Effect of Long-Term Organic Amendment Application on the Vertical Distribution of Nutrients in a Vertisol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Soil Sampling and Analyses
2.4. Statistical Analysis
3. Results
3.1. Soil pH and Soil Water Content in the 0–200 cm Depth
3.2. Soil Organic Carbon (SOC), Total N Contents and the C/N Ratio in the 0–200 cm Depth
3.3. Total P and Total K Contents in the 0–200 cm Depth
3.4. Alkali-Hydrolyzable N, Available P and Available K Contents in the 0–60 cm Depth
3.5. Soil Micronutrients (DTPA-Extractable Fe, Mn, Cu and Zn) in the 0–60 cm Depth
3.6. Soil NH4+−N and NO3−−N Contents in the 0–200 cm Depth
4. Discussion
4.1. Long-Term Fertilization Effects on Soil pH and Soil Water Content along the Soil Profile
4.2. Long-Term Fertilization Effects on Soil Nutrients along the Soil Profile
4.3. Long-Term Fertilization Effects on Soil Nitrate Leaching along the Soil Profile
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Coulombe, C.E.; Wilding, L.P.; Dixon, J.B. Overview of Vertisols: Characteristics and impacts on society. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: London, UK, 1996; Volume 57, pp. 289–375. [Google Scholar]
- Kovda, I. Vertisols: Extreme features and extreme environment. Geoderma Reg. 2020, 22, e00312. [Google Scholar] [CrossRef]
- Soil Survey Staff. Soil Survey Staff Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Dinka, T.M.; Morgan, C.L.S.; McInnes, K.J.; Kishné, A.S.; Daren Harmel, R. Shrink–swell behavior of soil across a Vertisol catena. J. Hydrol. 2013, 476, 352–359. [Google Scholar] [CrossRef]
- Peng, X.H.; Horn, R.; Hallett, P.D. Soil structure and its functions in ecosystems: Phase matter & scale matter. Soil Tillage Res. 2015, 146, 1–3. [Google Scholar] [CrossRef]
- Li, D.C.; Zhang, G.L.; Gong, Z.T. On taxonomy of Shajiang black soils in China. Soils 2011, 43, 623–629. (In Chinese) [Google Scholar]
- Zhou, H.; Chen, C.; Wang, D.Z.; Arthur, E.; Zhang, Z.B.; Guo, Z.C.; Peng, X.H.; Mooney, S.J. Effect of long-term organic amendments on the full-range soil water retention characteristics of a Vertisol. Soil Tillage Res. 2020, 202, 104663. [Google Scholar] [CrossRef]
- Millán, H.; Tarquís, A.M.; Pérez, L.D.; Mato, J.; González-Posada, M. Spatial variability patterns of some Vertisol properties at a field scale using standardized data. Soil Tillage Res. 2012, 120, 76–84. [Google Scholar] [CrossRef]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean–wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Peng, X.; Zhu, Q.H.; Xie, Z.B.; Darboux, F.; Holden, N.M. The impact of manure, straw and biochar amendments on aggregation and erosion in a hillslope Ultisol. Catena 2016, 138, 30–37. [Google Scholar] [CrossRef]
- Guo, Z.C.; Zhang, Z.B.; Zhou, H.; Rahman, M.T.; Wang, D.Z.; Guo, X.S.; Li, L.J.; Peng, X.H. Long-term animal manure application promoted biological binding agents but not soil aggregation in a Vertisol. Soil Tillage Res. 2018, 180, 232–237. [Google Scholar] [CrossRef]
- Li, X.; Han, S.; Wan, W.J.; Zheng, L.X.; Chen, W.L.; Huang, Q.Y. Manure fertilizes alter the nitrite oxidizer and comammox community composition and increase nitrification rates. Soil Tillage Res. 2020, 204, 104701. [Google Scholar] [CrossRef]
- Ye, G.P.; Lin, Y.X.; Kuzyakov, Y.; Liu, D.Y.; Luo, J.F.; Lindsey, S.; Wang, W.J.; Fan, J.B.; Ding, W.X. Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol. Biochem. 2019, 134, 15–24. [Google Scholar] [CrossRef]
- Laik, R.; Kumara, B.H.; Pramanick, B.; Singh, S.K.; Nidhi; Alhomrani, M.; Gaber, A.; Hossain, A. Labile soil organic matter pools are influenced by 45 years of applied farmyard manure and mineral nitrogen in the wheat-pearl millet cropping system in the sub-tropical condition. Agronomy 2021, 11, 2190. [Google Scholar] [CrossRef]
