A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design and Treatment Details
2.3. Crop Residue Management and Estimation of Recycled Residues
2.4. Irrigation Management
2.5. Crop Management
2.6. Soil Physical Analysis
2.7. Earthworms’ Sampling
2.8. Sampling and Analysis of Soil Bulk and Earthworms’ Casts (EWC)
2.9. Data Analysis
3. Results
3.1. Earthworm Density and Biomass
3.2. Soil Physical Properties
3.2.1. Bulk Density (BD)
3.2.2. Infiltration Rate
3.2.3. Mean Weight Diameter (MWD) of Soil Aggregates
3.2.4. Soil Penetration Resistance (SPR)
3.3. Soil and Earthworms’ Casts (EWC) Biochemical Properties
3.3.1. Soil Salinity and pH
3.3.2. Total Organic Carbon (TOC)
3.3.3. Macronutrients (N, P, and K)
3.3.4. Enzymes in Bulk Soil and Earthworms’ Casts
3.4. Principal Component Analysis (PCA)
3.5. Effect of Different Management Practices and Their Linear Contrast
4. Discussion
4.1. Earthworms’ Density and Biomass
4.2. Total Organic Carbon
4.3. Soil Physical Properties
4.4. Chemical Analysis of Bulk Soil and Earthworms’ Casts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R.; Seth, A. A review of resource conserving technologies for sustainable management of the rice-wheat cropping systems of the Indo-Gangetic plains (IGP). Crop Prot. 2007, 26, 436–447. [Google Scholar] [CrossRef]
- Nayak, H.S.; Parihar, C.M.; Mandal, B.N.; Patra, K.; Jat, S.L.; Singh, R.; Singh, V.K.; Jat, M.L.; Garnaik, S.; Nayak, J.; et al. Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture. Eur. J. Agron. 2022, 133, 126417. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Sharma, P.C.; Kumar, V.; Yadav, A.K.; Choudhary, M.; Choudhary, V.; Gathala, M.K.; Sharma, D.K.; Jat, M.L.; et al. Assessing soil properties and nutrient availability under conservation agriculture practices in a reclaimed sodic soil in cereal-based systems of North-West India. Arch. Agron. Soil Sci. 2018, 64, 531–545. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Datta, A.; Jat, H.S.; Yadav, A.K.; Gathala, M.K.; Sapkota, T.B.; Das, A.K.; Sharma, P.C.; Jat, M.L.; Singh, R.; et al. Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains. Geoderma 2018, 313, 193–204. [Google Scholar] [CrossRef]
- Jat, H.S.; Sharma, P.C.; Datta, A.; Choudhary, M.; Kakraliya, S.K.; Yadvinder-Singh; Sidhu, H.S.; Gerard, B.; Jat, M.L. Re-designing irrigated intensive cereal systems through bundling precision agronomic innovations for transitioning towards agricultural sustainability in North-West India. Sci. Rep. 2019, 9, 17929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphreys, E.; Kukal, S.S.; Christen, E.W.; Hira, G.S.; Balwinder-Singh; Sudhir-Yadav; Sharma, R.K. Halting the Groundwater Decline in North-West India-Which Crop Technologies Will Be Winners? Elsevier Ltd.: Amsterdam, The Netherlands, 2010; Volume 109. [Google Scholar]
- Jat, H.S.; Choudhary, K.M.; Nandal, D.P.; Yadav, A.K.; Poonia, T.; Singh, Y.; Sharma, P.C.; Jat, M.L. Conservation agriculture-based sustainable intensification of cereal systems leads to energy conservation, higher productivity and farm profitability. Environ. Manag. 2020, 65, 774–786. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Q.; Cai, Y.; Yang, Q.; Chang, S.X. Minimum tillage and residue retention increase soil microbial population size and diversity: Implications for conservation tillage. Sci. Total Environ. 2020, 716, 137164. [Google Scholar] [CrossRef]
