; Ghazi, I.A.; et al. Deployment of genetic and genomic tools toward gaining a better understanding of rice-Xanthomonas oryzae pv. oryzae interactions for development of durable bacterial blight resistant rice. Front. Plant Sci. 2020, 11, 1152. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, S. Rice versus Xanthomonas oryzae pv. oryzae: A unique pathosystem. Curr. Opin. Plant Biol. 2013, 16, 188–195. [Google Scholar] [CrossRef] [Green Version]
- Hu, K.; Cao, J.; Zhang, J.; Xia, F.; Ke, Y.; Zhang, H.; Xie, W.; Liu, H.; Cui, Y.; Cao, Y.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 2017, 3, 17009. [Google Scholar] [CrossRef] [PubMed]
- Streubel, J.; Pesce, C.; Hutin, M.; Koebnik, R.; Boch, J.; Szurek, B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. oryzae. New Phytol. 2013, 200, 808–819. [Google Scholar] [CrossRef]
- Gupta, P.K.; Balyan, H.S.; Gautam, T. SWEET genes and TAL effectors for disease resistance in plants: Present status and future prospects. Mol. Plant Pathol. 2021, 22, 1014–1026. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef] [PubMed]
- Blanvillain-Baufumé, S.; Reschke, M.; Solé, M.; Auguy, F.; Doucoure, H.; Szurek, B.; Meynard, D.; Portefaix, M.; Cunnac, S.; Guiderdoni, E.; et al. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. Plant Biotechnol. J. 2017, 15, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Peng, Z.; Long, J.; Sosso, D.; Liu, B.; Eom, J.-S.; Huang, S.; Liu, S.; Cruz, C.V.; Frommer, W.; et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015, 82, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.A.; Moon, H.; Park, C.J. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. oryzae. Rice 2019, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Xu, X.; Gong, Q.; Li, Z.; Li, Y.; Wang, S.; Yang, Y.; Ma, W.; Liu, L.; Zhu, B.; et al. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice. Mol. Plant. 2019, 12, 1434–1446. [Google Scholar] [CrossRef] [Green Version]
- Zafar, K.; Khan, M.Z.; Amin, I.; Mukhtar, Z.; Yasmin, S.; Arif, M.; Ejaz, K.; Mansoor, S. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene. Front. Plant Sci. 2020, 11, 575. [Google Scholar] [CrossRef]
- Duy, P.N.; Lan, D.T.; Thu, H.P.; Thu, H.P.T.; Thanh, H.N.; Pham, N.P.; Auguy, F.; Manh, T.B.; Cunnac, S.; Pham, X.H. Improved bacterial leaf blight disease resistance in the major elite Vietnamese rice cultivar TBR225 via editing of the OsSWEET14 promoter. PLoS ONE 2021, 16, e0255470. [Google Scholar] [CrossRef]
- Wang, J.; Tian, D.; Gu, K.; Yang, X.; Wang, L.; Zeng, X.; Yin, Z. Induction of Xa10-like genes in rice cultivar Nipponbare confers disease resistance to rice bacterial blight. Mol. Plant Microbe Interact. 2017, 30, 466–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Cao, Y.; Xu, Z.; Ma, W.; Zakria, M.; Zou, L.; Cheng, Z.; Chen, G. A transcription activator-like effector Tal7 of Xanthomonas oryzae pv. oryzicola activates rice gene Os09g29100 to suppress rice immunity. Sci. Rep. 2017, 7, 5089. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Xu, Z.; Li, Z.; Zakria, M.; Zou, L.; Chen, G. Increasing resistance to bacterial leaf streak in rice by editing the promoter of susceptibility gene OsSULRT3; 6. Plant Biotechnol. J. 2021, 19, 1101–1103. [Google Scholar] [CrossRef] [PubMed]
- Ni, Z.; Cao, Y.; Jin, X.; Fu, Z.; Li, J.; Mo, X.; He, Y.; Tang, J.; Huang, S. Engineering resistance to bacterial blight and bacterial leaf streak in rice. Rice 2021, 14, 38. [Google Scholar] [CrossRef]
- Yu, K.; Liu, Z.; Gui, H.; Geng, L.; Wei, J.; Liang, D.; Lv, J.; Xu, J.; Chen, X. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system. BMC Plant Biol. 2021, 21, 197. [Google Scholar] [CrossRef] [PubMed]
- Niño-Liu, D.O.; Ronald, P.C.; Bogdanove, A.J. Xanthomonas oryzae pathovars: Model pathogens of a model crop. Mol. Plant Pathol. 2006, 7, 303–324. [Google Scholar] [CrossRef]
