Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, History and Experimental Area Characterizationubsection
2.2. Treatments and Experimental Design
2.3. Conducting the Experimental Area
2.4. Soil Sampling
2.5. Soil Analysis
2.5.1. Total Organic Carbon (TOC), Total Nitrogen (TN) and Soil Carbon Fractionation
2.5.2. Aggregates Stability in Water
2.6. Data Analysis
3. Results
3.1. Total Organic Carbon (TOC), Total Nitrogen (NT) and Soil Carbon Physical Fractionation
3.2. Soil C/N Ratio, Carbon Pool Index (CPI), Lability (L), Lability Index (LI) and Carbon Management Index (CMI)
3.3. Soil Organic Matter Chemical Fractionation
3.4. Aggregate Stability
4. Discussion
TOC, TN, Physical Fractionation and Carbon Management Index of Soil
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carducci, C.E.; de Oliveira, G.C.; Silva, É.A.; de Oliveira, L.M.; Barbosa, S.M. Retenção de água do solo sob sistema conservacionista de manejo com diferentes doses de gesso. Rev. Ciências Agrárias Amazon. J. Agric. Environ. Sci. 2015, 58, 284–291. [Google Scholar] [CrossRef]
- Da Silva, P.C.G.; Tiritan, C.S.; Echer, F.R.; dos Santos Cordeiro, C.F.; Rebonatti, M.D.; dos Santos, C.H. No-tillage and crop rotation increase crop yields and nitrogen stocks in sandy soils under agroclimatic risk. Field Crop. Res. 2020, 258, 107947. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Alvarenga, R.C.; Cabezas, W.A.L.; Cruz, J.C.; Santana, D.P. Plantas de cobertura de solo para sistema plantio direto. Inf. Agropecuário 2001, 22, 25–36. [Google Scholar]
- Grassmann, C.S.; Mariano, E.; Rocha, K.F.; Gilli, B.R.; Rosolem, C.A. Effect of tropical grass and nitrogen fertilization on nitrous oxide, methane, and ammonia emissions of maize-based rotation systems. Atmos. Environ. 2020, 234, 117571. [Google Scholar] [CrossRef]
- Rigon, J.P.G.; Calonego, J.C.; Capuani, S.; Franzluebbers, A.J. Soil organic C affected by dry-season management of no-till soybean crop rotations in the tropics. Plant Soil 2021, 462, 577–590. [Google Scholar] [CrossRef]
- Chioderoli, C.A.; de Mello, L.M.M.; Grigolli, P.J.; Furlani, C.E.A.; Silva, J.O.R.; Cesarin, A.L. Atributos físicos do solo e produtividade de soja em sistema de consórcio milho e braquiária. Rev. Bras. Eng. Agrícola Ambient. 2012, 16, 37–43. [Google Scholar] [CrossRef]
- Dalla Côrt, A.S.; Feitosa, P.B.; Pacheco, L.P.; Greco, T.M.; Silva, I.D.F.; Souza, E.D.; Santos, F.S.; Petter, F.A.; Crusciol, C.A.C. Accumulation and efficiency of nutrient use in crop systems in second crop under no-tillage. Pesqui. Agropecuária Bras. 2021, 56, e01879. [Google Scholar] [CrossRef]
- Lauriault, L.; Guldan, S.; Popiel-Powers, F.; Steiner, R.; Martin, C.; Heyduck, R.; Falk, C.; Petersen, M.; May, T. Relay Intercropping with Cover Crops Improved Autumn Forage Potential of Sweet Maize Stover. Agriculture 2018, 8, 103. [Google Scholar] [CrossRef] [Green Version]