- Song, K.; Zheng, X.; Lv, W.; Qin, Q.; Sun, L.; Zhang, H.; Xue, Y. Effects of tillage and straw return on water-stable aggregates, carbon stabilization and crop yield in an estuarine alluvial soil. Sci. Rep. 2019, 9, 4586. [Google Scholar] [CrossRef]
- Jat, H.S.; Choudhary, M.; Datta, A.; Yadav, A.K.; Meena, M.D.; Devi, R.; Gathala, M.K.; Jat, M.L.; McDonald, A.; Sharma, P.C. Temporal changes in soil microbial properties and nutrient dynamics under climate smart agriculture practices. Soil Tillage Res. 2020, 199, 104595. [Google Scholar] [CrossRef]
- Jat, H.S.; Datta, A.; Choudhary, M.; Sharma, P.C.; Yadav, A.K.; Choudhary, V.; Gathala, M.K.; Jat, M.L.; McDonald, A. Climate Smart Agriculture practices improve soil organic carbon pools, biological properties and crop productivity in cereal-based systems of north-west India. Catena 2019, 181, 104059. [Google Scholar] [CrossRef]
- Kakraliya, S.K.; Jat, H.S.; Singh, I.; Sapkota, T.B.; Singh, L.K.; Sutaliya, J.M.; Sharma, P.C.; Jat, R.D.; Choudhary, M.; Lopez-Ridaura, S.; et al. Performance of portfolios of climate smart agriculture practices in a rice-wheat system of western Indo-Gangetic plains. Agric. Water Manag. 2018, 202, 122–133. [Google Scholar] [CrossRef]
- Jat, H.S.; Kumar, V.; Kakraliya, S.K.; Abdallah, A.M.; Datta, A.; Choudhary, M.; Gathala, M.K.; McDonald, A.J.; Jat, M.L.; Sharma, P.C. Climate-smart agriculture practices influence weed density and diversity in cereal-based agri-food systems of western Indo-Gangetic plains. Sci. Rep. 2021, 11, 15901. [Google Scholar] [CrossRef]
- Singh, J.; Singh, S.; Vig, A.P.; Bhat, S.A.; Hundal, S.S.; Yin, R.; Schädler, M. Conventional farming reduces the activity of earthworms: Assessment of genotoxicity test of soil and vermicast. Agric. Nat. Resour. 2018, 52, 366–370. [Google Scholar] [CrossRef]
- Frazão, J.; de Goede, R.G.M.; Salánki, T.E.; Brussaard, L.; Faber, J.H.; Hedde, M.; Pulleman, M.M. Responses of earthworm communities to crop residue management after inoculation of the earthworm Lumbricus terrestris (Linnaeus, 1758). Appl. Soil Ecol. 2019, 142, 177–188. [Google Scholar] [CrossRef]
- Pelosi, C.; Pey, B.; Caro, G.; Cluzeau, D.; Peigné, J.; Bertrand, M.; Hedde, M. Dynamics of earthworm taxonomic and functional diversity in ploughed and no-tilled cropping systems. Soil Tillage Res. 2016, 156, 25–32. [Google Scholar] [CrossRef]
- Ashworth, A.J.; Allen, F.L.; Tyler, D.D.; Pote, D.H.; Shipitalo, M.J. Earthworm populations are affected from long-term crop sequences and bio-covers under no-tillage. Pedobiologia (Jena) 2017, 60, 27–33. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; Van Groenigen, K.J. Earthworms increase plant production: A meta-analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [Green Version]
- Sizmur, T.; Martin, E.; Wagner, K.; Parmentier, E.; Watts, C.; Whitmore, A.P. Milled cereal straw accelerates earthworm (Lumbricus terrestris) growth more than selected organic amendments. Appl. Soil Ecol. 2017, 113, 166–177. [Google Scholar] [CrossRef]
- Treder, K.; Jastrzębska, M.; Kostrzewska, M.K.; Makowski, P. Do long-term continuous cropping and pesticides affect earthworm communities? Agronomy 2020, 10, 586. [Google Scholar] [CrossRef]
- Frazão, J.; de Goede, R.G.M.; Capowiez, Y.; Pulleman, M.M. Soil structure formation and organic matter distribution as affected by earthworm species interactions and crop residue placement. Geoderma 2019, 338, 453–463. [Google Scholar] [CrossRef]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bertrand, M.; Barot, S.; Blouin, M.; Whalen, J.; de Oliveira, T.; Roger-Estrade, J. Earthworm services for cropping systems. A review. Agron. Sustain. Dev. 2015, 35, 553–567. [Google Scholar] [CrossRef]