- Pan, H.; Chen, M.M.; Feng, H.J.; Wei, M.; Song, F.P.; Lou, Y.H.; Cui, X.M.; Wang, H.; Zhuge, Y.P. Organic and inorganic fertilizers respectively drive bacterial and fungal community compositions in a fluvo-aquic soil in northern China. Soil Tillage Res. 2020, 198, 104540. [Google Scholar] [CrossRef]
- Wu, H.L.; Cai, A.D.; Xing, T.T.; Huai, S.C.; Zhu, P.; Xu, M.G.; Lu, C.G. Fertilization enhances mineralization of soil carbon and nitrogen pools by regulating the bacterial community and biomass. J. Soils Sediments 2021, 21, 1633–1643. [Google Scholar] [CrossRef]
- Li, B.Y.; Huang, S.M.; Wei, M.B.; Zhang, H.L.; Shen, A.L.; Xu, J.M.; Ruan, X.L. Dynamics of soil and grain micronutrients as affected by long-term fertilization in an aquic Inceptisol. Pedosphere 2010, 20, 725–735. [Google Scholar] [CrossRef]
- Thomai, N.; Theodora, M. Influence of liquid cattle manure on micronutrients content and uptake by corn and their availability in a calcareous soil. Agron. J. 2011, 103, 113–118. [Google Scholar] [CrossRef]
- King, J.; Gay, A.; Sylvester-Bradley, R.; Bingham, I.; Foulkes, J.; Gregory, P.; Robinson, D. Modelling cereal root systems for water and nitrogen capture: Towards an economic optimum. Ann. Bot. 2003, 91, 383–390. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.F.; Niu, J.F.; Peng, Z.P.; Zhang, F.S.; Li, C.J. Shoot growth potential drives N uptake in maize plants and correlates with root growth in the soil. Field Crops Res. 2010, 115, 85–93. [Google Scholar] [CrossRef]
- Bland, W.L. Cotton and soybean root system growth in three soil temperature regimes. Agron. J. 1993, 85, 906–911. [Google Scholar] [CrossRef]
- Zhou, S.L.; Wu, Y.C.; Wang, Z.M.; Lu, L.Q.; Wang, R.Z. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain. Environ. Pollut. 2008, 152, 723–730. [Google Scholar] [CrossRef]
- Sandén, T.; Zavattaro, L.; Spiegel, H.; Grignani, C.; Sandén, H.; Baumgarten, A.; Tiirola, M.; Mikkonen, A. Out of sight: Profiling soil characteristics, nutrients and microbial communities affected by organic amendments down to one meter in a long-term maize cultivation experiment. Appl. Soil Ecol. 2019, 134, 54–63. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Jackson, R.B. The distribution of soil nutrients with depth: Global patterns and the imprint of plants. Biogeochemistry 2001, 53, 51–77. [Google Scholar] [CrossRef]
- Hirte, J.; Walder, F.; Hess, J.; Büchi, L.; Colombi, T.; van der Heijden, M.G.; Mayer, J. Enhanced root carbon allocation through organic farming is restricted to topsoils. Sci. Total Environ. 2021, 755, 143551. [Google Scholar] [CrossRef] [PubMed]
- Mazhar, S.A.; Nawaz, M.; Khan, S.; Irshad, S. Impact of urea and farm yard manure on nitrate concentration in soil profile and productivity of wheat crop. J. Plant Nutr. 2018, 41, 2683–2691. [Google Scholar] [CrossRef]
- Yang, S.Q.; Wang, Y.S.; Liu, R.L.; Li, Q.X.; Yang, Z.L. Effects of straw application on nitrate leaching in fields in the Yellow River irrigation zone of Ningxia, China. Sci. Rep. 2018, 8, 954. [Google Scholar] [CrossRef] [Green Version]
- Maeda, M.; Zhao, B.; Ozaki, Y.; Yoneyama, T. Nitrate leaching in an Andisol treated with different types of fertilizers. Environ. Pollut. 2003, 121, 477–487. [Google Scholar] [CrossRef]
- Kaur, S.; Dheri, G.S.; Benbi, D.K. Effect of long-term fertilization in maize-wheat cropping system on carbon mineralization in soil. Carbon Manag. 2019, 10, 523–532. [Google Scholar] [CrossRef]
- Hua, K.K.; Wang, D.Z.; Guo, Z.B. Soil organic carbon contents as a result of various organic amendments to a vertisol. Nutr. Cycl. Agroecosyst. 2017, 108, 1–14. [Google Scholar] [CrossRef]
- Nelson, E.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Bremner, J.M. Nitrogen total. In Methods of Soil Analysis, Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA, 1996; pp. 1085–1122. [Google Scholar]