- Bybee-Finley, K.; Ryan, M. Advancing Intercropping Research and Practices in Industrialized Agricultural Landscapes. Agriculture 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Braida, J.A.; Bayer, C.; Albuquerque, J.A.; Reichert, J.M. Matéria orgânica e seu efeito na física no solo. In Tópicos em Ciência do Solo; Klauberg Filho, O., Mafra, A.L., Gatiboni, L.C., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2011; pp. 221–278. [Google Scholar]
- Ferrari Neto, J.; Franzluebbers, A.J.; Crusciol, C.A.C.; Rigon, J.P.G.; Calonego, J.C.; Rosolem, C.A.; do Nascimento, C.A.C.; Ribeiro, L.C. Soil carbon and nitrogen fractions and physical attributes affected by soil acidity amendments under no-till on Oxisol in Brazil. Geoderma Reg. 2021, 24, e00347. [Google Scholar] [CrossRef]
- Momesso, L.; Crusciol, C.A.C.; Leite, M.F.A.; Bossolani, J.W.; Kuramae, E.E. Forage Grasses Steer Soil Nitrogen Processes, Microbial Populations, and Microbiome Composition in A Long-term Tropical Agriculture System. Agric. Ecosyst. Environ. 2022, 323, 107688. [Google Scholar] [CrossRef]
- Salton, J.C.; Mielniczuk, J.; Bayer, C.; Fabrício, A.C.; Macedo, M.C.M.; Broch, D.L. Teor e dinâmica do carbono no solo em sistemas de integração lavoura-pecuária. Pesqui. Agropecuária Bras. 2011, 46, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, S.S.; Naresh, R.K.; Mandal, A.; Singh, R.; Dhaliwal, M.K. Dynamics and transformations of micronutrients in agricultural soils as influenced by organic matter build-up: A review. Environ. Sustain. Indic. 2019, 1, 100007. [Google Scholar] [CrossRef]
- Raphael, J.P.A.; Calonego, J.C.; Milori, D.M.B.P.; Rosolem, C.A. Soil organic matter in crop rotations under no-till. Soil Tillage Res. 2016, 155, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Dou, F.; Wright, A.L.; Hons, F.M. Sensitivity of Labile Soil Organic Carbon to Tillage in Wheat-Based Cropping Systems. Soil Sci. Soc. Am. J. 2008, 72, 1445–1453. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014; Volume 12.
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Blair, G.; Lefroy, R.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis: Part 3. Chemical Methods, 5.3; Soil Science Society of America Book, Series; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Kemper, W.D.; Chepil, W.S. Size Distribution of Aggregates. In Methods of Soil Analysis: Part 1 Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling; American Society of Agronomy: Madison, WI, USA, 1965; pp. 499–510. [Google Scholar]
- Yoder, R.E. A Direct Method of Aggregate Analysis of Soils and a Study of the Physical Nature of Erosion Losses 1. Agron. J. 1936, 28, 337–351. [Google Scholar] [CrossRef]
- De Queiroz Barcelos, J.P.; de Souza, M.; do Nascimento, C.A.C.; Rosolem, C.A. Soil acidity amelioration improves N and C cycles in the short term in a system with soybean followed by maize-guinea grass intercropping. Geoderma 2022, 421, 115909. [Google Scholar] [CrossRef]