- Schlüter, S.; Albrecht, L.; Schwärzel, K.; Kreiselmeier, J. Long-term effects of conventional tillage and no-tillage on saturated and near-saturated hydraulic conductivity—Can their prediction be improved by pore metrics obtained with X-ray CT? Geoderma 2019, 361, 114082. [Google Scholar] [CrossRef]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Interactive effects of functionally different earthworm species on aggregation and incorporation and decomposition of newly added residue carbon. Geoderma 2006, 130, 14–25. [Google Scholar] [CrossRef]
- Stroud, J.L. Soil health pilot study in England: Outcomes from an on-farm earthworm survey. PLoS ONE 2019, 14, e0203909. [Google Scholar] [CrossRef] [Green Version]
- Johnston, A.S.A.; Sibly, R.M.; Hodson, M.E.; Alvarez, T.; Thorbek, P. Effects of agricultural management practices on earthworm populations and crop yield: Validation and application of a mechanistic modelling approach. J. Appl. Ecol. 2015, 52, 1334–1342. [Google Scholar] [CrossRef] [Green Version]
- Suthar, S. Earthworm communities a bioindicator of arable land management practices: A case study in semiarid region of India. Ecol. Indic. 2009, 9, 588–594. [Google Scholar] [CrossRef]
- Singh, S.; Sharma, A.; Khajuria, K.; Singh, J.; Vig, A.P. Soil properties changes earthworm diversity indices in different agro-ecosystem. BMC Ecol. 2020, 20, 27. [Google Scholar] [CrossRef]
- Moos, J.H.; Schrader, S.; Paulsen, H.M. Reduced tillage enhances earthworm abundance and biomass in organic farming: A meta-analysis. Appl. Agric. For. Res. 2017, 67, 123–128. [Google Scholar] [CrossRef]
- Pelosi, C.; Barot, S.; Capowiez, Y.; Hedde, M.; Vandenbulcke, F. Pesticides and earthworms. A review. Agron. Sustain. Dev. 2014, 34, 199–228. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, H.; Hatti, S.S. Earthworms diversity of Koppal district with the updated information on genus Thatonia of Hyderabad–Karnataka region, Karnataka, India. J. Asia-Pacific Biodivers. 2018, 11, 482–493. [Google Scholar] [CrossRef]
- Hoang, D.T.T.; Bauke, S.L.; Kuzyakov, Y.; Pausch, J. Rolling in the deep: Priming effects in earthworm biopores in topsoil and subsoil. Soil Biol. Biochem. 2017, 114, 59–71. [Google Scholar] [CrossRef]
- Lehman, R.M.; Acosta-Martinez, V.; Buyer, J.S.; Cambardella, C.A.; Collins, H.P.; Ducey, T.F.; Halvorson, J.J.; Jin, V.L.; Johnson, J.M.F.; Kremer, R.J.; et al. Soil biology for resilient, healthy soil. J. Soil Water Conserv. 2015, 70, 12A–18A. [Google Scholar] [CrossRef]
- Choudhary, M.; Jat, H.S.; Datta, A.; Yadav, A.K.; Sapkota, T.B.; Mondal, S.; Meena, R.P.; Sharma, P.C.; Jat, M.L. Sustainable intensification influences soil quality, biota, and productivity in cereal-based agroecosystems. Appl. Soil Ecol. 2018, 126, 189–198. [Google Scholar] [CrossRef]
- Utobo, E.B.; Tewari, L. Assesment of aboveground biomass stock in the Pachaimalai forest of Eastern Ghats in India. Appl. Ecol. Environ. Res. 2015, 13, 85–97. [Google Scholar] [CrossRef]
- Dick, R.P.; Breakwell, D.P.; Turco, R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In Handbook of Methods for Assessing Soil Quality; Doran, J.W., Jones, A.J., Eds.; SSSA: Madison, WI, USA, 1996; pp. 242–272. [Google Scholar]
