Application of Humic Substances in Agricultural Industry
Abstract
:1. Introduction
2. Effect of Humic Substances on Growth Processes in Plants
3. Effect of Humic Preparations on Microorganisms
4. Application of Humic Preparations in Animal Husbandry
5. The Mechanism of the Effect of Humic Substances on the Animal Body
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Orlov, D.S. Humic Substances of Soils and General Theory of Humification (Russian Translations Series), 1st ed.; CRC Press: Boca Raton, FL, USA, 1995; p. 266. [Google Scholar]
- Kononova, M.M. Soil Organic Matter. Its Nature, Its Role in Soil Formation and in Soil Fertility, 2nd ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 1966; 544p. [Google Scholar] [CrossRef]
- Orlov, D.S. Soil Chemistry; Oxford & IBH Publishing Co. Pvt. Ltd.: New Delhi, India, 1992; 402p. [Google Scholar]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; Wiley-Inter-Science: New York, NY, USA, 1994; 438p. [Google Scholar]
- Perminova, I.V. Humic substances as a challenge to chemists of the 21st century. Khim. Zhizn. 2008, 1, 50–55. (In Russian) [Google Scholar]
- Perminova, I.V. Humic substances-assisted synthesis of nanoparticles in the nature and in the lab. In Functions of Natural Organic Matter in Changing Environmen; Xu, J., Wu, J., He, Y., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 735–740. [Google Scholar]
- Piccolo, A. The supramolecular structure of humic substances. Soil Sci. 2001, 166, 810–832. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A. The supramolecular structure of humic substances. A novel understanding of humus chemistry and implications in soil science. Adv. Agron. 2002, 75, 57–134. [Google Scholar]
- Nebbioso, A.; Piccolo, A. Advances in humeomics: Enhanced structural identification of humic molecules after size fractionation of a soil humic acid. Anal. Chim. Acta 2012, 720, 77–90. [Google Scholar] [CrossRef]
- Fedotov, G.N.; Dobrovolskiy, G.V. Possible ways of nanostructure development in soil gels. Eur. Soil Sci. 2012, 45, 811–822. [Google Scholar] [CrossRef]
- Bezuglova, O. Molecular structure of humus acids in soils. J. Plant Nutr. Soil Sci. 2019, 182, 676–682. [Google Scholar] [CrossRef]
- Khristeva, L.A. On the participation of humic acids and other organic substances in the nutrition of higher plants. Soil Sci. 1953, 10, 24–29. (In Russian) [Google Scholar]
- Reutov, V.A. The Use of Brown Coals of the Dnieper Basin as a Raw Material for the Production of Humic Fertilizers in the Steppe Zone of the Ukrainian SSR. In Humic Fertilizers: Theory and Practice of Their Application: Dnepropetrovsk; Publishing House of the DSKHI: Dnepropetrovsk, Ukraine, 1962; Volume 2, pp. 445–467. (In Russian) [Google Scholar]
- Klimova, A.A.; Komissarov, I.D. Influence of humic preparations on the growth processes of plants. Humic preparations. Proceedings of the Tyumen Agricultural Institute. Tyumen 1971, 14, 189–199. (In Russian) [Google Scholar]
- Piccolo, A.; Celano, G.; Pietramellara, G. Effects of fractions of coal-derived humic substances on seed germination and growth of seedlings (Lactuga sativa and Lycopersicum esculentum). Biol. Fertil. Soils 1993, 16, 11–15. [Google Scholar] [CrossRef]
- Canellas, L.P.; Olivares, F.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Humic acids isolated from earthworm compost enhance root elongation, lateral root emergence, and plasma membrane H+-ATPase activity in maize roots. Plant Physiol. 2002, 130, 1951–1957. [Google Scholar] [CrossRef] [Green Version]
- Trevisan, S.; Francioso, O.; Quaggiotti, S.; Nardi, S. Humic substances biological activity at the plant-soil interface. From environmental aspects to molecular factors. Plant Signal. Behav. 2010, 5, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zandonadi, D.B.; Santos, M.P.; Dobbss, L.B.; Olivares, F.L.; Canellas, L.P.; Binzel, M.L.; Okorokova-Façanha, A.L.; Façanha, A.R. Nitric oxide mediates humic acids-induced root development and plasma membrane H+-ATPase activation. Planta 2010, 231, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Mora, V.; Baigorri, R.; Bacaicoa, E.; Zamarreno, A.M.; García-Mina, J.M. The humic acid-induced changes in the root concentration of nitric oxide, IAA and ethylene do not explain the changes in root architecture caused by humic acid in cucumber. Environ. Exp. Bot. 2012, 76, 24–32. [Google Scholar] [CrossRef]
- Olaetxea, M.; Mora, V.; Bacaicoa, E.; Garnica, M.; Fuentes, M.; Casanova, E.; Zamarreño, A.M.; Iriarte, J.C.; Etayo, D.; Ederra, I. Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiol. 2015, 169, 2587–2596. [Google Scholar]
- De Castro, T.A.V.T.; Berbara, R.L.L.; Tavares, O.C.H.; Mello, D.F.D.G.; Pereira, E.G.; de Souza, B.C.; da Costa, C.; Espinosa, L.M.; García, A.C. Humic Acids Induce a Eustress State Via Photosynthesis and Nitrogen Metabolism Leading to a Root Growth Improvement in Rice Plants. Plant Physiol. Biochem. 2021, 162, 171–184. [Google Scholar] [CrossRef] [PubMed]
