Natural Control of Weed Invasions in Hyper-Arid Arable Farms: Allelopathic Potential Effect of Conocarpus erectus against Common Weeds and Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Materials
2.2. Preparation of Aqueous Extracts
2.3. Petri-Dish Bioassay
2.4. Growth Inhibition by Aqueous Extracts
2.5. Phenolic Acids Analysis via HPLC
2.6. Statistical Analysis
3. Results
3.1. Bioassay and Growth Experiments
3.2. Total Phenolic Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Singh, H.; Batish, D.R.; Kohli, R. Allelopathic interactions and allelochemicals: New possibilities for sustainable weed management. Crit. Rev. Plant Sci. 2003, 22, 239–311. [Google Scholar] [CrossRef]
- Rueda-Ayala, V.P.; Rasmussen, J.; Gerhards, R.; Fournaise, N.E. The influence of post-emergence weed harrowing on selectivity, crop recovery and crop yield in different growth stages of winter wheat. Weed Res. 2011, 51, 478–488. [Google Scholar] [CrossRef]
- Griepentrog, H.W.; Dedousis, A.P. Mechanical Weed Control. In Soil Engineering; Dedousis, A.P., Bartzanas, T., Eds.; Springer Science and Business Media LLC: Berlin, Heidelberg, 2009; pp. 171–179. [Google Scholar] [CrossRef]
- Bergin, D. Weed Control Options for Coastal Sand Dunes: A Review; New Zealand Forest Research Institute LTD: Christchurch, New Zealand, 2011; pp. 5–13. [Google Scholar]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Gianessi, L.P. The increasing importance of herbicides in worldwide crop production. Pest Manag. Sci. 2013, 69, 1099–1105. [Google Scholar] [CrossRef]
- Carballido, J.; Rodríguez-Lizana, A.; Agüera, J.; Pérez-Ruiz, M. Field sprayer for inter and intra-row weed control: Performance and labor savings. Span. J. Agric. Res. 2013, 11, 642–651. [Google Scholar] [CrossRef] [Green Version]
- Respatie, D.W.; Yudono, P.; Purwantoro, A.; Trisyono, Y.A. The potential of Cosmos sulphureus Cav. extracts as a natural herbicides. AIP Conf. Proc. 2019, 2202, 020077. [Google Scholar] [CrossRef]
- Bachheti, A.; Sharma, A.; Bachheti, R.K.; Husen, A.; Pandey, D.P. Plant Allelochemicals and Their Various Applications. In Co-Evolution of Secondary Metabolites; Merillon, J.-M., Ramawat, K.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–25. [Google Scholar] [CrossRef]
- Mesnage, R.; Arno, M.; Costanzo, M.; Malatesta, M.; Séralini, G.-E.; Antoniou, M.N. Transcriptome profile analysis reflects rat liver and kidney damage following chronic ultra-low dose Roundup exposure. Environ. Health 2015, 14, 70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cattani, D.; Cesconetto, P.A.; Tavares, M.K.; Parisotto, E.B.; de Oliveira, P.A.; Rieg, C.E.H.; Leite, M.C.; Prediger, R.D.S.; Wendt, N.C.; Razzera, G.; et al. Developmental exposure to glyphosate-based herbicide and depressive-like behavior in adult offspring: Implication of glutamate excitotoxicity and oxidative stress. Toxicology 2017, 387, 67–80. [Google Scholar] [CrossRef] [PubMed]
- Motmainna, M.; Juraimi, A.S.; Uddin, M.K.; Asib, N.B.; Islam, A.K.M.M.; Ahmad-Hamdani, M.S.; Hasan, M. Phytochemical Constituents and Allelopathic Potential of Parthenium hysterophorus L. in Comparison to Commercial Herbicides to Control Weeds. Plants 2021, 10, 1445. [Google Scholar] [CrossRef]
- Swanson, N.L.; Leu, A.; Abrahamson, J.; Wallet, B. Genetically engineered crops, glyphosate and the deterioration of health in the United States of America. J. Org. Syst. 2014, 9, 6–37. [Google Scholar]
- Atwood, D.; Paisley-Jones, C. Pesticides Industry Sales and Usage: 2008–2012 Market Estimates; US Environmental Protection Agency: Washington, DC, USA, 2017; p. 20460.
