Application of Conservation Tillage in China: A Method to Improve Climate Resilience
Abstract
:1. Introduction
2. Definitions of Climate Resilience and Conservation Tillage
Country/Region | Technical Points |
---|---|
China | residue incorporation, and no/reduced tillage [12] |
United States | resilience determines the persistence of relationships within a more than 30% crop residue [13] |
United Kingdom | not using cultivation machinery [15] |
European Union | leave at least 30% plant residue and do not invert soil [16] |
Sub-Saharan Africa | do not disturb the soil and allow retention of mulch [18]. |
3. Conservation Tillage Can Improve Climate Resilience for Agriculture
3.1. Conservation Tillage Can Improve the Hydrologic Function of Soil
3.2. Conservation Tillage Can Improve Soil Structure and Increase Soil Nutrients
3.3. Conservation Tillage Can Reduce Greenhouse Gases to Mitigate Climate Change
3.4. Conservation Tillage Can Improve the Soil’s Eco-Envirnment to Achieve Weed and Pest Control
3.5. Conservation Tillage Can Stabilize and Increase Yield
4. Suggestions for the Application of Conservation Tillage in China
4.1. Northeast China
4.2. North China
4.3. Northwest China
4.4. South China
5. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014; Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Pan-el on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Schleussner, C.F.; Pfleiderer, P.; Fischer, E.M. In the observational record half a degree matters. Nat. Clim. Change 2017, 7, 460–462. [Google Scholar] [CrossRef]
- Hay, J. Extreme Weather and Climate Events, and Farming Risks. Manag. Weather Clim. Risks Agric. 2007, 1–19. [Google Scholar] [CrossRef]
- Shen, J.B.; Cui, Z.L.; Miao, Y.X.; Mi, G.H.; Zhang, H.Y.; Fan, M.S.; Zhang, C.C.; Jiang, R.F.; Zhang, W.F.; Li, H.G.; et al. Transforming agriculture in China: From solely high yield to both high yield and high resource use efficiency. Glob. Food Secur. Agric. Policy Econ. Environ. 2013, 2, 1–8. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs: Vigorously Promote Conservation Tillage. Available online: http://www.moa.gov.cn/nybgb/2007/dwuq/201806/t20180613_6151894.htm (accessed on 23 May 2022).
- Smith, M.; Simard, M.; Twigg, J.; Kett, M.; Cole, E. Disability and Climate Resilience: A Literature Review; Leonard Cheshire: London, UK, 2017. [Google Scholar]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Walker, B.; Hollin, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social-ecological systems. Ecol. Soc. 2004, 9, 1–9. [Google Scholar] [CrossRef]
- Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. (Eds.) Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2012; pp. 555–564. [Google Scholar]
- El Chami, D.; Daccache, A.; Moujabber, M. How Can Sustainable Agriculture Increase Climate Resilience? A Systematic Review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef] [Green Version]
- Tillage Type Definitions. Available online: https://www.ctic.org/resource_display/?id=322&title=Tillage+Type+Definitions (accessed on 23 May 2022).
- The Action Plan for Conservative Farming of Black Soil in Northeast China. Available online: http://www.gov.cn/zhengce/zhengceku/2020-03/18/content_5492795.htm (accessed on 23 May 2022).
- Agricultural Chemicals and Production Technology: Glossary. Available online: https://wayback.archive-it.org/5923/20120620132042/ (accessed on 23 May 2022).
- Morris, N.L.; Miller, P.C.H.; Orson, J.H.; Froud-Williams, R.J. The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review. Soil Tillage Res. 2010, 108, 1–15. [Google Scholar] [CrossRef]
- Use Min-till or No-till Farming. Available online: https://www.gov.uk/guidance/use-min-till-or-no-till-farming (accessed on 23 May 2022).
- Glossary: Conservational Tillage—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Glossary:Conservational_tillage (accessed on 23 May 2022).