- Khristeva, L.A.; Lukyanenko, N.V. The role of physiologically active soil substances—Humic acids, bitumen and vitamins B2, C, P-P, A and D in the life of plants and ways of their replenishment. Soil Sci. 1962, 10, 18–27. (In Russian) [Google Scholar]
- Lukyanenko, N.V. Influence of sodium humates on vital activity, morphogenesis and harvest of stubble corn. In Humic Fertilizers: Theory and Practice of Their Application; Publishing House “Urozhaj”: Kiev, Ukraine, 1968; Volume 3, pp. 68–76. (In Russian) [Google Scholar]
- Demyanenko, V.D. Influence of organic fractions of peat on root and air nutrition of plants. Humic fertilizers: Theory and practice of their application. Dnepropetrovsk 1977, 6, 38–44. (In Russian) [Google Scholar]
- Naumova, G.V.; Kosobokova, R.V.; Kosonogova, L.V.; Raitsina, G.I.; Zhmakova, N.A.; Ovchinnikova, T.F. Humic Preparations and Technological Methods of Their Production. Humic Substances in the Biosphere; Publishing House of Moscow State University: Moskow, Russia, 1993; pp. 178–188. (In Russian) [Google Scholar]
- Rosa, S.D.; Silva, C.A.; Maluf, H.J.G.M. Wheat nutrition and growth as affected by humic acid-phosphate interaction. J. Plant Nutr. Soil Sci. 2018, 181, 870–877. [Google Scholar] [CrossRef]
- Mulyatni, A.S.; Praptana, R.H.; Santoso, D. The effect of biostimulant in root and population of phosphate solubilizing bacteria. A study case in upland rice. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; pp. 12–16. [Google Scholar]
- Bezuglova, O.S.; Gorovtsov, A.V.; Polienko, E.A.; Zinchenko, V.E.; Grinko, A.V.; Lykhman, V.A.; Dubinina, M.N.; Demidov, A. Effect of humic preparation on winter wheat productivity and rhizosphere microbial community under herbicide-induced stress. J. Soils Sediments 2019, 19, 2665–2675. [Google Scholar] [CrossRef]
- Khristeva, L.A.; Reutov, V.A.; Golikova, O.P. Influence of physiologically active forms of humic acids on the synthesis of nucleic acids in plants. In Growth stimulators of organisms. In Proceedings of the Conf. Balt. Republics on the Stimulation of Plants, Animals and Microorganisms, Vilnius, Lithuania, 30 June–4 July 1969; pp. 146–148. (In Russian). [Google Scholar]
- Chaminade, R. Semaine d’etude “Matiere organique et fertilite du Sol”. Pontif. Acad. Sci. 1968, 2, 777. (In French) [Google Scholar]
- Mora, V.; Bacaicoa, E.; Zamarreno, A.-M.; Aguirre, E.; Garnica, M.; Fuentes, M.; García-Mina, J.-M. Action of humic acid on promotion of cucumber shoot growth involves nitrate-related changes associated with the root-to-shoot distribution of cytokinins, polyamines and mineral nutrients. J. Plant Physiol. 2010, 167, 633–642. [Google Scholar] [CrossRef] [PubMed]
- Isachkova, O.A.; Ganichev, B.L.; Lapshinov, N.A.; Pakul, V.N.; Zherebtsov, S.I.; Ismagilov, Z.I. Influence of humic preparations on agrobiological indicators of naked oats. Achiev. Sci. Technol. Agro-Ind. Complex 2015, 29, 26–29. (In Russian) [Google Scholar]
- Ronsal, G. Biologically active (mobile) humic substances—A factor of the action of humus on the soil and plant. Theoretical foundations of the physiologist. active substances and the effectiveness of fertilizers containing them. Dnepropetrovsk 1969, 67–76. (In Russian) [Google Scholar]
- Vaccaro, S.; Ertani, A.; Nebbioso, A.; Muscolo, A.; Quaggiotti, S.; Piccolo, A.; Nardi, S. Humic substances stimulate maize nitrogen assimilation and amino acid metabolism at physiological and molecular level. Chem. Biol. Technol. Agric. 2015, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Conselvan, G.B.; Fuentes, D.; Merchant, A.; Peggion, C.; Francioso, O.; Carletti, P. Effects of humic substances and indole-3-acetic acid on Arabidopsis sugar and amino acid metabolic profile. Plant Soil 2018, 426, 17–32. [Google Scholar] [CrossRef]
- Starostin, A.N. On the Issue of Thermodynamic Processes in Plants and the Effect of Some Physiologically Active Substances on Them. In Humic Fertilizers: Theory and Practice of Their Application; Publishing House “Urozhaj”: Kiev, Ukraine, 1968; Volume 3, pp. 42–47. (In Russian) [Google Scholar]
- Bobyr, L.F. The intensity of photosynthesis, the state of the electron transport chain and the activity of the phosphorylating system under the influence of humic substances. In Humic Fertilizers: Theory and Practice of Their Application; Publishing House of Agricultural Institute: Dnepropetrovsk, Russia, 1980; Volume 7, pp. 54–63. (In Russian) [Google Scholar]
- Liu, C.; Cooper, R.J.; Bowman, D.C. Humic acid application affects photosynthesis, root development, and nutrient content of creeping bentgrass. HortScience 1998, 33, 1023–1025. [Google Scholar] [CrossRef] [Green Version]
- Rivero, R.M.; Shulaev, V.; Blumwald, E. Cytokinin-dependent photorespiration and the protection of photosynthesis during water deficit. Plant Physiol. 2009, 150, 1530–1540. [Google Scholar] [CrossRef] [Green Version]
- El-Shabrawi, H.M.; Bakry, B.A.; Ahmed, M.A.; Abou-El-Lail, M.J.A.S. Humic and oxalic acid stimulates grain yield and induces accumulation of plastidial carbohydrate metabolism enzymes in wheat grown under sandy soil conditions. Agric. Sci. 2015, 6, 1–10. Available online: https://www.scirp.org/html/16-3000929_53564.htm (accessed on 30 December 2021).