- Karaca, A.; Cetin, S.C.; Turgay, O.C.R. Soil enzymes as indication of soil quality. In Soil Enzymology; Shukla, G., Varma, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 22, pp. 275–285. ISBN 978-3-642-14224-6. [Google Scholar]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Phosphorous in Action. Soil Biology; Bünemann, E., Oberson, A., Frossard, E., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 26, pp. 215–243. ISBN 978-3-642-15270-2. [Google Scholar]
- Zhang, N.; He, X.D.; Gao, Y.B.; Li, Y.H.; Wang, H.T.; Ma, D.; Zhang, R.; Yang, S. Pedogenic Carbonate and Soil Dehydrogenase Activity in Response to Soil Organic Matter in Artemisia ordosica Community. Pedosphere 2010, 20, 229–235. [Google Scholar] [CrossRef]
- Bera, T.; Sharma, S.; Thind, H.S.; Singh, Y.; Sidhu, H.S.; Jat, M.L. Soil biochemical changes at different wheat growth stages in response to conservation agriculture practices in a rice-wheat system of north-western India. Soil Res. 2018, 56, 91–104. [Google Scholar] [CrossRef]
- D’Hose, T.; Ruysschaert, G.; Viaene, N.; Debode, J.; Vanden Nest, T.; Van Vaerenbergh, J.; Cornelis, W.; Willekens, K.; Vandecasteele, B. Farm compost amendment and non-inversion tillage improve soil quality without increasing the risk for N and P leaching. Agric. Ecosyst. Environ. 2016, 225, 126–139. [Google Scholar] [CrossRef]
- Bamminger, C.; Zaiser, N.; Zinsser, P.; Lamers, M.; Kammann, C.; Marhan, S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol. Fertil. Soils 2014, 50, 1189–1200. [Google Scholar] [CrossRef]
- Chan, K.Y. An overview of some tillage impacts on earthworm population abundance and diversity - Implications for functioning in soils. Soil Tillage Res. 2001, 57, 179–191. [Google Scholar] [CrossRef]
- Lubbers, I.M.; Pulleman, M.M.; Van Groenigen, J.W. Can earthworms simultaneously enhance decomposition and stabilization of plant residue carbon? Soil Biol. Biochem. 2017, 105, 12–24. [Google Scholar] [CrossRef]
- Angst, G.; Mueller, C.W.; Prater, I.; Angst, Š.; Frouz, J.; Jílková, V.; Peterse, F.; Nierop, K.G.J. Earthworms act as biochemical reactors to convert labile plant compounds into stabilized soil microbial necromass. Commun. Biol. 2019, 2, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubbers, I.M.; Jan Van Groenigen, K.; Brussaard, L.; Van Groenigen, J.W. Reduced greenhouse gas mitigation potential of no-tillage soils through earthworm activity. Sci. Rep. 2015, 5, 13787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossuyt, H.; Six, J.; Hendrix, P.F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem. 2005, 37, 251–258. [Google Scholar] [CrossRef]
- Kallenbach, C.M.; Frey, S.D.; Grandy, A.S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 2016, 7, 13630. [Google Scholar] [CrossRef]
- Lubbers, I.M.; Van Groenigen, K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Van Groenigen, J.W. Greenhouse-gas emissions from soils increased by earthworms. Nat. Clim. Chang. 2013, 3, 187–194. [Google Scholar] [CrossRef]
- Blake, G.; Hartge, K. Bulk density. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; ASA: Madison, WI, USA; SSSA: Madison, WI, USA, 1986; pp. 363–375. [Google Scholar]
- Gathala, M.K.; Ladha, J.K.; Saharawat, Y.S.; Kumar, V.; Kumar, V.; Sharma, P.K. Effect of tillage and crop establishment methods on physical properties of a medium-textured soil under a seven-year Rice-Wheat rotation. Soil Sci. Soc. Am. 2011, 75, 1851–1863. [Google Scholar] [CrossRef]