- Lu, R.K. Analytical Methods of Soil Agro-Chemistry; Chinese Agricultural Science and Technology Press: Beijing, China, 2000; p. 638. (In Chinese) [Google Scholar]
- Cornfield, A.H. Ammonia released on treating soils with N sodium hydroxide as a possible means of predicting the nitrogen-supplying power of soils. Nature 1960, 87, 260–261. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Aciego Pietri, J.C.; Brookes, P.C. Relationships between soil pH and microbial properties in a UK arable soil. Soil Biol. Biochem. 2008, 40, 1856–1861. [Google Scholar] [CrossRef]
- Neilsen, D.; Neilsen, G.H.; Sinclair, A.H.; Linehan, D.J. Soil phosphorus status, pH and the manganese nutrition of wheat. Plant Soil 1992, 145, 45–50. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.M.; Yuan, L.; Liu, Y.R.; Ji, J.H.; Hou, H.Q. Long-term application of manures plus chemical fertilizers sustained high rice yield and improved soil chemical and bacterial properties. Eur. J. Agron. 2017, 90, 34–42. [Google Scholar] [CrossRef]
- Simbahan, G.C.; Dobermann, A. Sampling optimization based on secondary information and its utilization in soil carbon mapping. Geoderma 2006, 133, 345–362. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M.A. Comparing sampling needs for variograms of soil properties computed by the method of moments and residual maximum likelihood. Geoderma 2007, 140, 383–396. [Google Scholar] [CrossRef]
- Wu, J.N.; Zeng, H.H.; Zhao, F.; Chen, C.F.; Liu, W.J.; Yang, B.; Zhang, W.J. Recognizing the role of plant species composition in the modification of soil nutrients and water in rubber agroforestry systems. Sci. Total Environ. 2020, 723, 138042. [Google Scholar] [CrossRef]
- Wissing, L.; Kölbl, A.; Schad, P.; Bräuer, T.; Cao, Z.H.; Kögel-Knabner, I. Organic carbon accumulation on soil mineral surfaces in paddy soils derived from tidal wetlands. Geoderma 2014, 228–229, 90–103. [Google Scholar] [CrossRef]
- Passioura, J.B. Roots and drought resistance. Agric. Water Manag. 1983, 7, 265–280. [Google Scholar] [CrossRef]
- Zhang, Y.K.; Biswas, A.; Adamchuk, V.I. Implementation of a sigmoid depth function to describe change of soil pH with depth. Geoderma 2017, 289, 1–10. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, L.; Jia, X.; Zhu, Y.; Shao, M. Distribution characteristics and controls of soil organic carbon at different spatial scales in China′s Loess Plateau. J. Environ. Manag. 2021, 293, 112943. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Yang, W.; Muneer, M.A.; Zhang, S.; Wang, M.; Wu, L. Land-use change affects stoichiometric patterns of soil organic carbon, nitrogen, and phosphorus in the red soil of Southeast China. J. Soils Sediments 2021, 21, 2639–2649. [Google Scholar] [CrossRef]
- Fageria, N.K.; Moreira, A. Chapter Four—The Role of Mineral Nutrition on Root Growth of Crop Plants. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: London, UK, 2011; Volume 110, pp. 251–331. [Google Scholar]
- Qiu, S.J.; Gao, H.J.; Zhu, P.; Hou, Y.P.; Zhao, S.C.; Rong, X.M.; Zhang, Y.P.; He, P.; Christie, P.; Zhou, W. Changes in soil carbon and nitrogen pools in a Mollisol after long-term fallow or application of chemical fertilizers, straw or manures. Soil Tillage Res. 2016, 163, 255–265. [Google Scholar] [CrossRef]
- Rutkowska, B.; Szulc, W.; Sosulski, T.; Stepien, W. Soil micronutrient availability to crops affected by long-term inorganic and organic fertilizer applications. Plant Soil Environ. 2014, 60, 198–203. [Google Scholar] [CrossRef]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1–2, 100007. [Google Scholar] [CrossRef]
- Masunaga, T.; Marques Fong, J.D. Strategies for increasing micronutrient availability in soil for plant uptake. In Plant Micronutrient Use Efficiency; Hossain, M.A., Kamiya, T., Burritt, D.J., Phan Tran, L.-S., Fujiwara, T., Eds.; Academic Press: London, UK, 2018; pp. 195–208. [Google Scholar]