- Nechaev, L.A.; Putintsev, A.F.; Zotikov, V.I.; Koroteev, V.I.; Erokhin, A.I.; Mordovin, A.N. The influence of the use of potassium humate on the productivity of malting barley. Achiev. Sci. Technol. Agro-Ind. Complex (In Russian). 2014, 6, 33–35. [Google Scholar]
- Vinogradova, V.S.; Martyntseva, A.A.; Kazarin, S.N. Influence of humic and micronutrient fertilizers on the yield of spring wheat. Agriculture 2015, 1, 32–34. (In Russian) [Google Scholar]
- Ulanov, N.N. Possibilities of using oxidized coals and humic substances in agriculture. In Humic Substances in the Biosphere; Publishing House of Moscow State University: Moskow, Russia, 1993; pp. 157–161. (In Russian) [Google Scholar]
- Delfine, S.; Tognetti, R.; Desiderio, E.; Alvino, A. Effect of foliar application of N and humic acids on growth and yield of durum wheat. Agron. Sustain. Dev. 2005, 25, 183–191. Available online: https://hal.archives-ouvertes.fr/hal-00886291 (accessed on 30 December 2021). [CrossRef]
- Chaple, Y.; Casal, P.; Korshunov, A.; Klimanov, V.; Mityushkin, A.; Rakhimov, R. Results of Czech-Russian studies on the use of lignohumates and chelates in potato growing. Achiev. Sci. Technol. Agro-Ind. Complex 2011, 4, 36–39. (In Russian) [Google Scholar]
- El-Sheshtawy, A.A.; Hager, M.A.; Shawer, S.S. Effect of bio-fertilizer, Phosphorus source and humic substances on yield, yield components and nutrients uptake by barley plant. J. Biol. Chem. Environ. Sci. 2019, 14, 279–300. [Google Scholar]
- Bezuglova, O.S.; Polienko, E.A.; Gorovtsov, A.V.; Lyhman, V.A.; Pavlov, P.D. The effect of humic substances on winter wheat yield and fertility of ordinary chernozems. Ann. Agrar. Sci. 2017, 15, 239–242. [Google Scholar] [CrossRef]
- Vaughan, D.; Malcolm, R.E. Influence of humic substances on growth and physiological processes. In Soil Organic Matter and Biological Activity; Springer: Dordrecht, The Netherlands, 1985; pp. 37–75. [Google Scholar]
- Rose, M.T.; Patti, A.F.; Little, K.R.; Brown, A.L.; Jackson, W.R.; Cavagnaro, T.R. A meta-analysis and review of plant-growth response to humic substances: Practical implications for agriculture. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 124, pp. 37–89. [Google Scholar]
- Krzemieniewski, S. Untersuchungen fiber Azotobacter chroococcum Beij. Bull. Acad. Sci. Gracovie 1908, 8, 929–1051. (In German) [Google Scholar]
- Remy, T.; Rosing, G. Uber die Biologische Reizwirkung natürlicher Humusstoffe. Zbl. Bakt. 1911, 2, 349–384. (In German) [Google Scholar]
- Prazmowski, A. Azotobacter Studien II. Physiologic und Biologic. Bull. Acad. Sci. Gracovie 1912, 7, 855–950. (In German) [Google Scholar]
- Iwasaki, K. Weitere Untersuchungen zur Fixation das Luftstickstoffs durch Azotobakter. Biochem. Z. 1930, 226, 32–46. (In German) [Google Scholar]
- Schnitzer, M.; Skinner, S.I.M. Organo-metallic interactions in soils: 1. Reactions between a number of metal ions and the organic matter of a podzol Bh horizon. Soil Sci. 1963, 96, 86–93. [Google Scholar] [CrossRef]
- Bhardwaj, K.K.R.; Gaur, A.C. Studies on the growth stimulating action of humic acid on bacteria. Zent Ralblatt fur Bakteriologie, Parasiten kunde Infektions krankheiten und Hygiene, Abt. 2. Naturwiss 1971, 126, 694–699. [Google Scholar]
- Andreyuk, E.I.; Gordienko, S.A.; Konoto, I.N.; Martynenko, V.A. Assimilation of humic acid nitrogen by microorganisms. Mikrobiol. Zhurnal 1973, 139–142. [Google Scholar]
- Filip, Z.; Claus, H.; Dippell, G. Abbau von Huminstoffen durch Bodenmikroorganismen-eine aersicht. Z. Pflanzenernähr. Bodenkd 1998, 161, 605–612. (In German) [Google Scholar] [CrossRef]