- Al-Samarai, G.F.; Mahdi, W.M.; Al-Hilali, B.M. Reducing environmental pollution by chemical herbicides using natural plant derivatives–allelopathy effect. Ann. Agric. Environ. Med. 2018, 25, 449–452. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.I.; El-Sheikh, M.A.; Reigosa, M.J. Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa. Plants 2020, 9, 1228. [Google Scholar] [CrossRef] [PubMed]
- Weston, L.A.; Duke, S.O. Weed and Crop Allelopathy. Crit. Rev. Plant Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Elmetwally, I.; Shehata, S.; Abdelgawad, K.; Elkhawaga, F. Utilization of Phenolic Compounds Extracted from Agro-Industrial Wastes as Natural Herbicides. Egypt. J. Chem. 2022, 65, 265–274. [Google Scholar] [CrossRef]
- Macías, F.A.; Oliveros-Bastidas, A.; Marín, D.; Castellano, D.; Simonet, A.M.; Molinillo, J.M. Degradation studies on benzoxazinoids. Soil degradation dynamics of 2, 4-dihydroxy-7-methoxy-(2 H)-1, 4-benzoxazin-3 (4 H)-one (DIMBOA) and its degradation products, phytotoxic allelochemicals from Gramineae. J. Agric. Food Chem. 2004, 52, 6402–6413. [Google Scholar] [CrossRef] [Green Version]
- Bhadoria, P. Allelopathy: A natural way towards weed management. Am. J. Exp. Agric. 2011, 1, 7–20. [Google Scholar] [CrossRef]
- Zeng, R.S.; Mallik, A.U.; Luo, S.M. Allelopathy in Sustainable Agriculture and Forestry; Springer: Berlin, Germany, 2008; p. 412. [Google Scholar] [CrossRef]
- Afifi, H.S.; Marzooqi, H.M.A.; Tabbaa, M.J.; Arran, A.A. Phytochemicals of Conocarpus spp. as a Natural and Safe Source of Phenolic Compounds and Antioxidants. Molecules 2021, 26, 1069. [Google Scholar] [CrossRef]
- Li, Z.-H.; Wang, Q.; Ruan, X.; Pan, C.-D.; Jiang, D.-A. Phenolics and plant allelopathy. Molecules 2010, 15, 8933–8952. [Google Scholar] [CrossRef] [Green Version]
- Vyvyan, J.R. Allelochemicals as leads for new herbicides and agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Duke, S.O.; Rimando, A.M.; Baerson, S.R.; Scheffler, B.E.; Ota, E.; Belz, R.G. Strategies for the Use of Natural Products for Weed Management. J. Pestic. Sci. 2002, 27, 298–306. [Google Scholar] [CrossRef] [Green Version]
- Rezaie, F.S.; Yarnia, M. Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cynodon dactylon on germination and growth of safflower. J. Food Agric. Environ. 2008, 4, 516–521. [Google Scholar]
- Einhellig, F.A. Allelopathy: Current Status and Future Goals. In Allelopathy; American Chemical Society: Washington, DC, USA, 1994; Volume 582, pp. 1–24. [Google Scholar]
- Cheng, F.; Cheng, Z. Research Progress on the use of Plant Allelopathy in Agriculture and the Physiological and Ecological Mechanisms of Allelopathy. Front. Plant Sci. 2015, 6, 1020. [Google Scholar] [CrossRef] [PubMed]