- Yoder, R.E. A direct method of aggregate analysis of soils and the study of the physical nature of erosion losses. J. Am. Soc. Agron. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate stability and size distribution. In Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods; Klute, A., Ed.; ASA: Madison, WI, USA; SSSA: Madison, WI, USA, 1986; pp. 425–442. ISBN 2079-0538. [Google Scholar]
- Abail, Z.; Whalen, J.K. Corn residue inputs influence earthworm population dynamics in a no-till corn-soybean rotation. Appl. Soil Ecol. 2018, 127, 120–128. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1973. [Google Scholar]
- Walkely, A.; Black, I. An experiment of the Degtareff method for determination of soil organic matter and a proposed modification of the chronic acid titration method. Soill Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Subbiah, B.V.; Asija, G.L. A rapid procedure for the estimation of available nitrogen in soils. Curr. Sci. India 1956, 25, 259–260. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watandbe, F.; Dean, L. Estimation of available Phosphorus in soil by extraction with sodium bicarbonate. J. Chem. Inf. Model. 1954, 53, 1689–1699. [Google Scholar] [CrossRef]
- Ribeiro-oliveira, J.P.; De Santana, D.G.; Pereira, V.J. Data transformation: An underestimated tool by inappropriate use. Acta Sci. Agron. 2018, 40, 35015. [Google Scholar] [CrossRef] [Green Version]
- Dekemati, I.; Simon, B.; Vinogradov, S.; Birkás, M. The effects of various tillage treatments on soil physical properties, earthworm abundance and crop yield in Hungary. Soil Tillage Res. 2019, 194, 104334. [Google Scholar] [CrossRef]
- Rosas-Medina, M.Á.; de León-González, F.; Flores-Macías, A.; Payán-Zelaya, F.; Borderas-Tordesillas, F.; Gutiérrez-Rodríguez, F.; Fragoso-González, C. Effect of tillage, sampling date and soil depth on earthworm population on maize monoculture with continuous stover restitutions. Soil Tillage Res. 2010, 108, 37–42. [Google Scholar] [CrossRef]
- Boström, U. Earthworm populations (Lumbricidae) in ploughed and undisturbed leys. Soil Tillage Res. 1995, 35, 125–133. [Google Scholar] [CrossRef]
- Giannitsopoulos, M.L.; Burgess, P.J.; Rickson, R.J. Effects of conservation tillage drills on soil quality indicators in a wheat–oilseed rape rotation: Organic carbon, earthworms and water-stable aggregates. Soil Use Manag. 2020, 36, 139–152. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Temporal variation of earthworm impacts on soil organic carbon under different tillage systems. Int. J. Environ. Res. Public Health 2019, 16, 1908. [Google Scholar] [CrossRef] [Green Version]
- Dhar, S.; Chaudhuri, P.S. Earthworm communities in paddy (Oryza sativa) fields of west Tripura (India). Proc. Zool. Soc. 2020, 73, 273–284. [Google Scholar] [CrossRef]
- Dixit, A.K.; Agrawal, R.K.; Das, S.K.; Sahay, C.S.; Choudhary, M.; Rai, A.K.; Kumar, S.; Kantwa, S.R.; Palsaniya, D.R. Soil properties, crop productivity and energetics under different tillage practices in fodder sorghum + cowpea – wheat cropping system. Arch. Agron. Soil Sci. 2019, 65, 492–506. [Google Scholar] [CrossRef]
- Guo, Y.; Fan, R.; Zhang, X.; Zhang, Y.; Wu, D.; McLaughlin, N.; Zhang, S.; Chen, X.; Jia, S.; Liang, A. Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Sci. Total Environ. 2020, 703, 134617. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, A.M.; Jat, H.S.; Choudhary, M.; Abdelaty, E.F.; Sharma, P.C.; Jat, M.L. Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy 2021, 11, 1681. [Google Scholar] [CrossRef]