- Guminski, S.; Sulej, J. About the cause of the stimulative effect of humate in yeasts cultures. Acta Soc. Bot. Pol. 1979, 43, 279–293. [Google Scholar] [CrossRef] [Green Version]
- Valdrighi, M.M.; Pera, A.; Agnolucci, M.; Frassinetti, S.; Lunardi, D.; Vallini, G. Effects of compost-derived humic acids on vegetable biomass production and microbial growth within a plant (Cichorium intybus)-soil system: A comparative study. Agric. Ecosyst. Environ. 1996, 58, 133–144. [Google Scholar] [CrossRef]
- Vallini, G.; Pera, A.; Agnolucci, M.; Valdrighi, M. Humic Acids Stimulate Growth and Activity of in Vitro Tested Axenic Cultures of Soil Autotrophic Nitrifying Bacteria. Biol. Fertil. Soils 1997, 24, 243–248. [Google Scholar] [CrossRef]
- Valdrighi, M.M.; Pera, A.; Scatena, S.; Agnolucci, M.; Vallini, G. Effects of humic acids extracted from mined lignite or composted vegetable residues on plant growth and soil microbial populations. Compost Sci. Util. 1995, 3, 30–38. [Google Scholar] [CrossRef]
- Pradhan, A.; Geraldes, P.; Seena, S.; Pascoal, C.; Cássio, F. Humic acid can mitigate the toxicity of small copper oxide nanoparticles to microbial decomposers and leaf decomposition in streams. Freshw. Biol. 2016, 7, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Kudryasheva, N.S.; Tarasova, A.S. Pollutant toxicity and detoxification by humic substances: Mechanisms and quantitative assessment via luminescent biomonitoring. Environ. Sci. Pollut. Res. 2015, 22, 155–167. [Google Scholar] [CrossRef]
- Rozhko, T.; Bondareva, L.; Mogilnaya, O.; Vydryakova, G.; Bolsunovsky, A.; Stom, D.; Kudryasheva, N. Detoxification of AM-241 solutions by humic substances: Bioluminescent monitoring. Anal. Bioanal. Chem. 2011, 400, 329–334. [Google Scholar] [CrossRef]
- Feifičová, D.; Šnajdr, J.; Siglová, M.; Čejková, A.; Masák, J.; Jirků, V. Influence of humic acids on the growth of the microorganisms utilizing toxic compounds (comparison between yeast and bacteria). Chim. Int. J. Chem. 2005, 59, 749–752. [Google Scholar] [CrossRef]
- Meredith, C.E.; Radosevich, M. Bacterial degradation of homo-and heterocyclic aromatic compounds in the presence of soluble/colloidal humic acid. J. Environ. Sci. Health 1998, 33, 17–36. [Google Scholar] [CrossRef]
- Kulikova, N.A.; Perminova, I.V.; Badun, G.A.; Chernysheva, M.G.; Koroleva, O.V.; Tsvetkova, E.A. Estimation of uptake of humic substances from different sources by Escherichia coli cells under optimum and salt stress conditions by use of tritium-labeled humic materials. Appl. Environ. Microbiol. 2010, 76, 6223–6230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puglisi, E.; Pascazio, S.; Suciu, N.; Cattani, I.; Fait, G.; Spaccini, R.; Crecchio, C.; Piccolo, A.; Trevisan, M. Rhizosphere microbial diversity as influenced by humic substance amendments and chemical composition of rhizodeposits. J. Geochem. Explor. 2013, 129, 82–94. [Google Scholar] [CrossRef]
- Gorovaya, A.I.; Orlov, D.S.; Shcherbenko, O.V. Humic Substances: Structure, Functions, Mechanism of Action, Protective Properties, Ecological Role; Publishing House Naukova Dumka: Kiev, Ukraine, 1995; p. 303. (In Russian) [Google Scholar]
- Kuhnert, M.; Bartels, K.P.; Kroll, S.; Lange, N. Veterinary pharmaceuticals containing humic-acid for therapy and prophylaxis for gastrointestinal-diseases of dog and cat. Mon. Vet. 1991, 46, 4–8. [Google Scholar]
- Klocking, R.; Helbig, B.; Steinbuchel, A. Biopolymers for Medical and Pharmaceutical Application; Steinbuchel, A., Marchessault, R.H., Eds.; Wiley-VCH Verlag GmbH & Co KGaA: Weinheim, Germany, 2005; Available online: https://application.wiley-vch.de/books/sample/3527311548_c01.pdf (accessed on 1 October 2021).