- Rice, E.L. Allelopathic Growth Stimulation; John Wiley & Sons Inc.: New York, NY, USA, 1986; pp. 23–42. [Google Scholar]
- Kruse, M.; Strandberg, M.; Strandberg, B. Ecological Effects of Allelopathic Plants-A Review. NERI Technical Report, No. 315; Ministry of Environment and Energy/National Environmental Research Institute: Silkeborg, Denmark, 2000; p. 66. [Google Scholar]
- Weston, L.A. Utilization of Allelopathy for Weed Management in Agroecosystems. Agron. J. 1996, 88, 860–866. [Google Scholar] [CrossRef]
- Weston, L.A. History and Current Trends in the Use of Allelopathy for Weed Management. HortTechnology 2005, 15, 529–534. [Google Scholar] [CrossRef] [Green Version]
- Rice, E.L. Allelopathy—An Overview. In Chemically Mediated Interactions between Plants and Other Organisms; Cooper-Driver, G.A., Swain, T., Conn, E.E., Eds.; Springer US: Boston, MA, USA, 1985; pp. 81–105. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Abdullah, T.J. Allelopathic effect of four wild species on germination and seedling growth of Echinocloa crus-galli (L.) P. Beauv. Int. J. Adv. Res. 2014, 2, 287–294. [Google Scholar]
- Khalid, S.; Ahmad, T.; Shad, R. Use of allelopathy in agriculture. Asian J. Plant Sci. 2002, 1, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Scavo, A.; Restuccia, A.; Mauromicale, G. Allelopathy: Principles and Basic Aspects for Agroecosystem Control. In Sustainable Agriculture Reviews 28: Ecology for Agriculture; Gaba, S., Smith, B., Lichtfouse, E., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 47–101. [Google Scholar] [CrossRef]
- Abdel-Hameed, E.-S.S.; Bazaid, S.A.; Shohayeb, M.M.; El-Sayed, M.M.; El-Wakil, E.A. Phytochemical studies and evaluation of antioxidant, anticancer and antimicrobial properties of Conocarpus erectus L. growing in Taif, Saudi Arabia. Eur. J. Med. Plants 2012, 2, 93–112. [Google Scholar] [CrossRef]
- Javaid, A. Allelopathic interactions in mycorrhizal associations. Allelopath. J. 2007, 20, 29–42. [Google Scholar]
- Khurshid, S.; Shoaib, A.; Javaid, A.; Qaisar, U. Fungicidal Potential of Allelopathic Weed Cenchrus Pennisetiformis on Growth of Fusarium Oxysporum f. sp. Lycopersici Under Chromium Stress1. Planta Daninha 2016, 34, 453–463. [Google Scholar] [CrossRef] [Green Version]
- Bashir, M.; Uzair, M.; Chaudhry, B.A. A review of phytochemical and biological studies on Conocarpus erectus (Combretaceae). Pak. J. Pharm. Res. 2015, 1, 1–8. [Google Scholar] [CrossRef]
- Cruz-Ortega, R.; Anaya, A.L.; Hernández-Bautista, B.E.; Laguna-Hernández, G. Effects of Allelochemical Stress Produced by Sicyos deppei on Seedling Root Ultrastructure of Phaseolus vulgaris and Cucurbita ficifolia. J. Chem. Ecol. 1998, 24, 2039–2057. [Google Scholar] [CrossRef]