- Bunawan, H.; Dusik, L.; Bunawan, S.N.; Amin, N. Rice tungro disease: From identification to disease control. World Appl. Sci. J. 2014, 31, 1221–1226. [Google Scholar] [CrossRef]
- Hwang, J.; Oh, C.S.; Kang, B.C. Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 2013, 439, 105–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pyott, D.E.; Sheehan, E.; Molnar, A. Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol. Plant Pathol. 2016, 17, 1276–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Muhsin, M.; Atienza, G.A.; Kwak, D.-Y.; Kim, S.-M.; De Leon, T.B.; Angeles, E.R.; Coloquio, E.; Kondoh, H.; Satoh, K.; et al. Single nucleotide polymorphisms in a gene for translation initiation factor (eIF4G) of rice (Oryza sativa) associated with resistance to Rice tungro spherical virus. Mol. Plant Microbe Interact. 2010, 23, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Ma, S.; Hu, P.; Ji, Y.; Sun, F. Genome editing of rice eIF4G loci confers partial resistance to rice black-streaked dwarf virus. Viruses 2021, 13, 2100. [Google Scholar] [CrossRef]
- Engelhardt, S.; Stam, R.; Hückelhoven, R. Good riddance? breaking disease susceptibility in the era of new breeding technologies. Agronomy 2018, 8, 114. [Google Scholar] [CrossRef] [Green Version]
- Koseoglo, E.; van der Wolf, J.M.; Visser, R.G.F.; Bai, Y. Susceptibility reversed: Modified plant susceptibility genes for resistance to bacteria. Trends Plant Sci. 2021, 27, 69–79. [Google Scholar] [CrossRef]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations introduced in susceptibility genes through CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef] [PubMed]
- Tyagi, S.; Kesiraju, K.; Saakre, M.; Rathinam, M.; Raman, V.; Pattanayak, D.; Sreevathsa, R. Genome editing for resistance to insect pests: An emerging tool for crop improvement. ACS Omega 2020, 5, 20674–20683. [Google Scholar] [CrossRef]
- Li, R.; Afsheen, S.; Xin, Z.; Han, X.; Lou, Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol. Plant. 2013, 147, 340–351. [Google Scholar] [CrossRef] [PubMed]
- Chern, M.; Canlas, P.E.; Fitzgerald, H.A.; Ronald, P.C. Rice NRR, a negative regulator of disease resistance, interacts with Arabidopsis NPR1 and rice NH1. Plant J. 2005, 43, 623–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grand, X.; Espinoza, R.; Michel, C.; Cros, S.; Chalvon, V.; Jacobs, J.; Morel, J.B. Identification of positive and negative regulators of disease resistance to rice blast fungus using constitutive gene expression patterns. Plant Biotechnol. J. 2012, 10, 840–850. [Google Scholar] [CrossRef]
- Ye, M.; Kuai, P.; Chen, S.; Lin, N.; Ye, M.; Hu, L.; Lou, Y. Silencing a Simple Extracellular Leucine-Rich Repeat Gene OsI-BAK1 Enhances the Resistance of Rice to Brown Planthopper Nilaparvata lugens. Int. J. Mol. Sci. 2021, 22, 12182. [Google Scholar] [CrossRef]
- Peng, Y.; Bartley, L.E.; Chen, X.; Dardick, C.; Chern, M.; Ruan, R.; Canlas, P.E.; Ronald, P.C. OsWRKY62 is a negative regulator of basal and Xa21-mediated defense against Xanthomonas oryzae pv. oryzae in rice. Mol. Plant. 2008, 1, 446–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chujo, T.; Miyamoto, K.; Shimogawa, T.; Shimizu, T.; Otake, Y.; Yokotani, N.; Nishizawa, Y.; Shibuya, N.; Nojiri, H.; Yamane, H.; et al. OsWRKY28, a PAMP-responsive transrepressor, negatively regulates innate immune responses in rice against rice blast fungus. Plant Mol. Biol. 2013, 82, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Ye, M.; Li, R.; Zhang, T.; Zhou, G.; Wang, Q.; Lu, J.; Lou, Y. The rice transcription factor WRKY53 suppresses herbivore-induced defenses by acting as a negative feedback modulator of Mitogen-Activated Protein Kinase activity. Plant Physiol. 