- Fuchs, V.; Golbs, S.; Kühnert, M.; Schopeck, W.; Stier, B. Studies into action of humic acids onselected trace elements in laboratory rats. Arch. Exper. Vet. Med. 1982, 36, 187–191. [Google Scholar]
- Seffner, W.; Schiller, F.; Heinze, R.; Breng, R. Subchronic application of humic acids and associated compounds provokes histological changes of goitre in the rat. Exp. Toxic. Pathol. 1995, 47, 63–70. [Google Scholar] [CrossRef]
- Lange, N.; Kühnert, M.; Haase, A.; Höke, H.; Seubert, B. Studies concerning the resorption properties of a low molecular humic substance after single oral application to rats. Dtsch. Tierärztliche Wochenschr. 1996, 103, 134–135. [Google Scholar]
- Yasar, S.; Gokcimen, A.; Altunas, I.; Yonden, Z.; Petekkaya, E. Performance and ileal histomorphology of rats treated with humic acid preparations. J. Anim. Physi. Anim. Nutr. 2002, 86, 257–264. [Google Scholar] [CrossRef]
- Hays, V.W. Effectiveness offeed additive usage of antibacterial agents in swine and poultry production. In The Hays Report; Report, 12476-01,5/; Rachelle Laboratories, Inc.: Long Beach, CA, USA, 1981; pp. 81–91. [Google Scholar]
- Schuhmacher, A.; Gropp, J.M. Effect of humic acids on health state and performance of weaners. Proc. Soc. Nutr. Physiol. 2000, 9, 77. [Google Scholar]
- Písaříková, B.; Zralý, Z.; Herzig, I. The Effect of Dietary Sodium Humate Supplementation on Nutrient Digestibility in Growing Pigs. Acta Vet. Brno 2010, 79, 349–353. [Google Scholar] [CrossRef] [Green Version]
- Varadyova, Z.; Kisidayova, S.; Jalc, D. Effect of humic acid on fermentation and ciliate protozoan population in rumen fluid of sheep invitro. J. Sci. Food Agric. 2009, 89, 1936–1940. [Google Scholar] [CrossRef]
- Tunç, M.A.; Yörük, M.A. Humik asitlerin koyunlarda rumen ve kan parametreleri ile protozoon sayısı üzerine etkisi. Kafkas Üniversitesi Vet. Fakültesi Derg. 2012, 18, 55–60. (In Turkish) [Google Scholar]
- Kreutz, B.; Schlikekewey, W. Effects of Implantedbovine calcium hydroxyapatite with humate. Arch. Orthop. Trauma Surg. 1992, 111, 259–264. [Google Scholar]
- Livestock. Field Trials on Dairy Cattle 2003; Enviromate Inc.: Fort Worth, TX, USA; Available online: www.livestockrus.com/consignments/enviromate/enviromate.htmhttp://www.livestockrus.com/consignments/enviromate/enviromate.htm (accessed on 13 October 2021).
- Yüca, S.; Gul, M. Effect of Adding Humate to the Ration of Dairy Cows on Yield Performance. Res. Artic. 2020, 68, 7–14. [Google Scholar] [CrossRef]
- Stepchenko, L.M.; Zhorina, L.V.; Kravtsova, L.V. The effect of sodium humate on metabolism andresistance in highly productive poultry. Nauchnye Dokl. Vyss. Shkoly. Biol. Nauk. Moscow Russia 1991, 10, 90–95. (In Russian) [Google Scholar]
- Bailey, C.A.; White, K.E.; Donke, S.L. Evaluation of Menefee Humate on the performance of TM broilers. Poult. Sci. 1996, 75, 84. [Google Scholar]
- Parks, C.W. The use of Menefee HumateTM in Typical and Low-Crude Protein Diets for Turkey Tomsand in the Bioremediation of Petroleum-Contaminated Soil Amended with Poultry Litter as Aco-Substrate and Nutrient Source. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 1998. [Google Scholar]
- Shermer, C.L.; Maciorowski, K.G.; Bailey, C.A.; Byers, F.M.; Ricke, S. Caecal metabolites and microbial populations in chickens consuming diets containing a mined humate compound. J. Sci. Food Agric. 1998, 77, 479–486. [Google Scholar] [CrossRef]
- Kocabaglı, N.; Alp, M.; Acar, N.; Kahraman, R. The Effects of Dietary Humate Supplementation on Broiler Growth and Carcass Yield. Poult. Sci. 2002, 81, 227–230. [Google Scholar] [CrossRef]
- Şahin, T.; Aksu Elmalı, D.; Kaya, İ.; Sarı, M.; Kaya, Ö. The effect single and combined use of probiotic and humate in quail (Coturnix coturnix Japonica) diet on fattening performance and carcass parameters. Kafkas. Univ. Vet. Fak. Derg. 2011, 17, 141–146. [Google Scholar]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic acid as a feed additive in poultry diets: A review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar]
- Steinberg, C.E.W.; Höss, S.; Kloas, W.; Lutz, I.; Meinelt, T.; Pflugmacher, S.; Wiegand, C. Hormone like effects of humic substances on fish, amphibians, and invertebrates. Environ. Toxicol. 2004, 70, 409–411. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Wahab, A.M.; El-Refaee, A.M.E.; Ammar, A.A. Effects of humic acid as feed additive in improvement of nonspecific immune response and disease resistance in common carp (Cyprinus carpio). Egypt. J. Aquacult. 2012, 2, 83–90. [Google Scholar]
- Yilmaz, S.; Ergun, S.; Çelik, E.S.; Yigit, M. Effects of dietary humic acid on growth performance, haemato-immunological and physiological responses and resistance of Rainbow trout, Oncorhynchus mykiss to Yersinia ruckeri. Aquac. Res. 2018, 49, 3338–3349. [Google Scholar] [CrossRef]
- Lieke, T.; Steinberg, C.E.W.; Pan, B.; Perminova, I.V.; Meinelt, T.; Knopf, K.; Kloas, W. Phenol-rich fulvic acid as a water additive enhances growth, reduces stress, and stimulates the immune system of fish in aquaculture. Sci. Rep. 2021, 11, 174. [Google Scholar] [CrossRef]
- EMEA: Committee for Veterinary Medical Products. Humic Acids and Their Sodium Salts. Available online: http:/www.emea.europa.eu/pdfs/vet/mrls/055499en.pdfs (accessed on 13 February 2021).