- Canisares, L.P.; Rosolem, C.A.; Momesso, L.; Crusciol, C.A.C.; Villegas, D.M.; Arango, J.; Ritz, K.; Cantarella, H. Maize-Brachiaria intercropping: A strategy to supply recycled N to maize and reduce soil N2O emissions? Agric. Ecosyst. Environ. 2021, 319, 107491. [Google Scholar] [CrossRef] [PubMed]
- Paul, B.K.; Vanlauwe, B.; Ayuke, F.; Gassner, A.; Hoogmoed, M.; Hurisso, T.T.; Koala, S.; Lelei, D.; Ndabamenye, T.; Six, J.; et al. Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon and crop productivity. Agric. Ecosyst. Environ. 2013, 164, 14–22. [Google Scholar] [CrossRef]
- Garcia, R.A.; Rosolem, C.A. Agregados em um Latossolo sob sistema plantio direto e rotação de culturas. Pesqui. Agropecuária Bras. 2010, 45, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Oduor, C.O.; Karanja, N.K.; Onwonga, R.N.; Mureithi, S.M.; Pelster, D.; Nyberg, G. Enhancing soil organic carbon, particulate organic carbon and microbial biomass in semi-arid rangeland using pasture enclosures. BMC Ecol. 2018, 18, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, L.; Thompson, J.A.; McDonald, L.M. Soil Organic Carbon Pools and Indices in Surface Soil: Comparing a Cropland, Pasture, and Forest Soil in the Central Appalachian Region, West Virginia, U.S.A. Commun. Soil Sci. Plant Anal. 2022, 53, 17–29. [Google Scholar] [CrossRef]
- Poeplau, C.; Don, A.; Six, J.; Kaiser, M.; Benbi, D.; Chenu, C.; Cotrufo, M.F.; Derrien, D.; Gioacchini, P.; Grand, S.; et al. Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils—A comprehensive method comparison. Soil Biol. Biochem. 2018, 125, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Haddix, M.L.; Gregorich, E.G.; Helgason, B.L.; Janzen, H.; Ellert, B.H.; Francesca Cotrufo, M. Climate, carbon content, and soil texture control the independent formation and persistence of particulate and mineral-associated organic matter in soil. Geoderma 2020, 363, 114160. [Google Scholar] [CrossRef]
- Lavallee, J.M.; Soong, J.L.; Cotrufo, M.F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 2020, 26, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Sarker, J.R.; Singh, B.P.; Dougherty, W.J.; Fang, Y.; Badgery, W.; Hoyle, F.C.; Dalal, R.C.; Cowie, A.L. Impact of agricultural management practices on the nutrient supply potential of soil organic matter under long-term farming systems. Soil Tillage Res. 2018, 175, 71–81. [Google Scholar] [CrossRef]
- Grandy, A.S.; Neff, J.C. Molecular C dynamics downstream: The biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci. Total Environ. 2008, 404, 297–307. [Google Scholar] [CrossRef]