2015, 169, 2907–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshii, M.; Shimizu, T.; Yamazaki, M.; Higashi, T.; Miyao, A.; Hirochika, H.; Omura, T. Disruption of a novel gene for a NAC-domain protein in rice confers resistance to Rice dwarf virus. Plant J. 2009, 57, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Khong, G.N.; Pati, P.K.; Richaud, F.; Parizot, B.; Bidzinski, P.; Mai, C.D.; Bès, M.; Bourrié, I.; Meynard, D.; Beeckman, T.; et al. OsMADS26 negatively regulates resistance to pathogens and drought tolerance in rice. Plant Physiol. 2015, 169, 2935–2949. [Google Scholar] [CrossRef] [Green Version]
- Koo, S.C.; Choi, M.S.; Chun, H.J.; Shin, D.B.; Park, B.S.; Kim, Y.H.; Park, H.-M.; Seo, H.S.; Song, J.T.; Kang, K.Y.; et al. The calmodulin-binding transcription factor OsCBT suppresses defense responses to pathogens in rice. Mol. Cells 2009, 27, 563–570. [Google Scholar] [CrossRef]
- Wu, J.; Yang, R.; Yang, Z.; Yao, S.; Zhao, S.; Wang, Y.; Li, P.; Song, X.; Jin, L.; Zhou, T.; et al. ROS accumulation and antiviral defence control by microRNA528 in rice. Nat. Plants 2017, 3, 16203. [Google Scholar] [CrossRef]
- Shen, X.; Yuan, B.; Liu, H.; Li, X.; Xu, C.; Wang, S. Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J. 2010, 64, 86–99. [Google Scholar] [CrossRef]
- Zhou, G.; Ren, N.; Qi, J.; Lu, J.; Xiang, C.; Ju, H.; Cheng, J.; Lou, Y. The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol Plant. 2014, 152, 59–69. [Google Scholar] [CrossRef]
- Xiao, W.; Liu, H.; Li, Y.; Li, X.; Xu, C.; Long, M.; Wang, S. A rice gene of De Novo origin negatively regulates pathogen-induced defense response. PLoS ONE 2009, 4, e4603. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Liu, H.; Yuan, B.; Li, X.; Xu, C.; Wang, S. OsEDR1 negatively regulates rice bacterial resistance via activation of ethylene biosynthesis. Plant Cell Environ. 2011, 34, 179–191. [Google Scholar] [CrossRef]
- Albar, L.; Bangratz-Reyser, M.; Hebrard, E.; Ndjiondjop, M.N.; Jones, M.; Ghesquiere, A. Mutations in the eIF(iso)4G translation initiation factor confer high resistance of rice to Rice yellow mottle virus. Plant J. 2006, 47, 417–426. [Google Scholar] [CrossRef]
- Zhang, H.; Li, L.; He, Y.; Qin, Q.; Chen, C.; Wei, Z.; Tan, X.; Xie, K.; Zhang, R.; Hong, G.; et al. Distinct modes of manipulation of rice auxin response factor OsARF17 by different plant RNA viruses for infection. Proc. Natl. Acad. Sci. USA 2020, 117, 9112–9121. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhang, L.; Mo, X.; Ji, H.; Bian, H.; Hu, Y.; Majid, T.; Long, J.; Pang, H.; Tao, Y.; et al. Rice aquaporin PIP1;3 and harpin Hpa1 of bacterial blight pathogen cooperate in a type III effector translocation. J. Exp. Bot. 2019, 70, 3057–3073. [Google Scholar] [CrossRef] [Green Version]
- Hui, S.; Shi, Y.; Tian, J.; Wang, L.; Li, Y.; Wang, S.; Yuan, M. TALE-carrying bacterial pathogens trap host nuclear import receptors for facilitation of infection of rice. Mol. Plant Pathol. 2019, 20, 519–532. [Google Scholar] [CrossRef] [PubMed]
- van Schie, C.C.; Takken, F.L. Susceptibility genes 101: How to be a good host. Annu. Rev. Phytopathol. 2014, 52, 551–581. [Google Scholar] [CrossRef] [PubMed]
- Pavan, S.; Jacobsen, E.; Visser, R.G.; Bai, Y. Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance. Mol. Breed. 2010, 25, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Su, H.; Bai, H.; Wang, R.; Liu, Y.; Guo, X.; Liu, C.; Zhang, J.; Yuan, J.; Birchler, J.A.; et al. High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol. J. 2018, 16, 1848–1857. [Google Scholar] [CrossRef]
- Li, X.; Jiang, D.-H.; Yong, K.; Zhang, D.-B. Varied transcriptional efficiencies of multiple Arabidopsis U6 small nuclear RNA genes. J. Integrat. Plant Biol. 2007, 49, 222–229. [Google Scholar] [CrossRef]