- Gathala, M.K.; Laing, A.M.; Tiwari, T.P.; Timsina, J.; Islam, M.S.; Chowdhury, A.K.; Chattopadhyay, C.; Singh, A.K.; Bhatt, B.P.; Shrestha, R.; et al. Enabling smallholder farmers to sustainably improve their food, energy and water nexus while achieving environmental and economic benefits. Renew. Sustain. Energy Rev. 2020, 120, 109645. [Google Scholar] [CrossRef]
- Munera-Echeverri, J.L.; Martinsen, V.; Strand, L.T.; Cornelissen, G.; Mulder, J. Effect of conservation farming and biochar addition on soil organic carbon quality, nitrogen mineralization, and crop productivity in a light textured Acrisol in the sub-humid tropics. PLoS ONE 2020, 15, e0228717. [Google Scholar] [CrossRef]
- Giannopoulos, G.; Pulleman, M.M.; Van Groenigen, J.W. Interactions between residue placement and earthworm ecological strategy affect aggregate turnover and N2O dynamics in agricultural soil. Soil Biol. Biochem. 2010, 42, 618–625. [Google Scholar] [CrossRef]
- Li, Y.; Li, Z.; Cui, S.; Jagadamma, S.; Zhang, Q. Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil Tillage Res. 2019, 194, 104292. [Google Scholar] [CrossRef]
- Le Bayon, R.C.; Moreau, S.; Gascuel-Odoux, C.; Binet, F. Annual variations in earthworm surface-casting activity and soil transport by water runoff under a temperate maize agroecosystem. Geoderma 2002, 106, 121–135. [Google Scholar] [CrossRef] [Green Version]
- Bhadauria, T.; Saxena, K.G. Role of earthworms in soil fertility maintenance through the production of biogenic structures. Appl. Environ. Soil Sci. 2010, 2010, 816073. [Google Scholar] [CrossRef]
- Tripathi, R.P.; Sharma, P.; Singh, S. Influence of tillage and crop residue on soil physical properties and yields of rice and wheat under shallow water table conditions. Soil Tillage Res. 2007, 92, 221–226. [Google Scholar] [CrossRef]
- Kumar, V.; Kumar, M.; Singh, S.K.; Jat, R.K. Impact of conservation agriculture on soil physical properties in rice-wheat system of eastern indo-gangetic plains. J. Anim. Plant Sci. 2018, 28, 1432–1440. [Google Scholar]
- Galdos, M.V.; Pires, L.F.; Cooper, H.V.; Calonego, J.C.; Rosolem, C.A.; Mooney, S.J. Assessing the long-term effects of zero-tillage on the macroporosity of Brazilian soils using X-ray Computed Tomography. Geoderma 2019, 337, 1126–1135. [Google Scholar] [CrossRef] [PubMed]
- Chhokar, R.S.Ã.; Sharma, R.K.; Jat, G.R.; Pundir, A.K.; Gathala, M.K. Effect of tillage and herbicides on weeds and productivity of wheat under rice – wheat growing system. Crop Prot. 2007, 26, 1689–1696. [Google Scholar] [CrossRef]
- Bengough, A.G.; Mullins, C. Mechanical impedance to root growth: A review of experimental techniques and root growth responses. J. Soil Sci. 1990, 41, 341–358. [Google Scholar] [CrossRef]
- Datta, A.; Jat, H.S.; Yadav, A.K.; Choudhary, M.; Sharma, P.C.; Rai, M.; Singh, L.K.; Majumder, S.P.; Choudhary, V.; Jat, M.L. Carbon mineralization in soil as influenced by crop residue type and placement in an Alfisols of Northwest India. Carbon Manag. 2019, 10, 37–50. [Google Scholar] [CrossRef]
- Bhadauria, T.; Ramakrishnan, P.S. Earthworm population dynamics and contribution to nutrient cycling during cropping and fallow phases of shifting agriculture (Jhum) in north-east India. J. Appl. Ecol. 1989, 26, 505. [Google Scholar] [CrossRef]