- Namkeleja, H.S.; Tarimo, M.T.; Ndakidemi, P.A. Allelopathic effects of Argemone mexicana to growth of native plant species. Am. J. Plant Sci. 2014, 5, 1336–1344. [Google Scholar] [CrossRef] [Green Version]
- Al-Humaid, A.; El-Mergawi, R.A. Herbicidal Activities of Seven Native Plants on the Germination and Growth of Phalaris minor, Echinochloa crusgalli, Portulaca oleracea and Lactuca sativa. J. Agric. Sci. Technol. 2014, 4, 843–852. [Google Scholar]
- Marchiosi, R.; dos Santos, W.D.; Constantin, R.P.; de Lima, R.B.; Soares, A.R.; Finger-Teixeira, A.; Mota, T.R.; de Oliveira, D.M.; Foletto-Felipe, M.d.P.; Abrahão, J.; et al. Biosynthesis and metabolic actions of simple phenolic acids in plants. Phytochem. Rev. 2020, 19, 865–906. [Google Scholar] [CrossRef]
- Ei-Khatib, A.A.; Hegazy, A.K.; Galal, H.K. Does allelopathy have a role in the ecology of Chenopodium murale? Ann. Bot. Fenn. 2004, 41, 37–45. [Google Scholar]
- Yarnia, M.; Benam, M.K.; Tabrizi, E.F.M. Allelopathic effects of sorghum extracts on Amaranthus retroflexus seed germination and growth. J. Food Agric. Environ. 2009, 7, 770–774. [Google Scholar]
- Dudai, N.; Poljakoff-Mayber, A.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential Oils as Allelochemicals and Their Potential Use as Bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Chotsaeng, N.; Laosinwattana, C.; Charoenying, P. Herbicidal Activities of Some Allelochemicals and Their Synergistic Behaviors toward Amaranthus tricolor L. Molecules 2017, 22, 1841. [Google Scholar] [CrossRef] [Green Version]
- Azizi, M.; Fuji, Y. Allelopathic effect of some medicinal plant substances on seed germination of Amaranthus retroflexus and Portulaca oleraceae. In I International Symposium on Improving the Performance of Supply Chains in the Transitional Economies 699; International Society for Horticultural Science: Leuven, Belgium, 2006; pp. 61–68. [Google Scholar] [CrossRef]
- Roshchina, V. Molecular-cellular mechanisms in pollen allelopathy. Allelopath. J. 2001, 8, 11–28. [Google Scholar]
- Einhellig, F.; Galindo, J.; Molinillo, J.; Cutler, H. Mode of allelochemical action of phenolic compounds. In Allelopathy: Chemistry and Mode of Action of Allelochemicals; Macias, F.A., Galindo, J.C.G., Molinillo, J.M.G., Eds.; CRC Press: Boca Raton, FL, USA, 2004; pp. 217–238. [Google Scholar] [CrossRef]
- Barkosky, R.R.; Einhellig, F.A.; Butler, J.L. Caffeic Acid-Induced Changes in Plant–Water Relationships and Photosynthesis in Leafy Spurge Euphorbia esula. J. Chem. Ecol. 2000, 26, 2095–2109. [Google Scholar] [CrossRef]
- Chou, C.-H.; Leu, L.-L. Allelopathic substances and interactions of Delonix regia (Boj) Raf. J. Chem. Ecol. 1992, 18, 2285–2303. [Google Scholar] [CrossRef] [PubMed]