- Drechsel, P.; Gyiele, L.; Kunze, D.; Cofie, O. Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecol. Econ. 2001, 38, 251–258. [Google Scholar] [CrossRef]
- Ito, M.; Matsumoto, T.; Quinones, M.A. Conservation tillage practice in sub-Saharan Africa: The experience of Sasakawa Global 2000. Crop Prot. 2007, 26, 417–423. [Google Scholar] [CrossRef]
- Yang, X.; Zheng, L.; Yang, Q.; Wang, Z.; Cui, S.; Shen, Y. Modelling the effects of conservation tillage on crop water productivity, soil water dynamics and evapotranspiration of a maize-winter wheat-soybean rotation system on the Loess Plateau of China using APSIM. Agric. Syst. 2018, 166, 111–123. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.L.; Sun, Y.G.; Zhang, Y.H.; Li, H.Y.; Liu, P.Z.; Wang, X.L.; Wang, R.; Li, J. Conservation tillage improves soil water storage, spring maize (Zea mays L.) yield and WUE in two types of seasonal rainfall distributions. Soil Tillage Res. 2022, 215, 105237. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.K.; Guo, Z.; Li, J.B.; Tian, C.; Hua, D.W.; Shi, C.D.; Wang, H.Y.; Han, J.C.; Xu, Y. Effects of Conservation Tillage on Soil Physicochemical Properties and Crop Yield in an Arid Loess Plateau, China. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.Y.; Zhang, J.S.; Wu, W.L.; Cai, D.X.; Lv, J.J.; Jiang, G.H.; Huang, J.; Gao, J.; Hartmann, R.; Gabriels, D. Effects of conservation tillage practices on winter wheat water-use efficiency and crop yield on the Loess Plateau, China. Agric. Water Manag. 2007, 87, 307–314. [Google Scholar] [CrossRef]
- Liu, Z.; Cao, S.; Sun, Z.; Wang, H.; Qu, S.; Lei, N.; He, J.; Dong, Q. Tillage effects on soil properties and crop yield after land reclamation. Sci. Rep. 2021, 11, 4611. [Google Scholar] [CrossRef] [PubMed]
- Islam, R.; Reeder, R. No-till and conservation agriculture in the United States: An example from the David Brandt farm, Carroll, Ohio. Int. Soil Water Conserv. Res. 2014, 2, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Kushwa, V.; Hati, K.M.; Sinha, N.K.; Singh, R.K.; Mohanty, M.; Somasundaram, J.; Jain, R.C.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K. Long-term Conservation Tillage Effect on Soil Organic Carbon and Available Phosphorous Content in Vertisols of Central India. Agric. Res. 2016, 5, 353–361. [Google Scholar] [CrossRef]
- Karathanasis, A.; Wells, K. Conservation Tillage Effects on the Potassium Status of Some Kentucky Soils. Soil Sci. Soc. Am. J. SSSAJ 1990, 54, 800–806. [Google Scholar] [CrossRef]
- Angelo, M.J.; Du Plesis, A. Research Handbook on Climate Change and Agricultural Law; Edward Elgar Publishing: Cheltenham, UK, 2017. [Google Scholar]
- Post, W.M.; Emanuel, W.R.; Zinke, P.J.; Stangenberger, A.G. Soil carbon pools and world life zones. Nature 1982, 298, 156–159. [Google Scholar] [CrossRef]
- Lal, R.; Kimble, J.M. Conservation tillage for carbon sequestration. Nutr. Cycl. Agroecosystems 1997, 49, 243–253. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, X. Impacts of conservation tillage on greenhouse gas emissions from cropland in China: A review. J. Agric. Environ. Sci. 2020, 39, 872–881. [Google Scholar] [CrossRef]
- Feng, J.; Li, F.; Zhou, X.; Xu, C.; Ji, L.; Chen, Z.; Fang, F. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis. PLoS ONE 2018, 13, e0196703. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, L.; Chen, Q.; Wen, X.; Liao, Y. Conservation tillage increases soil bacterial diversity in the dryland of northern China. Agron. Sustain. Dev. 2016, 36, 28. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Guo, Z.; Zhang, J.; Gai, Z.; Liu, J.; Meng, Q.; Liu, X. No tillage and residue mulching method on bacterial community diversity regulation in a black soil region of Northeastern China. PLoS ONE 2021, 16, e0256970. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Q.; Lü, Y.; Sun, X.; Jia, S.; Zhang, X.; Liang, W. Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil Tillage Res. 2015, 149, 46–52. [Google Scholar] [CrossRef]