- Salton, J.C.; Mielniczuk, J.; Bayer, C.; Fabrício, A.C.; Macedo, M.C.M.; Broch, D.L.; Boeni, M.; Conceição, P.C. Matéria Orgânica do Solo na Integração Lavoura-Pecuária em Mato Grosso do Sul; Embrapa Agropecuária Oeste: Dourados, Brazil, 2005; Volume 29, p. 58. [Google Scholar]
- Rossi, C.Q.; Pereira, M.G.; Giácomo, S.G.; Betta, M.; Polidoro, J.C. Frações orgânicas e índice de manejo de carbono do solo em Latossolo Vermelho sob plantio de soja no cerrado goiano. Rev. Bras. Ciências Agrárias 2012, 7, 233–241. [Google Scholar] [CrossRef] [Green Version]
- Gmach, M.-R.; Dias, B.O.; Silva, C.A.; Nóbrega, J.C.A.; Lustosa-Filho, J.F.; Siqueira-Neto, M. Soil organic matter dynamics and land-use change on Oxisols in the Cerrado, Brazil. Geoderma Reg. 2018, 14, e00178. [Google Scholar] [CrossRef]
- Duval, M.E.; Martinez, J.M.; Galantini, J.A. Assessing soil quality indices based on soil organic carbon fractions in different long-term wheat systems under semiarid conditions. Soil Use Manag. 2020, 36, 71–82. [Google Scholar] [CrossRef]
- Guimarães, D.V.; Silva, M.L.N.; Beniaich, A.; Pio, R.; Gonzaga, M.I.S.; Avanzi, J.C.; Bispo, D.F.A.; Curi, N. Dynamics and losses of soil organic matter and nutrients by water erosion in cover crop management systems in olive groves, in tropical regions. Soil Tillage Res. 2021, 209, 104863. [Google Scholar] [CrossRef]
- Torres, J.L.R.; e Silva, V.R.; de Almeida Costa, D.D.; Pereira, M.G.; Assunção, S.A.; Gonzalez, A.P.; Pinto, L.A.; Loss, A. Aggregation and dynamics of soil organic matter under different management systems in the Brazilian Cerrado. Soil Res. 2021, 59, 715. [Google Scholar] [CrossRef]
- Gopinath, K.A.; Rajanna, G.A.; Venkatesh, G.; Jayalakshmi, M.; Kumari, V.V.; Prabhakar, M.; Rajkumar, B.; Chary, G.R.; Singh, V.K. Influence of Crops and Different Production Systems on Soil Carbon Fractions and Carbon Sequestration in Rainfed Areas of Semiarid Tropics in India. Sustainability 2022, 14, 4207. [Google Scholar] [CrossRef]
- Barbosa, L.R.; Souza, H.A.D.; Teixeira Neto, M.L.; Leite, L.F.C. Organic matter compartments in an Ultisol under integrated agricultural and livestock production systems in the Cerrado. Ciência Rural 2022, 52, 20200845. [Google Scholar] [CrossRef]
- Meena, V.S.; Mondal, T.; Pandey, B.M.; Mukherjee, A.; Yadav, R.P.; Choudhary, M.; Singh, S.; Bisht, J.K.; Pattanayak, A. Land use changes: Strategies to improve soil carbon and nitrogen storage pattern in the mid-Himalaya ecosystem, India. Geoderma 2018, 321, 69–78. [Google Scholar] [CrossRef]
- Corbeels, M.; Marchão, R.L.; Neto, M.S.; Ferreira, E.G.; Madari, B.E.; Scopel, E.; Brito, O.R. Evidence of limited carbon sequestration in soils under no-tillage systems in the Cerrado of Brazil. Sci. Rep. 2016, 6, 21450. [Google Scholar] [CrossRef] [Green Version]
- Benites, V.M.; Machado, P.L.O.A.; Madari, B.E.; Fontana, A. Fracionamento químico da matéria orgânica. In Manual de Métodos de Análises de Solo; Teixeira, P.C., Donagemma, G.K., Fontana, A., Teixeira, W.G., Eds.; Embrapa: Brasilia, Brazil, 2017; pp. 401–414. [Google Scholar]