- Haramoto, E.R.; Gallandt, E.R. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus retroflexus). Weed Sci. 2005, 53, 702–708. [Google Scholar] [CrossRef]
- Burgos, N.R.; Talbert, R.E. Differential activity of allelochemicals from Secale cereale in seedling bioassays. Weed Sci. 2000, 48, 302–310. [Google Scholar] [CrossRef]
Part | Concentration (%) | Petri Dishes | Pots | ||
---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | Shoot Length (cm) | Root Length (cm) | ||
Leaves | 0 | 4.83 ± 0.55 a | 2.97 ± 0.61 a | 4.96 ± 0.56 a | 2.67 ± 0.84 a |
25 | 1.62 ± 0.38 e | 0.72 ± 0.12 d | 3.51 ± 0.26 d | 1.44 ± 0.12 b | |
50 | 1.10 ± 0.82 ef | 0.44 ± 0.17 e | 3.96 ± 0.49 b | 1.24 ± 0.17 c | |
75 | 0.92 ± 0.57 f | 0.23 ± 0.14 g | 4.07 ± 0.49 b | 1.05 ± 0.14 d | |
100 | 0.57 ± 0.28 g | 0.22 ± 0.13 g | 3.84 ± 0.48 b | 0.56 ± 0.13 h | |
Roots | 0 | 4.83 ± 0.55 a | 2.97 ± 0.61 a | 4.96 ± 0.56 a | 2.67 ± 0.84 a |
25 | 3.31 ± 0.38 b | 2.90 ± 0.43 a | 3.45 ± 0.62 d | 0.97 ± 0.43 e | |
50 | 3.10 ± 0.40 b | 2.04 ± 0.52 b | 3.29 ± 0.90 e | 0.90 ± 0.52 f | |
75 | 2.60 ± 1.03 c | 1.51 ± 0.20 c | 3.64 ± 0.66 c | 0.73 ± 0.20 g | |
100 | 2.29 ± 0.86 de | 1.29 ± 0.29 c | 3.35 ± 0.73 e | 0.69 ± 0.29 g | |
Seeds | 0 | 4.83 ± 0.55 a | 2.97 ± 0.61 a | 4.96 ± 0.56 a | 2.67 ± 0.84 a |
25 | 2.22 ± 0.20 de | 0.54 ± 0.09 e | 3.29 ± 0.48 e | 1.50 ± 0.09 b | |
50 | 2.07 ± 0.18 de | 0.48 ± 0.08 e | 2.97 ± 0.71 e | 1.22 ± 0.08 c | |
75 | 1.55 ± 0.56 e | 0.34 ± 0.06 f | 2.67 ± 0.73 f | 0.95 ± 0.06 e | |
100 | 1.44 ± 0.62 e | 0.27 ± 0.02 g | 2.55 ± 1.93 f | 0.54 ± 0.02 h | |
F-values | Part | 95.73 | 89.60 | 13.95 | 1.55 |
Concentration | 210.58 | 101.12 | 27.27 | 45.92 | |
Part × Concentration | 6.39 | 8.42 | 2.08 | 0.66 | |
p-values | Part | 0.00 | 0.00 | 0.00 | 0.35 |
Concentration | 0.00 | 0.00 | 0.00 | 0.00 | |
Part × Concentration | 0.00 | 0.00 | 0.01 | 0.94 |
Part | Concentration (%) | Petri Dishes | Pots | ||
---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | Shoot Length (cm) | Root Length (cm) | ||
Leaves | 0 | 2.13 ± 0.11 a | 1.43 ± 0.13 a | 3.75 ± 0.43 a | 1.81 ± 0.17 a |
25 | 0.95 ± 0.02 c | 0.68 ± 0.09 c | 3.37 ± 0.56 b | 0.77 ± 0.08 c | |
50 | 0.72 ± 0.13 c | 0.35 ± 0.01 e | 3.43 ± 0.43 b | 0.7 ± 0.09 cd | |
75 | 0.36 ± 0.07 d | 0.26 ± 0.05 e | 2.96 ± 1.25 b | 0.61 ± 0.13 d | |
100 | 0.33 ± 0.03 d | 0.20 ± 0.02 e | 2.40 ± 1.66 c | 0.55 ± 0.17 d | |
Roots | 0 | 2.13 ± 0.11 a | 1.43 ± 0.13 a | 3.75 ± 0.43 a | 1.81 ± 0.17 a |
25 | 2.12 ± 0.28 a | 1.01 ± 0.15 b | 2.50 ± 0.61 c | 0.51 ± 0.06 de | |
50 | 2.12 ± 0.43 a | 1.11 ± 0.42 b | 2.63 ± 1.24 c | 0.5 ± 0.19 e | |