- Lupwayi, N.Z.; Girma, M.; Haque, I. Plant nutrient contents of cattle manures from small-scale farms and experimental stations in the Ethiopian highlands. Agr. Ecosyst. Environ. 2000, 78, 57–63. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, B.; Zhang, J.B.; Muller, C.; Cai, Z.C. Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil. Soil Biol. Biochem. 2015, 91, 222–231. [Google Scholar] [CrossRef]
- Novelli, L.E.; Hass, W.L.; Benintende, S.M.; Caviglia, O.P. Microbial activity effect on aggregate stability after residue addition in a Mollisol and a Vertisol in the Pampas, Argentina. Geoderma Reg. 2020, 23, e00346. [Google Scholar] [CrossRef]
Treatments | Chemical Fertilizers | Organic Amendments | Nutrient Inputs in Total | ||||||
---|---|---|---|---|---|---|---|---|---|
(kg ha−1 year−1) | (Fresh Base) (kg ha−1 year−1) | (kg ha−1 year−1) | |||||||
N | P2O5 | K2O | Wheat Straw | Pig Manure | Cattle Manure | N | P | K | |
CK | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
NPK | 180 | 90 | 135 | 0 | 0 | 0 | 180 | 39.3 | 112 |
NPKWS | 180 | 90 | 135 | 7500 | 0 | 0 | 208 | 45.3 | 157 |
NPKPM | 180 | 90 | 135 | 0 | 15,000 | 0 | 257 | 103.2 | 205 |
NPKCM | 180 | 90 | 135 | 0 | 0 | 30,000 | 275 | 89.7 | 294 |
Treatments | Alkali-Hydrolyzable N (mg kg−1) | Available P (mg kg−1) | Available K (mg kg−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | |
CK | 68.50 e | 40.67 c | 27.90 b | 2.39 e | 0.31 c | 0.26 a | 110.23 e | 134.67 d | 180.33 d |
NPK | 84.57 d | 42.07 c | 33.90 a | 19.47 d | 0.97 bc | 0.68 a | 123.77 d | 147.00 c | 183.67 cd |
NPKWS | 111.41 c | 47.47 b | 33.33 a | 26.00 c | 1.58 b | 0.10 a | 141.50 c | 155.00 b | 185.67 c |
NPKPM | 126.37 b | 49.03 b | 35.43 a | 99.13 a | 9.80 a | 1.20 a | 160.90 b | 158.00 b | 196.67 b |
NPKCM | 143.65 a | 55.60 a | 37.80 a | 67.30 b | 9.78 a | 0.70 a | 392.77 a | 173.00 a | 210.33 a |
Treatments | DTPA-Extractable Fe | DTPA-Extractable Mn | DTPA-Extractable Cu | DTPA-Extractable Zn | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | |||||||||
0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | 0–20 cm | 20–40 cm | 40–60 cm | |
CK | 25.15 c | 12.61 a | 9.53 a | 35.10 d | 25.27 a | 14.71 a | 2.68 b | 1.85 a | 1.44 a | 0.20 c | 2.46 a | 2.14 a |
NPK | 72.83 b | 16.70 a | 12.26 a | 68.72 b | 23.46 a | 17.66 a | 3.15 b | 1.89 a | 1.48 a | 0.63 c | 2.34 a | 2.41 a |
NPKWS | 98.20 a | 15.01 a | 10.66 a | 102.20 a | 27.23 a | 14.59 a | 3.20 b | 1.74 a | 1.35 a | 2.31 c | 2.26 a | 1.86 a |
NPKPM | 76.50 b | 16.27 a | 12.60 a | 69.90 b | 23.33 a | 15.27 a | 8.58 a | 1.93 a | 1.54 a | 15.37 a | 1.72 a | 1.77 a |
NPKCM | 27.05 c | 14.33 a | 11.75 a | 43.92 c | 24.63 a | 14.64 a | 2.92 b | 1.94 a | 1.48 a | 7.33 b | 2.72 a | 2.09 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, L.; Zhang, X.; Deng, A.; Abdulkareem, R.; Wang, D.; Zheng, C.; Zhang, W. Effect of Long-Term Organic Amendment Application on the Vertical Distribution of Nutrients in a Vertisol. Agronomy 2022, 12, 1162. https://doi.org/10.3390/agronomy12051162
Zhang Y, Wu L, Zhang X, Deng A, Abdulkareem R, Wang D, Zheng C, Zhang W. Effect of Long-Term Organic Amendment Application on the Vertical Distribution of Nutrients in a Vertisol. Agronomy. 2022; 12(5):1162. https://doi.org/10.3390/agronomy12051162
Chicago/Turabian StyleZhang, Yu, Liuge Wu, Xin Zhang, Aixing Deng, Raheem Abdulkareem, Daozhong Wang, Chengyan Zheng, and Weijian Zhang. 2022. "Effect of Long-Term Organic Amendment Application on the Vertical Distribution of Nutrients in a Vertisol" Agronomy 12, no. 5: 1162. https://doi.org/10.3390/agronomy12051162
APA StyleZhang, Y., Wu, L., Zhang, X., Deng, A., Abdulkareem, R., Wang, D., Zheng, C., & Zhang, W. (2022). Effect of Long-Term Organic Amendment Application on the Vertical Distribution of Nutrients in a Vertisol. Agronomy, 12(5), 1162. https://doi.org/10.3390/agronomy12051162