- Guerra, J.G.M.; Santos, G.A. Métodos químicos e físicos. In Fundamentos da Matéria Orgânica do Solo: Ecossistemas Tropicais e Subtropicais; Santos, G.A., Silva, L.S., Canellas, L.P., Camargo, F.A.O., Eds.; Genesis: Porto Alegre, Brazil, 2008; pp. 185–199. [Google Scholar]
- Gazolla, P.R.; Guareschi, R.F.; Perin, A.; Pereira, M.G.; Rossi, C.Q. Frações da matéria orgânica do solo sob pastagem, sistema plantio direto e integração lavoura-pecuária. Semin. Ciências Agrárias 2015, 36, 693. [Google Scholar] [CrossRef] [Green Version]
- Cavalcante, D.M.; de Castro, M.F.; Chaves, M.T.L.; da Silva, I.R.; de Oliveira, T.S. Effects of rehabilitation strategies on soil aggregation, C and N distribution and carbon management index in coffee cultivation in mined soil. Ecol. Indic. 2019, 107, 105668. [Google Scholar] [CrossRef]
- Cantalice, J.R.B.; Silveira, F.P.M.; Singh, V.P.; Silva, Y.J.A.B.; Cavalcante, D.M.; Gomes, C. Interrill erosion and roughness parameters of vegetation in rangelands. CATENA 2017, 148, 111–116. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, J.; Huang, Y.; Wang, G.; Zhang, M. Effects of Vegetation Stems on Hydraulics of Overland Flow Under Varying Water Discharges. Land Degrad. Dev. 2016, 27, 748–757. [Google Scholar] [CrossRef]
- Costa, N.R.; Andreotti, M.; Mascarenhas Lopes, K.S.; Yokobatake, K.L.; Ferreira, J.P.; Pariz, C.M.; Bonini, B.; dos Santos, C.; Longhini, V.Z. Soil Properties and Carbon Accumulation in an Integrated Crop-Livestock System Under No-Tillage. Rev. Bras. Ciência Solo 2015, 39, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Arantes, A.C.C.; Cotta, S.R.; Conceição, P.M.D.; Meneghin, S.P.; Martinelli, R.; Próspero, A.G.; Boaretto, R.M.; Andreote, F.D.; Mattos, D., Jr.; Azevedo, F.A.D. Implication of Urochloa spp. Intercropping and Conservation Agriculture on Soil Microbiological Quality and Yield of Tahiti Acid Lime in Long Term Orchard Experiment. Agriculture 2020, 10, 491. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Silva, I.R.; Mendonça, E.S. Matéria Orgânica do Solo. In Fertilidade do Solo; Novais, R.F., Alvarez, V.V.H., Barros, N.F., Ferreira, R.L., Cantarutti, R.B., Neves, J.C.L., Eds.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2007; pp. 275–374. [Google Scholar]
- Six, J.; Elliott, E.; Paustian, K. Soil macroaggregate turnover and microaggregate formation: A mechanism for C sequestration under no-tillage agriculture. Soil Biol. Biochem. 2000, 32, 2099–2103. [Google Scholar] [CrossRef]
- dos Reis Ferreira, C.; da Silva Neto, E.C.; Pereira, M.G.; do Nascimento Guedes, J.; Rosset, J.S.; dos Anjos, L.H.C. Dynamics of soil aggregation and organic carbon fractions over 23 years of no-till management. Soil Tillage Res. 2020, 198, 104533. [Google Scholar] [CrossRef]