- Hao, Y.; Zong, W.; Zeng, D.; Han, J.; Chen, S.; Tang, J.; Zhao, Z.; Li, X.; Ma, K.; Xie, X.; et al. Shortened snRNA promoters for efficient CRISPR/Cas-based multiplex genome editing in monocot plants. Sci. China Life Sci. 2020, 63, 933–935. [Google Scholar] [CrossRef]
- Qi, X.; Dong, L.; Liu, C.; Mao, L.; Liu, F.; Zhang, X.; Cheng, B.; Xie, C. Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. Crop J. 2018, 6, 314–320. [Google Scholar] [CrossRef]
- Jun, R.; Xixun, H.; Kejian, W.; Chun, W. Development and application of CRISPR/Cas system in rice. Rice Sci. 2019, 26, 69–76. [Google Scholar] [CrossRef]
- Hassan, M.M.; Zhang, Y.; Yuan, G.; De, K.; Chen, J.G.; Muchero, W.; Tuskan, G.A.; Qi, Y.; Yang, X. Construct design for CRISPR/Cas-based genome editing in plants. Trends Plant Sci. 2021, 26, 1133–1152. [Google Scholar] [CrossRef]
- Ren, Q.; Zhong, Z.; Wang, Y.; You, Q.; Li, Q.; Yuan, M.; He, Y.; Qi, C.; Tang, X.; Zheng, X.; et al. Bidirectional promoter-based CRISPR-Cas9 systems for plant genome editing. Front. Plant Sci. 2019, 10, 1173. [Google Scholar] [CrossRef]
- Bao, A.; Chen, H.; Chen, L.; Chen, S.; Hao, Q.; Guo, W.; Qiu, D.; Shan, Z.; Yang, Z.; Yuan, S.; et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean. BMC Plant Biol. 2019, 19, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilo, B.; Perrot, L.; Mara, K.; Botton, E.; Nogué, F.; Mazier, M. Efficient and transgene-free gene targeting using Agrobacterium-mediated delivery of the CRISPR/Cas9 system in tomato. Plant Cell Rep. 2019, 38, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Eggenberger, A.L.; Banakar, R.; McCaw, M.E.; Zhu, H.; Main, M.; Kang, M.; Gelvin, S.B.; Wang, K. CRISPR/Cas9-mediated targeted T-DNA integration in rice. Plant Mol. Biol. 2019, 99, 317–328. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohini, V.K.; Rao, K.S. Transformation of peanut (Arachis hypogaea L.): A non-tissue culture based approach for generating transgenic plants. Plant Sci. 2000, 150, 41–49. [Google Scholar] [CrossRef]
- Kesiraju, K.; Tyagi, S.; Mukherjee, S.; Rai, R.; Singh, N.K.; Sreevathsa, R.; Dash, P.K. An apical meristem-targeted in planta transformation method for the development of transgenics in flax (Linum usitatissimum): Optimization and validation. Front. Plant Sci. 2021, 11, 562056. [Google Scholar] [CrossRef] [PubMed]
- Ratanasut, K.; Rod-In, W.; Sujipuli, K. In planta Agrobacterium-Mediated Transformation of Rice. Rice Sci. 2017, 24, 181–186. [Google Scholar] [CrossRef]
- Supartana, P.; Shimizu, T.; Shioiri, H.; Nogawa, M.; Nozue, M.; Kojima, M. Development of simple and efficient in planta transformation method for rice (Oryza sativa L.) using Agrobacterium tumefaciens. J. Biosci. Bioeng. 2005, 100, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.Z.; Zhou, B.; Yang, Y.Z.; Mei, J.; Zhao, X.Y.; Guo, X.H.; Huang, X.Q.; Tang, D.Y.; Liu, X.M. Piercing and vacuum infiltration of the mature embryo: A simplified method for Agrobacterium-mediated transformation of indica rice. Plant Cell Rep. 2009, 28, 1065–1074. [Google Scholar] [CrossRef] [PubMed]
- Char, S.N.; Neelakandan, A.K.; Nahampun, H.; Frame, B.; Main, M.; Spalding, M.H.; Becraft, P.W.; Meyers, B.C.; Walbot, V.; Wang, K.; et al. An Agrobacterium-delivered CRISPR/Cas9 system for high-frequency targeted mutagenesis in maize. Plant Biotechnol. J. 2017, 15, 257–268. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, J.; Li, D.; Cheng, Y. Strategies in the delivery of Cas9 ribonucleoprotein for CRISPR/Cas9 genome editing. Theranostics 2021, 11, 614–648. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, A.; Parkhi, V.; Char, B. Genome editing for crop improvement: A perspective from India. Vitr. Cell Dev. Biol. Plant. 2021, 57, 565–573. [Google Scholar] [CrossRef]