75 | 2.10 ± 0.35 a | 0.78 ± 0.13 c | 2.89 ± 1.46 b | 0.59 ± 0.2 d | |
100 | 2.09 ± 0.65 a | 0.74 ± 0.17 c | 2.74 ± 1.33 bc | 0.59 ± 0.19 d | |
Seeds | 0 | 2.13 ± 0.11 a | 1.43 ± 0.13 a | 3.75 ± 0.43 a | 1.81 ± 0.17 a |
25 | 1.37 ± 0.06 b | 0.54 ± 0.07 d | 3.81 ± 0.47 a | 1.23 ± 0.06 b | |
50 | 1.25 ± 0.05 b | 0.47 ± 0.06 d | 3.04 ± 1.28 b | 0.87 ± 0.42 c | |
75 | 1.17 ± 0.01 b | 0.45 ± 0.10 d | 2.32 ± 1.38 c | 0.52 ± 0.32 de | |
100 | 0.81 ± 0.29 c | 0.41 ± 0.17 d | 3.28 ± 0.48 b | 0.35 ± 0.15 f | |
F-values | Part | 243.21 | 56.47 | 1.81 | 3.88 |
Concentration | 65.58 | 99.81 | 5.29 | 105.40 | |
Part × Concentration | 17.99 | 5.76 | 2.07 | 4.74 | |
p-values | Part | 0.00 | 0.00 | 0.23 | 0.01 |
Concentration | 0.00 | 0.00 | 0.01 | 0.00 | |
Part × Concentration | 0.00 | 0.00 | 0.04 | 0.00 |
Part | Concentration (%) | Petri Dishes | Pots | ||
---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | Shoot Length (cm) | Root Length (cm) | ||
Leaves | 0 | 7.73 ± 0.97 a | 6.81 ± 1.05 a | 9.62 ± 0.43 a | 3.37 ± 0.46 a |
25 | 6.95 ± 0.79 a | 2.70 ± 0.59 a | 8.99 ± 0.95 a | 3.56 ± 0.59 a | |
50 | 3.14 ± 0.57 c | 1.58 ± 0.37 c | 9.18 ± 0.76 a | 3.18 ± 0.67 a | |
75 | 1.65 ± 0.48 d | 1.10 ± 0.28 d | 9.40 ± 1.37 a | 3.38 ± 0.78 a | |
100 | 1.54 ± 0.23 d | 0.58 ± 0.03 d | 9.03 ± 1.27 a | 3.04 ± 0.12 a | |
Roots | 0 | 7.73 ± 0.97 a | 6.81 ± 1.05 a | 9.62 ± 0.43 a | 3.37 ± 0.46 a |
25 | 8.35 ± 1.85 a | 6.66 ± 1.65 a | 9.44 ± 0.32 a | 3.06 ± 0.41 a | |
50 | 8.39 ± 1.76 a | 5.30 ± 1.56 a | 9.33 ± 0.67 a | 2.89 ± 0.38 a | |
75 | 7.73 ± 1.20 a | 5.10 ± 1.00 a | 8.74 ± 1.19 a | 2.78 ± 0.16 a | |
100 | 7.58 ± 0.92 a | 3.96 ± 0.72 a | 9.31 ± 0.95 a | 3.01 ± 0.51 a | |
Seeds | 0 | 7.73 ± 0.97 a | 6.81 ± 1.05 a | 9.62 ± 0.43 a | 3.37 ± 0.46 a |
25 | 7.42 ± 1.11 ab | 3.21 ± 0.91 ab | 10.38 ± 0.92 a | 2.5 ± 0.18 a | |
50 | 5.83 ± 0.92 b | 2.55 ± 0.72 b | 9.90 ± 0.95 a | 2.82 ± 0.82 a | |
75 | 5.83 ± 0.49 b | 1.84 ± 0.29 b | 10.02 ± 0.9 a | 2.41 ± 0.34 a | |
100 | 4.89 ± 0.58 b | 1.52 ± 0.38 b | 8.67 ± 1.33 a | 2.3 ± 0.34 a | |
F-values | Part | 233.83 | 143.86 | 3.00 | 9.36 |
Concentration | 79.39 | 120.17 | 1.70 | 3.06 | |
Part × Concentration | 28.11 | 9.56 | 1.83 | 1.23 | |
p-values | Part | 0.00 | 0.00 | 0.18 | 0.10 |
Concentration | 0.00 | 0.00 | 0.34 | 0.54 | |
Part × Concentration | 0.00 | 0.02 | 0.25 | 0.96 |
Part | Concentration (%) | Petri Dishes | Pots | ||
---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | Shoot Length (cm) | Root Length (cm) | ||
Leaves | 0 | 7.46 ± 0.76 b | 10.62 ± 3.05 b | 12.94 ± 0.93 c | 11.61 ± 1.31 a |
25 | 10.05 ± 1.14 a | 17.1 ± 1.43 a | 15.31 ± 0.75 b | 10.67 ± 0.08 a | |
50 | 6.58 ± 2.13 c | 6.43 ± 1.56 c | 16.51 ± 1 c | 9.95 ± 1.43 a | |