- Tavares Filho, J.; Melo, T.R.D.; Machado, W.; Maciel, B.V. Structural changes and degradation of Red Latosols under different management systems for 20 years. Rev. Bras. Ciência Solo 2014, 38, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Auler, A.C.; Pires, L.F.; Caires, E.F. Surface and incorporated liming effects on clay dispersion, water availability, and aeration capacity of a Dystrudept soil. Bragantia 2017, 76, 433–446. [Google Scholar] [CrossRef] [Green Version]
Soil Depth | PH | Presin 1 | H + Al | Ca | Mg | K | SB | CTC | V | Sand 2 | Silt 3 | Clay 4 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
m | CaCl2 | mg dm−3 | mmolc dm−3 | % | g kg−1 | |||||||
0.00–0.20 | 4.0 | 5.0 | 114 | 40 | 8 | 1.2 | 48 | 162 | 30 | 117 | 113 | 770 |
0.20–0.40 | 3.6 | 2.0 | 123 | 15 | 5 | 0.9 | 21 | 144 | 14 | 110 | 116 | 774 |
Treatments | Production System | Code |
---|---|---|
T1 | Single Maize in annual succession (monoculture) | M |
T2 | Maize intercropped with U. brizantha cv. Piatã in annual succession | MP |
T3 | Soybean in annual succession (monoculture) | S |
T4 | U. brizantha cv. Piatã pasture implanted in single cultivation | P |
T5 | Maize + Piatã intercropped and Soybean in annual rotation | MP/S |
T6 | Sequence of Maize + Piatã intercropping and Piatã pasture in annual rotation | MP/P |
T7 | Sequence of Maize + Piatã intercropping and Piatã pasture for two years | MP/P/P |
T8 | Sequence of Maize + Piatã intercropping, Piatã pasture and Soybean in annual rotation | MP/P/S |
T9 | Sequence of Soybean, Maize + Piatã intercropping and Piatã pasture for two years in rotation | S/MP/P/P |
T10 | Native savanna (reference for soil parameters) | NS |
Production System | TN | TOC | POC | MOC |
---|---|---|---|---|
g kg−1 | ||||
0.00–0.10 m | ||||
M 1 | 2.12 ab | 33.07 bcd | 9.58 cd | 23.48 a |
MP | 1.98 b | 31.90 cde | 9.98 cd | 21.91 a |
S | 1.78 b | 27.60 e | 7.18 e | 20.41 a |
P | 1.75 b | 31.40 cde | 10.42 bcd | 20.97 a |
MP/S | 1.97 b | 35.47 bc | 10.71 bcd | 24.75 a |
MP/P | 2.02 b | 36.50 b | 12.19 b | 24.30 a |
MP/P/P | 2.16 ab | 31.93 cde | 11.28 bc | 20.65 a |
MP/P/S | 1.95 b | 29.07 de | 8.09 de | 20.16 a |
S/MP/P/P | 1.89 b | 34.70 bc | 10.22 bcd | 24.48 a |
NS | 2.53 a | 42.90 a | 17.09 a | 25.81 a |
P Fcalc | 0.0506 | <0.0001 | <0.0001 | 0.1011 |
0.10–0.20 m | ||||
M | 1.56 c | 26.07 d | 4.70 g | 21.36 bc |
MP | 2.00 a | 34.63 ab | 9.95 a | 24.68 abc |
S | 1.59 c | 26.77 d | 5.16 fg | 21.60 bcd |
P | 1.54 c | 29.83 bcd | 8.74 b | 21.09 cd |
MP/S | 1.64 c | 31.90 abc | 5.90 ef | 26.00 ab |
MP/P | 1.64 c | 30.50 bcd | 7.02 cde | 23.47 bcd |
MP/P/P | 1.55 c | 27.77 cd | 6.14 def | 21.62 bcd |
MP/P/S | 1.76 bc | 29.03 cd | 7.19 cd | 21.84 bcd |
S/MP/P/P | 1.45 c | 25.47 d | 5.45 fg | 20.01 d |
NS | 2.23 a | 35.93 a | 7.72 bc | 28.21 a |
P Fcalc | 0.0041 | 0.0046 | <0.0001 | 0.0255 |
0.20–0.40 m | ||||