- Jaques, R. The potential of pathogens for pest control. Agric. Ecosyst. Environ. 1983, 10, 101–126. [Google Scholar] [CrossRef]
- Hammond, R. Conservation Tillage, Relay Intercropping and Alternative Cropping Systems: Their Potential for Preventive Arthropod Management; Springer: Dordrecht, The Netherlands, 1992; pp. 46–55. [Google Scholar]
- Tamburini, G.; Simone, S.; Sigura, M.; Boscutti, F.; Marini, L. Conservation tillage mitigates the negative effect of landscape simplification on biological control. J. Appl. Ecol. 2015, 53, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Zhao, Y.; Yang, H.; Shen, Y.; Zhang, X. Suppression of weeds and weed seeds in the soil by stubbles and no-tillage in an arid maize-winter wheat-common vetch rotation on the Loess Plateau of China. J. Arid Land 2018, 10, 809–820. [Google Scholar] [CrossRef] [Green Version]
- Field, R.; Benke, S.; Bádonyi, K.; Bradbury, R. Inuence of conservation tillage on winter bird use of arable elds in Hungary. Agric. Ecosyst. Environ. 2007, 120, 399–404. [Google Scholar] [CrossRef]
- Quinn, N.F.; Brainard, D.C.; Szendrei, Z. The Effect of Conservation Tillage and Cover Crop Residue on Beneficial Arthropods and Weed Seed Predation in Acorn Squash. Environmental Entomology 2016, 45, 1543–1551. [Google Scholar] [CrossRef]
- Nichols, V.; Verhulst, N.; Cox, R.; Govaerts, B. Weed dynamics and conservation agriculture principles: A review. Field Crops Res. 2015, 183, 56–68. [Google Scholar] [CrossRef] [Green Version]
- Yu, T.; Mahe, L.; Li, Y.; Wei, X.; Deng, X.; Zhang, D. Benefits of Crop Rotation on Climate Resilience and Its Prospects in China. Agronomy 2022, 12, 436. [Google Scholar] [CrossRef]
- Li, H.; He, J.; Gao, H.; Chen, Y.; Zhang, Z. The effect of conservation tillage on crop yield in China. Front. Agric. China 2015, 2, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Editorial Board of China Machinery Industry Yearbook; China Association of Agricultural Machinery Manufacturers. Agricultural Machinery Industry Yearbook; China Machine Press: Beijing, China; Available online: https://data.cnki.net/area/Yearbook/Single/N2016060195?dcode=D10 (accessed on 23 May 2022).
- Ao, M.; Guan, Y.; Zhang, X. Research and Practice of Conservation Tillage in Black Soil Region of Northeast China. Bull. Chin. Acad. Sci. 2021, 36, 1203–1215. [Google Scholar]
- Jia, S.; Zhang, X.-P.; Chen, X.; McLaughlin, N.; Zhang, S.; Wei, S.; Sun, B.; Liang, A. Long-term conservation tillage influences the soil microbial community and its contribution to soil CO2 emissions in a Mollisol in Northeast China. J. Soils Sediments 2015, 16, 1–12. [Google Scholar] [CrossRef]
- Shen, Y.; McLaughlin, N.; Zhang, X.-P.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Licht, M.; Al-Kaisi, M. Strip-tillage effect on seedbed soil temperature and other soil physical properties. Soil Tillage Res. 2005, 80, 233–249. [Google Scholar] [CrossRef]
- Zhang, L.; Chu, Q.-Q.; Jiang, Y.-L.; Chen, F.; Lei, Y.-D. Impacts of climate change on drought risk of winter wheat in the North China Plain. J. Integr. Agric. 2021, 20, 2601–2612. [Google Scholar] [CrossRef]
- Mo, X.; Hu, S.; Zhong-Hui, L.; Su-Xia, L.; Jun, X. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Change Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Ma, Y.; Kuang, N.; Hong, S.; Jiao, F.; Liu, C.; Li, Q. Water productivity of two wheat genotypes in response to no-tillage in the North China Plain. Plant Soil Environ. 2021, 67, 236–244. [Google Scholar] [CrossRef]
- Zhou, X.X.; Gao, H.W.; Liu, X.F. Experimental study on conservation tillage system in areas of two crops a year in north China plain. Trans. CSAE 2001, 17, 81–84. [Google Scholar]
- Chimsah, F.; Cai, L.; Wu, J.; Zhang, R. Outcomes of Long-Term Conservation Tillage Research in Northern China. Sustainability 2020, 12, 1062. [Google Scholar] [CrossRef] [Green Version]