- Van Groenigen, J.W.; Van Groenigen, K.J.; Koopmans, G.F.; Stokkermans, L.; Vos, H.M.J.; Lubbers, I.M. How fertile are earthworm casts? A meta-analysis. Geoderma 2019, 338, 525–535. [Google Scholar] [CrossRef]
- Lipiec, J.; Frac, M.; Brzezinska, M.; Turski, M.; Oszust, K. Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts. Front. Microbiol. 2016, 7, 1361. [Google Scholar] [CrossRef] [Green Version]
Scenarios | Crop Rotations | Tillage | Crop Establishment Method | Residue Management | Water Management |
---|---|---|---|---|---|
Sc1 | Rice-wheat- fallow | CT-CT | Rice: Transplanting Wheat: Broadcast | All residue removed | Rice: Flood irrigation (FI) of 5-cm depth for 1 month, followed by irrigation applied at the hair-line crack Wheat: Need-based flood irrigation |
Sc2 | Rice-wheat-mungbean | ZTDSR-ZT-ZT | Rice: Drill seeding Wheat: Drill seeding Mungbean: Drill/relay | Full (100%) rice and Mungbean; anchored wheat residue retained on the soil surface | Rice: FI and kept soil wet for first 20 days ‘fb’ irrigation at −20 to −30 kPa matric potential Wheat: FI at −40 to−50 kPa matric potential |
Sc3 | Rice-wheat-mungbean | ZT-ZT-ZT | Same as in scenario 3 | Same as in scenario 3 | Sub-surface drip irrigation (SDI) at −20 to −30 kPa in rice and −40 to−50 kPa matric potential in wheat |
Sc4 | Maize-wheat- mungbean | ZT-ZT-ZT | Maize: Drill seeding Wheat: Drill seeding Mungbean: Drill/relay | Maize (65%) and full mungbean; anchored wheat residue retained on the soil surface | FI at −40 to 50 kPa matric potential in both maize and wheat |
Sc5 | Maize-wheat- mungbean | ZT-ZT-ZT | Same as in scenario 5 | Same as in scenario 5 | SDI at −40 to −50 kPa matric potential in both maize and wheat |
Scenarios † | Depth 0–15 cm | Depth 15–30 cm | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Small (<20 mm) | Medium (20–40 mm) | Large (>40 mm) | Total | Small (<20 mm) | Medium (20–40 mm) | Large (>40 mm) | Total | |||||||||
D | W | D | W | D | W | D | W | D | W | D | W | D | W | D | W | |
Sc1 | 0.71 Bb (0) ‡ | 0.71 B (0) | 0.71 A (0) | 0.71 A (0) | 0.71 B (0) | 0.71 C (0) | 2.12 C (0) | 0.71 C (0) | 0.71 B (0) | 0.71 B (0) | 0.71 C (0) | 0.71 D (0) | 0.71 B (0) | 0.71 B (0) | 2.12 D (0) | 2.12 C (0) |
Sc2 | 11.92 A (144) | 2.79 A (7.38) | 4.97 A (35) | 2.04 A (4.71) | 1.44 B (3) | 1.12 BC (1.09) | 18.34 B (181) | 3.66 B (13.18) | 8.30 A (69) | 2.01 A (3.58) | 1.44 C (3) | 0.91 CD (0.41) | 0.71 B (0) | 0.71 B (0) | 10.45 C (72) | 3.63 BC (9.80) |
Sc3 | 11.91 A (144) | 2.91 A (8.12) | 5.41 A (32) | 2.12 A (4.38) | 3.98 B (16) | 2.70 B (7.07) | 21.30 B (192) | 4.47 B (19.57) | 8.33 A (69) | 2.05 A (3.75) | 3.98 B (16) | 1.59 BC (2.11) | 0.71 B (0) | 0.71 B (0) | 13.02 BC (85) | 4.36 B (14.48) |
Sc4 | 12.87 A (168) | 3.37 A (11.34) | 6.18 A (40) | 2.43 A (5.60) | 8.15 A (69) | 5.42 A (30.16) | 27.30 AB (277) | 6.80 A (47.10) | 9.05 A (83) | 2.20 A (4.41) | 6.36 A (40) | 2.43 A (5.39) | 3.24 A (13) | 2.38 A (6.67) | 18.65 A (136) | 7.01 A (20.84) |
Sc5 | 15.05 A (229) | 3.76 A (13.81) | 8.36 A (77) | 3.23 A (10.91) | 8.32 A (75) | 6.26 A (39.63) | 31.73 A (381) | 7.95 A (64.35) | 7.73 A (61) | 2.00 A (3.65) | 5.13 AB (29) | 2.06 AB (4.15) | 4.36 A (19) | 2.95 A (8.29) | 17.21 AB (109) | 7.01 A (16.10) |
Scenarios a | EC (dS m−1) | pH | TOC (%) | N (kg ha−1) | P (kg ha−1) | K (kg ha−1) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Soil | EWC | Soil | EWC | Soil | EWC | Soil | EWC | Soil | EWC | Soil | EWC | |