- Dilawari, R.; Kaur, N.; Priyadarshi, N.; Kumar, B.; Abdelmotelb, K.F.; Lal, S.K.; Singh, B.; Tripathi, A.; Aggarwal, S.K.; Jat, B.S.; et al. Genome Editing: A Tool from the Vault of Science for Engineering Climate-Resilient Cereals. In Harsh Environment and Plant Resilience: Molecular and Functional Aspects; Husen, A., Ed.; Springer: Cham, Switzerland, 2021; pp. 45–72. [Google Scholar] [CrossRef]
Genome Editing Tools | Variants | Features | Function | Application | References |
---|---|---|---|---|---|
ZFN | - | Engineered protein, containing a zinc finger domain and endonuclease domain | Protein-dependent cleavage of any genomic DNA sequence | Editing of any DNA sequence | [53] |
TALEN | - | Customized protein-containing DNA binding domain of transcriptional activator-like effector (TALE) and FokI restriction enzyme | Protein-dependent cleavage of any genomic DNA sequence | Editing of any DNA sequence | [39] |
CRISPR/Cas | Cas9 | A ribonucleoprotein complex containing a DNA endonuclease (Cas9) enzyme fused with guide RNAs (gRNAs) | RNA-guided cleavage of dsDNA sequence complementary to the gRNA; Efficient genome editing with limited target site and potential off-target effect due to long size of sgRNA (100 nt) | Genome editing with multiplex facility | [54] |
Cas12 | A ribonucleoprotein complex containing a DNA endonuclease (Cas12/Cpf1) enzyme fused with crRNA (CRISPR-derived RNA), but not tracrRNA | RNA-guided cleavage of ssDNA and dsDNA sequence with high cleavage efficiency and less off-target effect due to short crRNA (40--45 nt) molecules | Precise genome editing | [55] | |
Cas13 | A ribonucleoprotein complex containing an RNA endonuclease (Cas13) enzyme fused with crRNA | RNA-guided cleavage of ssRNA sequence; suitable multiplex editing | Robust management of RNA viruses | [56] | |
Base editing | A ribonucleoprotein complex containing catalytically inactive Cas9 nickase and a cytidine deaminase domain fused with a single gRNA | G-C to A-T conversion at desired locations in the genome | Nucleotide substitutions; with the limitation of limited PAM site and frequent off-target effect | [57] | |
Prime editing | A ribonucleoprotein complex containing a Cas9 nickase fused with reverse transcriptase (RT) and a prime editing guide RNA (pegRNA) | Targeted small insertions, deletions, and base transition by ‘search-and-replace’ method using the pegRNA sequence | Specific nucleotide substitution via gene knock-in at targeted genomic site | [58] |
Editing Strategy | Target Gene | Gene Function | Genome Editing Tool | Construct | Delivery Method | Edited Product | Outcome | Side Effects, If Reported | References |
---|---|---|---|---|---|---|---|---|---|
Insertion -Deletion (indel) mutation | OsERF922 | Negative regulators of defense-related genes | CRISPR/Cas9 | Cas9-gRNA expression binary vectors | Agrobacterium-mediated transformation (AMT) | Embryogenic calli of japonica rice var. Kuiku131 (42% mutation frequency) | Reduced accumulation of abscisic acid and enhanced disease resistance to blast | - | [67] |
Deletion/splicing of the coding sequence | OsWRKY62, OsWRKY76 | Transcriptional repressor of defense genes | CRISPR/Cas9 | Cas9 and gRNA constructs | AMT | Rice | Expression of defense-related genes and accumulation of phytoalexins | - | [80] |
OsSEC3A | Subunit of the exocyst complex, engaged in multiple functions | CRISPR/Cas9 | Co-expression of Cas9 and gRNA in binary T-DNA vectors | AMT | Embryogenic calli of japonica rice var. Kitaake | Higher levels of salicylic acid (SA) and pathogenesis-related protein synthesis, with enhanced resistance to blast disease | - | [81] | |
Frame-shift mutations of the gene | Pi21 | Encodes a cytoplasmic proline-rich protein acting as the susceptibility factor | CRISPR/Cas9 | Cas9- gRNA expression binary vectors | AMT | 42% mutation frequency | Durable, race non-specific resistance to rice blast | - | [82,83] |