- Yin, M.; Li, Y.; Chen, P.; Xu, L.; Shen, S.; Wang, X. Effect of No-Tillage on Maize Yield in Northern Region of China—A Meta-analysis. Sci. Agric. Sin. 2018, 51, 843–854. [Google Scholar]
- Wang, X.; Cai, D.; Hoogmoed, W.; Oenema, O.; Perdok, U. Developments in conservation tillage in rainfed regions of North China. Soil Tillage Res. 2007, 93, 239–250. [Google Scholar] [CrossRef]
- Liu, L.; Gao, H.; Li, H. Conservation tillage for corn-wheat two crops a year region. Trans. CSAE 2004, 20, 70–73. [Google Scholar]
- Yaning, C.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Dong, L.; Si, T.; Li, Y.-e.; Zou, X.-X. The effect of conservation tillage in managing climate change in arid and semiarid areas—A case study in Northwest China. Mitig. Adapt. Strateg. Glob. Change 2021, 26, 1–19. [Google Scholar] [CrossRef]
- Lingling, L.; Renzhi, Z.; Zhuzhu, L.; Weili, L.; Junhong, X.; Liqun, C.; Bellotti, W. Evolution of soil and water conservation in rain-fed areas of China. Int. Soil Water Conserv. Res. 2014, 21, 78–90. [Google Scholar] [CrossRef] [Green Version]
- Xiaoxia, Z. The Effectiveness Analysis of Water-Saving Irrigation and Conservation Tillage in Coping with Climate Change. Ph.D. Thesis, Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, China, 2013. [Google Scholar]
- Hu, S.J.; Song, Y.D.; Zhou, H.F.; Tian, C.Y. Experimental study on water use efficiency of cotton in the Tarim river basin. Agric. Res. Arid Areas 2002, 20, 65–70. (In Chinese) [Google Scholar]
- Jia, L.; Zhai, R.; Yue, L.; Kang, M.; Zhang, X. Regional differences in the soil and water conservation efficiency of conservation tillage in China. Catena 2019, 175, 18–26. [Google Scholar] [CrossRef]
- Xu, L.; Tang, G.; Tian, J.; Wang, X.; Zhang, J. Effects of no-tillage sowing on soil properties and forage wheat and Italian ryegrass yields in winter fallow paddy fields. PeerJ 2021, 9, e10573. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Ti, J.-S.; Chen, F. Soil aggregates response to tillage and residue management in a double paddy rice soil of the Southern China. Nutr. Cycl. Agroecosyst. 2017, 109, 103–114. [Google Scholar] [CrossRef]
- Zheng, C.; Jiang, Y.; Chen, C.; Sun, Y.; Feng, J.; Deng, A.; Song, Z.; Zhang, W. The impacts of conservation agriculture on crop yield in China depend on specific practices, crops and cropping regions. Crop J. 2014, 2, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Zhang, X.; Xu, D.; Ma, Q.; Le, T.; Zhu, M.; Li, C.; Zhu, X.; Guo, W.; Ding, J. No-Tillage Promotes Wheat Seedling Growth and Grain Yield Compared with Plow–Rotary Tillage in a Rice–Wheat Rotation in the High Rainfall Region in China. Agronomy 2022, 12, 865. [Google Scholar] [CrossRef]
- Barton, A.P.; Fullen, M.; Mitchell, D.J.; Hocking, T.J.; Liu, L.; Bo, Z.; Zheng, Y.; Xia, Z. Effects of soil conservation measures on erosion rates and crop productivity on subtropical Ultisols in Yunnan Province, China. Agric. Ecosyst. Environ. 2004, 104, 343–357. [Google Scholar] [CrossRef]
- Li, P. Research and innovative application of rice seedling-broadcasting with no tillage in Guangxi. Hybrid Rice 2006, s1, 003. [Google Scholar]
- Xiao-Bin, W.; Dian-Xiong, C.A.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Potential Effect of Conservation Tillage on Sustainable Land Use: A Review of Global Long-Term Studies. Pedosphere 2006, 16, 587–595. [Google Scholar] [CrossRef]
- Soane, B.D.; Ball, B.C.; Arvidsson, J.; Basch, G.; Moreno, F.; Roger-Estrade, J. No-till in northern, western and south-western Europe: A review of problems and opportunities for crop production and the environment. Soil Tillage Res. 2012, 118, 66–87. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.; Linquist, B.; Lundy, M.; Liang, X.; van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.; Kessel, C. When does no-till yield more? A global meta-analysis. Field Crops Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Gabrielle, B.; Makowski, D. A global dataset for crop production under conventional tillage and no tillage systems. Sci. Data 2021, 8, 33. [Google Scholar] [CrossRef]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
- Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.; Linquist, B.; van Groenigen, K.J. Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Change Biol. 2013, 19, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.; Hoogmoed, W.; Oenema, O. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Res. 2011, 120, 47–57. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.-Y.; Yang, J.; Drury, C. Effect of conservation and conventional tillage on soil water storage, water use efficiency and productivity of corn and soybean in Northeast China. Acta Agric. Scand. 2013, 63, 383–394. [Google Scholar] [CrossRef]
- Powlson, D.S.; Stirling, C.M.; Jat, M.L.; Gerard, B.G.; Palm, C.A.; Sanchez, P.A.; Cassman, K.G. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 2014, 4, 678–683. [Google Scholar] [CrossRef]
- Nayak, D.; Saetnan, E.; Cheng, K.; Wang, W.; Koslowski, F.; Cheng, Y.-F.; Zhu, W.Y.; Wang, J.-K.; Liu, J.-X.; Moran, D.; et al. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agric. Ecosyst. Environ. 2015, 209, 108–124. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; He, J.; Li, H.; Wang, Q.; Lu, C.; Zheng, K.; Liu, W.; Zhao, H.; Lou, S. Effect of Straw Retention on Crop Yield, Soil Properties, Water Use Efficiency and Greenhouse Gas Emission in China: A Meta-Analysis. Int. J. Plant Prod. 2019, 13, 347–367. [Google Scholar] [CrossRef]
- Sharma, H.C.; Prabhakar, C. Impact of Climate Change on Pest Management and Food Security; Academic Press: Cambridge, MA, USA, 2014; pp. 23–36. [Google Scholar]
- Rosenzweig, C.; Iglesias, A.; Yang, X.B.; Epstein, P.; Chivian, E. Climate Change and Extreme Weather Events; Implications for Food Production, Plant Diseases, and Pests. Glob. Change Hum. Health 2001, 2, 90–104. [Google Scholar] [CrossRef]
- Büchi, L.; Wendling, M.; Amossé, C.; Necpalova, M.; Charles, R. Importance of cover crops in alleviating negative effects of reduced soil tillage and promoting soil fertility in a winter wheat cropping system. Agric. Ecosyst. Environ. 2018, 256, 92–104. [Google Scholar] [CrossRef]
- Sun, B.; Jia, S.; Zhang, S.; McLaughlin, N.; Liang, A.; Chen, X.; Liu, S.; Zhang, X.-P. No tillage combined with crop rotation improves soil microbial community composition and metabolic activity. Environ. Sci. Pollut. Res. Int. 2016, 23, 6472–6482. [Google Scholar] [CrossRef]
- Madari, B.; Machado, P.; Torres, E.; Andrade, A.; Valencia, L. No tillage and crop rotation effects on soil aggregation and organic carbon in a Rhodic Ferralsol from southern Brazil. Soil Tillage Res. 2005, 80, 185–200. [Google Scholar] [CrossRef]
- Burayu, W.; Chinawong, S.; Suwanketnikom, R.; Mala, T.; Juntakool, S. Conservation Tillage and Crop Rotation: Win-Win Option for Sustainable Maize Production in the Dryland, Central Rift Valley of Ethiopia. Kamphaengsaen Acad. J. 2006, 4, 48–60. [Google Scholar]
- Franzluebbers, A. Why Mix Cattle and Crops? In Proceedings of the Annual Southern Conservation Tillage Conference for Sustainable Agriculture, Tifton, GA, USA, 29–31 July 2008. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, X.; Yang, Q.; Zhang, D.; Dong, S. Application of Conservation Tillage in China: A Method to Improve Climate Resilience. Agronomy 2022, 12, 1575. https://doi.org/10.3390/agronomy12071575
Deng X, Yang Q, Zhang D, Dong S. Application of Conservation Tillage in China: A Method to Improve Climate Resilience. Agronomy. 2022; 12(7):1575. https://doi.org/10.3390/agronomy12071575
Chicago/Turabian StyleDeng, Xiaoshang, Qianxi Yang, Dan Zhang, and Shoukun Dong. 2022. "Application of Conservation Tillage in China: A Method to Improve Climate Resilience" Agronomy 12, no. 7: 1575. https://doi.org/10.3390/agronomy12071575
APA StyleDeng, X., Yang, Q., Zhang, D., & Dong, S. (2022). Application of Conservation Tillage in China: A Method to Improve Climate Resilience. Agronomy, 12(7), 1575. https://doi.org/10.3390/agronomy12071575