M | 1.45 a | 24.90 a | 4.38 bc | 20.52 a |
MP | 1.58 a | 27.13 a | 5.08 b | 22.04 a |
S | 1.40 a | 22.73 a | 4.02 bc | 18.70 a |
P | 1.32 a | 25.13 a | 6.55 a | 18.57 a |
MP/S | 1.47 a | 27.53 a | 6.86 a | 20.67 a |
MP/P | 1.38 a | 25.90 a | 5.09 b | 20.80 a |
MP/P/P | 1.50 a | 25.73 a | 6.43 a | 19.30 a |
MP/P/S | 1.50 a | 27.20 a | 6.98 a | 20.22 a |
S/MP/P/P | 1.34 a | 24.67 a | 5.00 b | 19.67 a |
NS | 1.52 a | 23.30 a | 3.44 c | 19.86 a |
P Fcalc | 0.2725 | 0.1317 | <0.0001 | 0.4648 |
Production System | C/N | CPI | L | LI | CMI |
---|---|---|---|---|---|
0.00–0.10 m | |||||
M 1 | 15.70 a | 0.77b cd | 0.41 bc | 0.64 bcd | 49 cd |
MP | 16.22 a | 0.74 cd | 0.45 bc | 0.70 bcd | 52 cd |
S | 15.54 a | 0.64 e | 0.35 c | 0.54 d | 34 e |
P | 17.93 a | 0.73 cde | 0.51 b | 0.80 bc | 57 bcd |
MP/S | 17.99 a | 0.83 bc | 0.43 bc | 0.68 bcd | 56 bcd |
MP/P | 18.08 a | 0.85 b | 0.50 b | 0.78 bc | 66 b |
MP/P/P | 15.13 a | 0.74 cde | 0.54 ab | 0.83 ab | 62 bc |
MP/P/S | 15.13 a | 0.67 de | 0.44 bc | 0.67 bcd | 46 de |
S/MP/P/P | 18.61 a | 0.81 bc | 0.42 bc | 0.63 cd | 51 cd |
NS | 16.95 a | 1.00 a | 0.67 a | 1.00 a | 100 a |
P Fcalc | 0.0846 | <0.0001 | 0.0097 | 0.0076 | <0.0001 |
0.10–0.20 m | |||||
M | 16.74 bc | 0.72 d | 0.22 d | 0.80 e | 58 f |
MP | 17.58 abc | 0.97 ab | 0.40 a | 1.48 a | 142 a |
S | 16.83 bc | 0.75 cd | 0.24 cd | 0.88 cde | 65 f |
P | 19.29 a | 0.83 bcd | 0.42 a | 1.53 a | 125 b |
MP/S | 19.46 a | 0.89 abc | 0.22 cd | 0.82 de | 73 ef |
MP/P | 18.55 ab | 0.85 bcd | 0.30 b | 1.09 bc | 92 cd |
MP/P/P | 17.97 abc | 0.77 cd | 0.28 bc | 1.04 bcd | 81 de |
MP/P/S | 16.62 bc | 0.81 cd | 0.33 b | 1.23 b | 98 c |
S/MP/P/P | 17.55 abc | 0.71 d | 0.27 bcd | 1.00 cde | 71 ef |
NS | 16.17 c | 1.00 a | 0.27 bcd | 1.00 cde | 100 |
P Fcalc | 0.0009 | 0.0046 | <0.0001 | <0.0001 | <0.0001 |
0.20–0.40 m | |||||
M | 17.20 a | 1.07 a | 0.21 bc | 1.25 bc | 135 bc |
MP | 17.25 a | 1.16 a | 0.23 bc | 1.34 bc | 155 b |
S | 16.34 a | 0.98 a | 0.22 bc | 1.26 bc | 121 bc |
P | 19.00 a | 1.08 a | 0.35 a | 2.06 a | 222 a |
MP/S | 18.69 a | 1.17 a | 0.33 a | 1.94 a | 230 a |
MP/P | 18.76 a | 1.11 a | 0.24 b | 1.42 b | 157 b |
MP/P/P | 17.37 a | 1.11 a | 0.33 a | 1.94 a | 212 a |
MP/P/S | 18.19 a | 1.17 a | 0.34 a | 2.01 a | 235 a |
S/MP/P/P | 18.63 a | 1.06 a | 0.25 b | 1.46 b | 155 b |
NS | 15.40 a | 1.00 a | 0.17 c | 1.00 c | 100 c |
P Fcalc | 0.1117 | 0.1453 | <0.0001 | <0.0001 | <0.0001 |
Production System | CHum | CHA | CFA | CHA/CFA |
---|---|---|---|---|
g kg−1 | ||||
0.0–0.10 m | ||||
M 1 | 10.60 c | 5.87 abcd | 7.85 a | 0.74 cd |
MP | 12.97 bc | 4.63 de | 6.70 abc | 0.70 d |
S | 12.52 bc | 4.61 de | 3.75 f | 1.24 a |
P | 12.47 bc | 3.86 e | 6.08 bcde | 0.64 d |
MP/S | 11.82 bc | 5.00 bcde | 8.04 a | 0.62 d |
MP/P | 13.89 b | 6.22 ab | 4.75 ef | 1.31 a |
MP/P/P | 13.23 bc | 6.03 abc | 6.20 bcde | 1.00 b |