One-base Insertion in two target sites (Promoter) | A single base change (SNP33-G) in the promoter of Bsr-d1 | Promotes peroxidase expression, suppressing immunity to M. oryzae | CRISPR/Cas9 | Cas9/gRNA expression binary vectors | AMT | - | Enhances binding of MYBS1 to the promoter and suppresses bsr-d1 expression to confer resistance | No observable penalty in plant growth or yield | [84] |
Perox3 | Peroxidase synthesis | CRISPR/Cas9 | Cas9 binary vector (pBGK032) | AMT | Rice calli | No phenotypic change | [85] | ||
Exon 1 and 3 of OsPFT1 | CRISPR/Cas9 | CRISPR/Cas9–gRNA constructs (pRGEB32) | AMT | Embryonic calli of indica rice variety ASD16 | Confer resistance to rice sheath blight | [86] | |||
Modification of coding sequence | Exons of Mitogen-activated Protein Kinase5, (OsMPK5) locus (PS1, PS2, and PS3) | A negative regulator of rice defense response | CRISPR/Cas9 | CRISPR/Cas9 and gRNA cassette (pUGW11 vector) | Protoplast transformation | O. sativa spp. japonica var. Nipponbare | Disease resistance in rice (3–8% mutation frequency) | [79] | |
OsMPK15 | A negative regulator of defense in rice | CRISPR/Cas9 | - | - | - | Induced defense against blast pathogen via expression of PR proteins, SA production, JA-biosynthesis with the increased expression of genes like LOX, OPR1, and AOS1/2/4 as well as ROS burst | Long grain size | [87] | |
Substitution/knock-in strategies | Deletion of USTA (Ustiloxin) and UvSLT2 (MAP kinase) genes of rice false smut pathogen | USTA gene encodes the ustiloxin toxin responsible for virulence; UvSlt2 MAP kinase pathway has a conserved role in cell wall integrity | CRISPR/Cas9 | Cas9 vector carrying the hygromycin phosphotransferase (hph) cassette (pDHt/sk-PC) | AMT | Ustilaginoidea virens | The deletion of USTA reduces the toxin biosynthesis and reduce the virulence of fungal pathogen; Deletion of UvSLT2 also increased cell wall sensitivity to stresses | - | [88] |
Disruption of scytalone dehydratase (SDH) gene of M. oryzae | Melanin synthesis and appressoria formation | CRISPR/Cas9 | Separate CRISPR/Cas9 vector and gRNA vector | Protoplast transformation | Magnaporthe oryzae | Reduced melanin deposition | - | [89] |
Strategy | Target Gene | Gene Function | Genome Editing Tool | Construct | Delivery Method | Edited Product | Outcome | References |
---|---|---|---|---|---|---|---|---|
Engineering of cis-elements in the promoter (EBEAvrXa7) | OsSWEET14 (Os11N3, Xa41), | Encodes the sucrose-efflux transporter | TALENs | TALEN gene construct under the control of the CaMV 35S and maize ubiquitin 1 promoter | A. tumefaciens mediated transformation (AMT) | Embryonic cells | Enhanced resistance to Xoo strains secreting the AvrXa7 effector | [99] |
Engineering of promoter sequence | OsSWEET11 (Os8N3, Xa13), OsSWEET14 | Sucrose-efflux transporter family | CRISPR/Cas9 | Co-transformation of Cas9 and sgRNA constructs | Protoplast transformation using PEG | - | Successful demonstration of editing the promoter region of the bacterial blight susceptibility genes | [101] |
OsSWEET13 (Xa25) | Encodes the sucrose | CRISPR/Cas9 | Cas9-gRNA construct expressed under maize ubiquitin 1 promoter | AMT | Embryogenic calli of japonica rice var. Kitaake | Enhanced resistance to BLB | [102] | |
Engineering of a promoter sequence (AvrXa7, Tal5, and TalC EBEs) | OsSWEET13 (Xa25) | Encodes the sucrose | TALENs | TALEN constructs (pCAMBIA2300 and pCAMBIA5300) under control of the maize ubiquitin promoter and the NOS terminator | AMT | Embryonic calli of japonica rice cvs. Kitaake or Nipponbare | Enhanced resistance to Xoo strains carrying effector AvrXa7, Tal5(F), but not against TalC. | [100] |