Sc1 | 0.86 Ab (0.23) * | 0.71 C | 2.83 A (7.49) | 0.71 D | 1.07 B (0.65) | 0.71 B | 11.73 C (137) | 0.71 D | 5.26 A (27) | 0.71 D | 13.18 A (173) | 0.71 B |
Sc2 | 0.87 A (0.25) | 1.11 A (0.74) | 2.82 A (7.44) | 2.80 A (7.34) | 1.20 A (0.95) | 1.53 A (1.84) | 12.40 ABC (154) | 13.07 AB (170) | 5.39 A (29) | 7.17 AB (51) | 14.45 A (209) | 23.99 A (578) |
Sc3 | 0.85 A (0.22) | 1.11 A (0.74) | 2.79 A (7.30) | 2.75 B (7.05) | 1.21 A (0.97) | 1.53 A (1.83) | 12.73 AB (162) | 12.74 B (162) | 5.52 A (30) | 7.57 A (57) | 14.22 A (202) | 22.88 A (524) |
Sc4 | 0.86 A (0.24) | 0.94 B (0.40) | 2.81 A (7.38) | 2.69 C (6.75) | 1.20 A (0.93) | 1.59 A (2.04) | 12.22 BC (149) | 12.57 B (158) | 5.75 A (33) | 6.82 B (46) | 14.39 A (207) | 23.33 A (545) |
Sc5 | 0.89 A (0.28) | 0.96 B (0.42) | 2.75 A (7.08) | 2.68 C (6.67) | 1.26 A (1.08) | 1.57 A (1.95) | 13.02 A (169) | 13.38 A (179) | 5.94 A (35) | 7.01 B (49) | 15.10 A (228) | 23.30 A (544) |
Parameters | Depth or Soil-Cast | Linear Contrast | Interactions | ||||
---|---|---|---|---|---|---|---|
CT vs. ZT | FI vs. SDI | RW vs. MW | Scenario | Depth/Soil-Cast | Scenario * Depth/Soil-Cast | ||
Earthworm density (No. m−2) | 0–15 | *** | * | *** | *** | *** | * |
15–30 | *** | * | *** | ||||
Earthworm biomass weight (g m−2) | 0–15 | *** | *** | *** | *** | *** | *** |
15–30 | *** | ** | *** | ||||
EC (dS m−1) | Soil | NS | NS | NS | NS | *** | NS |
Cast | *** | ** | NS | ||||
pH | Soil | NS | ** | NS | * | * | ** |
Cast | *** | *** | *** | ||||
TOC (%) | Soil | *** | *** | *** | *** | *** | ** |
Cast | *** | *** | *** | ||||
N (kg ha−1) | Soil | * | ** | NS | *** | NS | ** |
Cast | *** | *** | *** | ||||
P (kg ha−1) | Soil | NS | NS | NS | **** | NS | *** |
Cast | *** | *** | *** | ||||
K (kg ha−1) | Soil | ** | * | NS | *** | ** | ** |
Cast | *** | *** | *** | ||||
DHA (μg TPF g−1 soil h−1 | Soil | *** | NS | ** | NS | NS | ** |
Cast | *** | *** | *** | ||||
ACP (μg p-NP g−1 soil h−1) | Soil | NS | NS | ** | * | NS | *** |
Cast | *** | *** | *** | ||||
ALP (μg p-NP g−1 soil h−1) | Soil | NS | NS | NS | * | NS | * |
Cast | *** | *** | *** | ||||
BD (Mg m−3) | - | * | NS | ** | - | - | - |
IR (cm h−1) | - | *** | * | * | - | - | - |
MWD (mm) | - | ** | * | NS | - | - | - |
SPR (MPa) | - | NS | ** | * | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jat, H.S.; Choudhary, M.; Kakraliya, S.K.; Gora, M.K.; Kakraliya, M.; Kumar, V.; Priyanka; Poonia, T.; Mcdonald, A.J.; Jat, M.L.; et al. A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties. Agronomy 2022, 12, 658. https://doi.org/10.3390/agronomy12030658
Jat HS, Choudhary M, Kakraliya SK, Gora MK, Kakraliya M, Kumar V, Priyanka, Poonia T, Mcdonald AJ, Jat ML, et al. A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties. Agronomy. 2022; 12(3):658. https://doi.org/10.3390/agronomy12030658
Chicago/Turabian StyleJat, Hanuman S., Madhu Choudhary, Suresh K. Kakraliya, Manoj K. Gora, Manish Kakraliya, Vikas Kumar, Priyanka, Tanuja Poonia, Andrew J. Mcdonald, Mangi L. Jat, and et al. 2022. "A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties" Agronomy 12, no. 3: 658. https://doi.org/10.3390/agronomy12030658
APA StyleJat, H. S., Choudhary, M., Kakraliya, S. K., Gora, M. K., Kakraliya, M., Kumar, V., Priyanka, Poonia, T., Mcdonald, A. J., Jat, M. L., Sharma, P. C., & Abdallah, A. M. (2022). A Decade of Climate-Smart Agriculture in Major Agri-Food Systems: Earthworm Abundance and Soil Physico-Biochemical Properties. Agronomy, 12(3), 658. https://doi.org/10.3390/agronomy12030658