MP/P/S | 13.21 bc | 4.75 cde | 5.15 def | 0.94 bc |
S/MP/P/P | 12.87 bc | 5.04 bcde | 5.37 cde | 0.94 bc |
NS | 18.12 a | 7.15 a | 7.04 ab | 1.01 b |
P Fcalc | 0.0035 | 0.0028 | <0.0001 | <0.0001 |
0.10–0.20 m | ||||
M | 10.60 c | 5.45 de | 4.17 cde | 1.35 ab |
MP | 13.33 ab | 6.92 bc | 4.44 cde | 1.57 a |
S | 10.47 c | 5.78 cd | 3.44 e | 1.86 a |
P | 13.33 ab | 5.01 de | 5.46 bc | 0.92 bc |
MP/S | 11.06 bc | 8.37 a | 5.03 bcde | 1.73 a |
MP/P | 11.22 bc | 7.20 ab | 3.80 de | 1.90 a |
MP/P/P | 10.27 c | 5.17 de | 3.67 de | 1.42 ab |
MP/P/S | 11.17 bc | 4.30 e | 7.36 a | 0.60 c |
S/MP/P/P | 11.52 bc | 5.54 de | 5.15 bcd | 0.88 bc |
NS | 14.67 a | 5.65 d | 6.48 ab | 0.88 bc |
P Fcalc | 0.0163 | <0.0001 | 0.0014 | 0.0006 |
0.20–0.40 m | ||||
M | 8.21 de | 4.82 a | 4.55 bc | 1.07 abc |
MP | 12.59 ab | 4.30 a | 5.27 ab | 0.82 c |
S | 8.14 e | 4.30 a | 3.65 c | 1.21 ab |
P | 10.56 bc | 4.06 a | 5.68 ab | 0.72 c |
MP/S | 11.83 ab | 4.67 a | 5.41 ab | 0.86 bc |
MP/P | 10.43 bcd | 4.56 a | 5.87 a | 0.78 c |
MP/P/P | 9.50 cde | 3.36 a | 4.52 bc | 0.84 c |
MP/P/S | 13.01 a | 4.45 a | 4.47 bc | 1.00 abc |
S/MP/P/P | 10.97 abc | 4.07 a | 5.41 ab | 0.75 c |
NS | 11.88 ab | 4.59 | 3.38 c | 1.37 a |
P Fcalc | 0.0019 | 0.1495 | 0.0041 | 0.0218 |
Production System | %Aggregation > 2 mm | GMD | MWD | ASI |
---|---|---|---|---|
% | Mm | % | ||
M 1 | 78.6 bcd | 3.13 bcde | 4.08 bcd | 96.13 a |
MP | 82.1 bcd | 3.40 bcd | 4.24 bcd | 97.22 a |
S | 57.4 e | 2.21 e | 3.21 e | 94.61 a |
P | 90.9 ab | 4.08 ab | 4.60 ab | 98.06 a |
MP/S | 68.0 de | 2.54 de | 3.66 de | 95.27 a |
MP/P | 85.1 ab | 3.62 bc | 4.37 ab | 97.04 a |
MP/P/P | 84.4 abc | 3.53 bcd | 4.34 abc | 96.70 a |
MP/P/S | 77.6 bcd | 3.14 bcde | 4.06 bcd | 96.36 a |
S/MP/P/P | 69.4 cde | 2.69 cde | 3.70 cde | 94.49 a |
NS | 98.1 a | 4.76 a | 4.91 a | 99.38 a |
P Fcalc | 0.0015 | 0.0021 | 0.0017 | 0.1300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, J.F.d.; Gontijo Neto, M.M.; Silva, G.F.d.; Borghi, E.; Calonego, J.C. Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna. Agronomy 2022, 12, 1652. https://doi.org/10.3390/agronomy12071652
Silva JFd, Gontijo Neto MM, Silva GFd, Borghi E, Calonego JC. Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna. Agronomy. 2022; 12(7):1652. https://doi.org/10.3390/agronomy12071652
Chicago/Turabian StyleSilva, Juslei Figueiredo da, Miguel Marques Gontijo Neto, Gustavo Ferreira da Silva, Emerson Borghi, and Juliano Carlos Calonego. 2022. "Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna" Agronomy 12, no. 7: 1652. https://doi.org/10.3390/agronomy12071652
APA StyleSilva, J. F. d., Gontijo Neto, M. M., Silva, G. F. d., Borghi, E., & Calonego, J. C. (2022). Soil Organic Matter and Aggregate Stability in Soybean, Maize and Urochloa Production Systems in a Very Clayey Soil of the Brazilian Savanna. Agronomy, 12(7), 1652. https://doi.org/10.3390/agronomy12071652