Editing of gene promoter carrying Tal7-binding site (EBEtal7) | Os09g29100 | Encodes a Cyclin-D4-1 protein | TALENs TALEN-modified EBEtal7 in Os09g29100. | TALEN constructs (pCAMBIA1301-EBEtal7) | AMT | Embryonic calli of japonica rice cvs. Kitaake or Nipponbare | Enhanced resistance to BLS pathogen through the suppression of AvrXa7-Xa7 mediated defense | [108] |
OsSWEET11 (Os8N3) | Role in sucrose transport during the early stage of rice grain filling | CRISPR/Cas9 | CRISPR/Cas9 construct in pHAtC under the control of OsU6a promoter | AMT | Embryonic calli of japonica rice cv. Kitaake | Enhanced resistance to BLB with abnormal pollen development | [103] | |
Gene editing of the TALE-binding elements (EBEs) | EBEs of OsSWEET11 and OsSWEET14 | Induced for full disease development | CRISPR/Cas9 | CRISPR/Cas9 cassette to mutate the | AMT | Embryonic calli of japonica rice cv. Kitaake | Broad-spectrum resistance to most Xoo strains | [104] |
Targeting 4 EBEs present in the promoter | OsSWEET14 | Sugar transportation | CRISPR/Cas9 | Cas9 gene and gRNA cassette (pRGEB32) | Biolistic transformation | Embryonic calli of indica rice var. super basmati | Generate resistance against locally prevalent Xoo strains | [105] |
Editing of promoter cis-elements | EBEs (for TalC, PthXo3, AvrXa7, and TalF) and putative TATA box of OsSWEET14 | Sugar transportation | CRISPR/Cas9 | pCas9/OsSWEET14-gRNA expression vector | AMT | Embryonic calli of rice cv. TBR225 | Reduced expression of OsSWEET14 and enhanced resistance to Vietnamese Xoo strains | [106] |
Promoter modification | Disruption of EBE sequence of OsSULTR3;6 | Encodes sulfate transporter | CRISPR/Cas9 | Cas9-gRNA binary vector (pCas9-gRNA4-SU) cassette | AMT | Rice cultivar IRBB10 | Enhanced resistance to Xoc strains containing either Tal2g or Tal5d effectors | [109] |
EBEs of three major susceptibility genes | EBEs of OsSWEET11, OsSWEET14, OsSULTR3;6 | Xoo and Xoc susceptibility | CRISPR/Cas9 | CRISPR/Cas9 mediated (using pYLCRISPR) | AMT | Rice cv. Guihong 1 and Zhonghua | Broad-spectrum resistance to Xoo and Xoc | [110] |
Editing promoter cis-element | Deletion of two core nucleotides in the UPT box (Transcription activator-like 1 effector) of the Xa13 promoter | PXO99-responsive activation of Xa13 | CRISPR/Cas12a | Cas12a-gRNA constructs | AMT | Indica rice var. IR58025B | Confers resistance to Philippine Xoo race 6 (strain PXO99) | [111] |
Strategy | Target Gene | Gene Function | Genome Editing Tool | Methods Of Application | Outcome | Other Phenotypic Changes | References |
---|---|---|---|---|---|---|---|
Mutation of CDS of the susceptibility gene | eIF4G | Helps in the translation of viral proteins, in the case of RNA viruses | CRISPR/Cas9 | AMT technique was performed using immature rice (O. sativa var. indica cv. IR64) embryonic calli using three differentpCas9-eIF4G-gRNA cassettes | In-frame mutations in flanking residues SVLFPNLAGKS (mainly NL), adjacent to the YVV residues (interacting with RTSV) confer enhanced resistance to Rice tungro spherical virus | No detectable off-target mutations | [60] |
eIF4G | Helps in the translation of viral proteins, in the case of RNA viruses | CRISPR/Cas9 | AMT technique on rice (cv. Nipponbare) embryonic calli using a binary vector, pHUE401 containing a guide RNA sequence targeting exon 1 of eIF4G | Partial resistance specific to Rice black-streaked dwarf virus (RBSDV) | No visibly impact on plant growth and development | [117] |
Category of S Genes | Target Gene | Gene Function | References |
---|---|---|---|
Negative regulators of plant defense responses | Non-expressor of Pathogenesis-related genes 1 (OsNPR1) | Negative modulators of herbivore-induced defenses | [122] |
NRR (Negative regulator of resistance) | NRR interacts with NPR1 and NH1 and acts as the negative regulator of resistance | [123] | |