- EGTOP/1/2011. Final Report on Feed. The EGTOP Adopted This Technical Advice at Its 3rd Plenary Meeting on 29 and 30 June 2011. Available online: https://ec.europa.eu/info/sites/default/files/food-farming-fisheries/farming/documents/final_report_feed_1_en.pdf (accessed on 3 December 2021).
- European Commission. Health and Food Safety Directorate General sante.ddg2.g.5(2021)3756475. Standing Committee on Plants, Animals, Food and Feed Section Animal Nutrition. 19–21 April 2021. Available online: https://ec.europa.eu/food/system/files/2021-06/reg-com_ani-nutrit_20210419_sum.pdf (accessed on 5 December 2021).
- Adil, S.; Tufail, B.; Gulam, A.B.; Masood, S.; Manzoor, R. Effect of dietary supplementation of organic acids on performance, intestinal histomorphology, and serum biochemistry of broiler chicken. Vet. Med. Int. 2010, 2010, 479485. [Google Scholar] [CrossRef] [Green Version]
- Lückstädt, C. Effects of dietary potassium diformate on growth and gastrointestinal health in weaned piglets in Vietnam. In Proceedings of the Conference on International Research on Food Security, Natural Resource Management and Rural Development, Organized by the Czech University of Life Sciences, Prague, Prague, Czech Public, 17–19 September 2014. [Google Scholar]
- Khan, S.H.; Iqbal, J. Recent advances in the role of organic acids in poultry nutrition. J. Appl. Anim. Res. 2016, 44, 359–369. [Google Scholar] [CrossRef]
- Hassan, S.M. Effect of Adding Dietary Humate on Productive Performance of Broiler Chicks. Asian J. Poult. Sci. 2014, 8, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Karaoglu, M.; Macit, M.; Esenbuga, N.; Durdag, H.; Turgut, L.; Bilgin, Ö.C. Effect of supplemental humate at different levels on the growth performance, slaughter and carcass traits of broilers. Int. J. Poult. Sci. 2004, 3, 406–410. [Google Scholar] [CrossRef]
- Zralý, Z.; Písaříková, B.; Navrátilová, M. The effect of humic acid on mercury accumulation in chicken organs and muscle tissues. Czech J. Anim. Sci. 2008, 53, 472–478. [Google Scholar] [CrossRef] [Green Version]
- Arafat, R.Y.; Khan, S.H.; Saima. Evaluation of humic acid as an aflatoxin binder in broiler chickens. Ann. Anim. Sci. 2017, 17, 241–255. [Google Scholar] [CrossRef] [Green Version]
- Disetlhe, A.R.P.; Marume, U.; Mlambo, V.; Dinev, I. Humic acid and enzymes in canola-based broiler diets: Effects on bone development, intestinal histomorphology and immune development. S. Afr. J. Anim. Sci. 2017, 47, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Jaďuttová, I.; Marcinčáková, D.; Bartkovský, M.; Semjon, B.; Harčárová, M.; Nagyová, A.; Váczi, P.; Marcincak, S. The effect of dietary humic substances on the fattening performance, carcass yield, blood biochemistry parameters and bone mineral profile of broiler chickens. Acta Vet. Brno 2019, 88, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Skalická, M.; Nad, P.; Bujňák, L.; Marcin, A. Impact of dietary humic substances supplementation on selected minerals in muscles of broiler chickens. Folia Vet. 2021, 65, 51–59. [Google Scholar] [CrossRef]
- Visser, S.A. Physiological action of humic acids on living cells. In Proceedings of the 4th Int. Peat Congr., Finland, Ctaniemy, 25–30 June 1972; pp. 186–192. [Google Scholar]
- Stepchenko, L.M. The role of humic preparations in the management of metabolic processes in the formation of biological products of agricultural animals. In Collection of Papers “Achievements and Prospects for the Use of Humic Substances in Agriculture”; Publishing House of the Agricultural Institute: Dnepropetrovsk, Ukraine, 2008; pp. 70–74. (In Russian) [Google Scholar]
- Stepchenko, L.M. Participation of humic preparations from peat in the control of metabolic processes in broiler chickens. In Proceedings of the Int. Conference, Minsk, Belarus, 29 May–2 June 2006; pp. 143–145. (In Russian). [Google Scholar]
- Naumova, G.V.; Thomson, A.E.; Ovchinnikova, T.F.; Zhmakova, N.A.; Makarova, N.L.; Dobruk, E.A.; Pestis, V.K. New biologically active drug “Gumosil” and the effectiveness of its use in the diets of dairy cows. In Proceedings of the International Conference “Humic Substances and Phytohormones in Agriculture”, Dnepropetrovsk, Ukraine, 16–18 February 2010; pp. 30–33. (In Russian). [Google Scholar]
- Hryban, V.H. The use of humic drugs to stimulate resistance and productivity of animals. In Proceedings of the International conference “Humic Substances and Phytohormones in Agriculture”, Dnepropetrovsk, Ukraine, 16–18 February 2010; pp. 171–173. (In Ukrainian). [Google Scholar]
- Topuria, L.Y.; Seitov, M.S.; Bibikova, D.R.; Topuria, G.M. The effectiveness of using guvitan-s in growing weaned pigs. Achiev. Sci. Technol. Agro-Ind. Complex 2014, 5, 45–46. (In Russian) [Google Scholar]
- Alexandrova, S.S.; Prokopiv, L.N.; Sadvokasova, A.A. The use of sodium humate "Rostok" in the diets of calves. Achiev. Sci. Technol. Agro-Ind. Complex 2015, 29, 83–85. (In Russian) [Google Scholar]