OB-fold gene (Os03g47990) | Negative regulator of blast resistance, involved in RNA stabilization that leads to enhanced susceptibility to M. oryzae (Mor) | [124] | |
Extracellular leucine-rich repeat (eLRR) protein OsI-BAK1 | Negative modulator of defense responses in rice to Brown Planthopper (BPH) | [125] | |
OsWRKY62 | Negative regulator of basal and Xa21-mediated defense against Xoo in rice | [126] | |
OsWRKY28 | Negative regulator of innate immunity against blast pathogen | [127] | |
OsWRKY53 | Negative regulator of Mitogen-Activated Protein Kinase Activity and suppresses herbivore-induced Defenses | [128] | |
RIM (Rice dwarf virus multiplication 1) | A NAC-TF helps in the multiplication of Rice dwarf virus (RDV) in rice | [129] | |
OsMADS26 | Negative-regulator of plants defense against Mor and Xoo | [130] | |
Calmodulin (CaM)-binding transcription factor (OsCBT) | Suppresses Defense Responses in Rice to Mor and Xoo | [131] | |
OsMIR528 | Negatively regulates virus defense through repressing the gene encoding an L-ascorbate oxidase (AO) | [132] | |
Mitogen-activated protein kinase 6 (OsMPK6) | Act as an activator and a repressor of defense in rice against Xoo | [133] | |
9-lipoxygenase (Osr9)-LOX1 | Negative modulators of herbivore-induced defenses, | [134] | |
O. sativa defense-responsive gene 10 (OsDR10) | Negative regulator of pathogen-induced defense in rice against Xoo strains via suppression of SA-dependent pathway | [135] | |
Enhanced disease resistance 1 (OsEDR1) | Negatively regulates bacterial blight resistance in rice via promotion of ethylene biosynthesis | [136] | |
Potential host susceptible factor targeted by pathogen | Eukaryotic translation initiation factor 4G (eIF(iso)4G) | Involved in the fixation of the mRNA cap and ribosome recruitment in the initial steps of translation and restoration of Rice yellow mottle virus (RYMV) susceptibility in a rice genotype | [137] |
Auxin Response Factor 17 (OsARF17) | Potential host factor targeted by very different RNA viruses like Fijiviruses and Tenuiviruses to disrupt auxin signaling pathway | [138] | |
Rice aquaporin PIP1;3 (OsPIP1;3) | Required for the translocation of effector (PthXo1) of Xoo strain PXO99 | [139] | |
Cytoplasm/nuclear shuttle proteins (OsImpα1a and OsImpα1b) | Translocation of TALEs of Xoo from the cytoplasm into the nucleus | [140] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chattopadhyay, A.; Purohit, J.; Mehta, S.; Parmar, H.; Karippadakam, S.; Rashid, A.; Balamurugan, A.; Bansal, S.; Prakash, G.; Achary, V.M.M.; et al. Precision Genome Editing Toolbox: Applications and Approaches for Improving Rice’s Genetic Resistance to Pathogens. Agronomy 2022, 12, 565. https://doi.org/10.3390/agronomy12030565
Chattopadhyay A, Purohit J, Mehta S, Parmar H, Karippadakam S, Rashid A, Balamurugan A, Bansal S, Prakash G, Achary VMM, et al. Precision Genome Editing Toolbox: Applications and Approaches for Improving Rice’s Genetic Resistance to Pathogens. Agronomy. 2022; 12(3):565. https://doi.org/10.3390/agronomy12030565
Chicago/Turabian StyleChattopadhyay, Anirudha, Jyotika Purohit, Sahil Mehta, Hemangini Parmar, Sangeetha Karippadakam, Afreen Rashid, Alexander Balamurugan, Shilpi Bansal, Ganesan Prakash, V. Mohan Murali Achary, and et al. 2022. "Precision Genome Editing Toolbox: Applications and Approaches for Improving Rice’s Genetic Resistance to Pathogens" Agronomy 12, no. 3: 565. https://doi.org/10.3390/agronomy12030565
APA StyleChattopadhyay, A., Purohit, J., Mehta, S., Parmar, H., Karippadakam, S., Rashid, A., Balamurugan, A., Bansal, S., Prakash, G., Achary, V. M. M., & Reddy, M. K. (2022). Precision Genome Editing Toolbox: Applications and Approaches for Improving Rice’s Genetic Resistance to Pathogens. Agronomy, 12(3), 565. https://doi.org/10.3390/agronomy12030565