- El-Zaiat, H.M.; Morsy, A.S.; El-Wakeel, E.A.; Anwer, M.M.; Sallam, S.M. Impact of humic acid as an organic additive on ruminal fermentation constituents, blood parameters and milk production in goats and their kids growth rate. J. Anim. Feed Sci. 2018, 27, 105–113. [Google Scholar] [CrossRef]
- Chorna, V.I.; Stepchenko, L.M.; Lyanna, O.L. Peculiarities of influence of biologically active substances from peat on proteolysis of rat brain under conditions of model experiment. In Proceedings of the International Conference “Humic Substances and Phytohormones in Agriculture”, Dnepropetrovsk, Ukraine, 16–18 February 2010; pp. 174–175. (In Ukrainian). [Google Scholar]
- McGlone, J.; Ji, F.; Kim, S.W. Effects of dietary humic substances on pig growth performance, carcass characteristics and ammonia emission. J. Anim. Sci. 2006, 84, 2482–2490. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Chen, Y.J.; Yoo, J.S.; Kim, H.J.; Cho, J.H.; Kim, I.H. Effects of supplemental humic substances on growth performance, blood characteristics and meat quality in finishing pigs. Livest. Sci. 2008, 117, 270–274. [Google Scholar] [CrossRef]
- Reutov, V.A.; Repka, V.P.; Kravchenko, R.N.; Kuksin, E.M. Factory production technology of physiologically active ballastless preparation of sodium humates. In Humic Fertilizers. Theory and Practice of Their Application; Publishing House of the Agricultural Institute: Dnepropetrovsk, Russia, 1973; Volume 4, pp. 165–177. (In Russian) [Google Scholar]
- Peat in the National Economy; Sokolov, B.N. (Ed.) Publishing House Nedra: Moscow, Russia, 1988; p. 268. (In Russian) [Google Scholar]
- Sechin, V.A.; Topuria, G.M.; Semenov, S.V. The influence of Lignohumate-KD-A on the productivity of sows. Achiev. Sci. Technol. Agro-Ind. Complex 2014, 5, 45–47. (In Russian) [Google Scholar]
- Beskrovny, A.M. Biomoses: Their Properties and Aspects of Application in Medicine and Agriculture; Kharkov Medical Institute: Kharkov, Ukraine, 1990; p. 12. (In Russian) [Google Scholar]
- Demina, M.A.; Wulf, L.N. Experience in the use of physiologically active humic substances in poultry farming. In Humic Fertilizers. Theory and Practice of Their Application; Publishing House of the Agricultural Institute: Dnepropetrovsk, Russia, 1977; Volume 6, pp. 119–125. (In Russian) [Google Scholar]
- Kucukersan, S.; Kucukersan, K.; Colpan, I.; Goncuoglu, E.; Reisli, Z.; Yesilbag, D. The effects of humic acid on egg production and egg traits of laying hen. Vet. Med. Czech 2005, 50, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Mikityuk, V.V.; Tsap, S.V.; Begma, N.A. The use of potassium humate in feeding productive animals. In Proceedings of the International Conference “Humic Substances and Phytohormones in Agriculture”, Dnepropetrovsk, Ukraine, 16–18 February 2010; pp. 176–177. (In Russian). [Google Scholar]
- Teregulov, A.N. Productive and Reproductive Qualities of Ducks Using Sodium Humate. Ph.D. Thesis, All-Russian Research and Technological Institute of Poultry, Moscow, Russia, April 2004. [Google Scholar]
- Trukhachev, P.I. Productive and Some Biological Features of Fine-Fleeced Rams Using Sodium Humate. Ph.D. Thesis, Stavropol State Agrarian Universitys, Stavropol, Russia, October 2000. [Google Scholar]
- Oginova, I.A.; Gorovaya, A.I. Influence of physiologically active humic substances on the functional state and fertility of eggs and the development of carp larva. In Humic Fertilizers. Theory and Practice of Their Application, V.9; Publishing House of the Agricultural Institute: Dnepropetrovsk, Russia, 1983; Volume 9, pp. 115–117. (In Russian) [Google Scholar]
- Taskin, D. Using humic acid in diets for dairy goats. Anim. Sci. Pap. Rep. 2014, 32, 25–32. [Google Scholar]
- Fedoruk, R.S.; Tsap, O.F.; Kovalchuk, I.I.; Kropivka, S.Y.; Khomin, M.M.; Tsap, M.M. Immunobiological reactivity and productivity of cows under conditions of increased radiation exposure and feeding them corrective feed additives. In Proceedings of the International Conference “Humic Substances and Phytohormones in Agriculture”, Dnepropetrovsk, Ukraine, 16–18 February 2010; pp. 258–259. (In Ukrainian). [Google Scholar]
- Gerlach, H.; Gerlach, A.; Schrödl, W.; Schottdorf, B.; Haufe, S. Oral application of charcoal and humic acids to dairy cows influences clostridium botulinum blood serum antibody level and glyphosate excretion in urine. J. Clin. Toxicol. 2014, 4, 186. [Google Scholar] [CrossRef] [Green Version]
- Sahin, A.; Iskender, H.; Terim Kapakin, K.A.; Ainkaynak, K.; Hayirli, A.; Gonultas, A.; Kaynar, O. The effect of humic acid substances on the thyroid function and structure in lead poisoning. Rev. Bras. De Ciência Avícola 2016, 18, 649–654. [Google Scholar] [CrossRef] [Green Version]
- Jusadi, D.; Aprilia, T.; Setiawati, M.; Suprayudi, M.A.; Ekasari, J. Dietary supplementation of fulvic acid for growth improvement and prevention of heavy metal accumulation in Nile tilapia fed with green mussel. Egypt. J. Aquat. Res. 2020, 46, 295–301. [Google Scholar] [CrossRef]
- McMurphy, C.P.; Duff, G.C.; Sanders, S.R.; Cuneo, S.P.; Chirase, N.K. Effects of supplementing humates on rumen fermentation in Holstein steers. S. Afr. J. Anim. Sci. 2011, 41, 134–140. [Google Scholar] [CrossRef] [Green Version]
Causes of the Stimulatory Action of HS on Microorganisms | Effect | Reference Data |
---|---|---|
HAs stimulate the processes of respiration and nitrogen fixation in bacteria | Enhanced growth of the bacterial community, primarily azotobacter | [50,51,52,53] |
Capacity of humic acid (HA) to chelate trace nutrients | Increased availability of trace nutrients | [54,55,56] |
HA is a source of carbon and energy in the humus mineralization process | Release of bound elements of mineral nutrition | [55,57] |
The effect of HA on the membranes of microorganisms (higher permeability) | Slower plasmolysis and deplasmolysis in the Saccharomyces cerevisiae yeast | [58,59] |
Improved conditions for the penetration of nutrients into the cell | [60] | |
HAs sorb substances inhibiting the growth of nitrifying bacteria and trigger their switch to heterotrophic growth | Stimulation of the growth of nitrifying bacteria | [61] |
Sorption of HA on the cell walls of bacteria creates a protective layer contributing to withstanding higher concentrations of toxicants, the resistance of bacteria to toxicants improves | copper oxide nanoparticles | [62] |
heavy metal salts | [63] | |
radionuclides | [64] | |
phenolic compounds | [65] | |
atrazine and quinoline | [66] | |
Penetration of HA into bacterial cells is enhanced under stress caused by salinity | Reduction of the negative effects of stress | [67] |
HA, as well as malic and succinic acids, increase the content of sugars and organic acids in the rhizosphere of maize | Growing population of soil microbial communities | [68] |
Tested Chickens | HA Dosage | HA Effect | Reference Data |
---|---|---|---|
Broiler chicks | 2.5 kg of Farmagulator DRYTM Humate /per ton of feed | Feeding Humate during the grower period had the most beneficial effect in terms of growth and feed conversion on broiler performance. | [88] |
Broiler chicks (Ross-308) from 1 to 49 days of age | Humate, Farmavet International Inc., Turkey at a dose of 0.1–0.3% to basic diet | Humate supplementation had no effect on performance, slaughter, and carcass characteristics, a slightly improvement was observed in FCR for H<sub>1<sub> group fed with diet containing 0.1% humate. In addition, no dead chicks were observed in the humate groups, while there was 1.8% mortality in the control group. | [102] |
Hybrid 9-weeks-old ISA BROWN chickens | 0.5 g per chicken/day | After concurrent treatment with HA and MeHg, Hg concentrations were lower by 20.6%, 23.8%, 23.0%, and 18.6% in liver, kidneys, brain, and muscle tissues. | [103] |
Broiler chicks from 1–28 days of age | 5.0 or 10.0 g humate kg−1 into feed | Adding humate negatively affected the productive performance of broiler chicks in respect to feed conversion ratio and performance index. | [101] |
Broiler chicks | Oxygumate at a dose of 0.1–0.3% to feed contaminated with aflotoxin | HA reduced the toxic effects of aflatoxin in growing broilers (liver damage and some hematological and biochemical changes in serum). | [104] |
Broiler chicks Cobb 500, from 14 days of age | Sodium humate, 1.5% in the feed based on rape | Positively affected the dynamics of digestion and uptake, which contributed to the improvement of bone development and immunity in broilers. | [105] |
Broiler chicks COBB 500, 1 day of age | 8 g and 10 g per kg of feed | 1% of humic substances had a positive effect on growth parameters (p > 0.05), breast and thigh meat yield, improved individual blood parameters, and increased calcium content in broiler bones (p < 0.05). | [106] |
One-day-old chickens of hybrid ROSS until 42 days. | 0.3–0.7% Humac Natur Mycosorb | Had a positive effect on the nutritional value of chicken meat, as it contributed to higher content of calcium and magnesium in the muscles of the breast and thigh. | [107] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezuglova, O.; Klimenko, A. Application of Humic Substances in Agricultural Industry. Agronomy 2022, 12, 584. https://doi.org/10.3390/agronomy12030584
Bezuglova O, Klimenko A. Application of Humic Substances in Agricultural Industry. Agronomy. 2022; 12(3):584. https://doi.org/10.3390/agronomy12030584
Chicago/Turabian StyleBezuglova, Olga, and Aleksandr Klimenko. 2022. "Application of Humic Substances in Agricultural Industry" Agronomy 12, no. 3: 584. https://doi.org/10.3390/agronomy12030584
APA StyleBezuglova, O., & Klimenko, A. (2022). Application of Humic Substances in Agricultural Industry. Agronomy, 12(3), 584. https://doi.org/10.3390/agronomy12030584