75 | 5.46 ± 1.66 c | 6.21 ± 0.99 c | 14.24 ± 1.69 b | 10.74 ± 0.77 a | |
100 | 2.47 ± 1.72 ef | 1.05 ± 0.75 g | 14.81 ± 1.58 b | 9.84 ± 1.70 a | |
Roots | 0 | 7.46 ± 0.76 b | 10.62 ± 0.75 b | 12.94 ± 0.93 c | 11.61 ± 1.31 a |
25 | 3.28 ± 0.96 ef | 4.26 ± 1.15 e | 13.28 ± 1.85 c | 10.80 ± 1.43 a | |
50 | 4.96 ± 0.85 d | 5.32 ± 1.44 d | 11.29 ± 1.15 d | 8.28 ± 0.80 a | |
75 | 2.89 ± 0.65 ef | 2.06 ± 1.73 f | 12.06 ± 1.59 c | 8.58 ± 1.51 a | |
100 | 2.14 ± 0.38 f | 1.73 ± 0.89 f | 11.38 ± 1.26 d | 9.25 ± 1.28 a | |
Seeds | 0 | 7.46 ± 0.76 b | 10.62 ± 0.75 b | 12.94 ± 0.93 c | 11.61 ± 1.31 a |
25 | 8.97 ± 2.51 a | 11.77 ± 0.97 b | 14.26 ± 1.37 b | 10.00 ± 0.85 a | |
50 | 7.69 ± 0.93 b | 6.45 ± 1.74 c | 15.11 ± 0.83 b | 10.00 ± 1.29 a | |
75 | 5.15 ± 1.85 d | 3.63 ± 1.65 e | 14.26 ± 1.33 b | 10.25 ± 1.33 a | |
100 | 3.47 ± 1.54 de | 3.32 ± 1.54 e | 14.44 ± 1.46 b | 10.00 ± 1.46 a | |
F-values | Part | 21.29 | 25.23 | 36.10 | 4.27 |
Concentration | 29.96 | 76.01 | 3.97 | 6.78 | |
Part × Concentration | 5.22 | 12.94 | 4.27 | 3.06 | |
p-values | Part | 0.00 | 0.00 | 0.00 | 0.22 |
Concentration | 0.00 | 0.00 | 0.00 | 0.13 | |
Part × Concentration | 0.00 | 0.00 | 0.00 | 0.95 |
Phenolic Acid | Leaves | Roots | Seeds | F-Value | p-Value |
---|---|---|---|---|---|
Gallic acid (ppm) | 153.963 ± 10.18 a | 15.912 ± 1.23 b | 19.668 ± 2.11 b | 33.89 | 0.001 |
Caffeic acid (ppm) | 69.135 ± 5.34 a | 8.394 ± 0.99 c | 43.219 ± 3.13 b | 21.13 | 0.000 |
Ferulic acid (ppm) | 39.801 ± 2.09 a | 43.313 ± 2.12 a | 16.784 ± 0.15 b | 30.11 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsharekh, A.; El-Sheikh, M.A.; Alatar, A.A.; Abdel-Salam, E.M. Natural Control of Weed Invasions in Hyper-Arid Arable Farms: Allelopathic Potential Effect of Conocarpus erectus against Common Weeds and Vegetables. Agronomy 2022, 12, 703. https://doi.org/10.3390/agronomy12030703
Alsharekh A, El-Sheikh MA, Alatar AA, Abdel-Salam EM. Natural Control of Weed Invasions in Hyper-Arid Arable Farms: Allelopathic Potential Effect of Conocarpus erectus against Common Weeds and Vegetables. Agronomy. 2022; 12(3):703. https://doi.org/10.3390/agronomy12030703
Chicago/Turabian StyleAlsharekh, Anfal, Mohamed A. El-Sheikh, Abdulrahman A. Alatar, and Eslam M. Abdel-Salam. 2022. "Natural Control of Weed Invasions in Hyper-Arid Arable Farms: Allelopathic Potential Effect of Conocarpus erectus against Common Weeds and Vegetables" Agronomy 12, no. 3: 703. https://doi.org/10.3390/agronomy12030703
APA StyleAlsharekh, A., El-Sheikh, M. A., Alatar, A. A., & Abdel-Salam, E. M. (2022). Natural Control of Weed Invasions in Hyper-Arid Arable Farms: Allelopathic Potential Effect of Conocarpus erectus against Common Weeds and Vegetables. Agronomy, 12(3), 703. https://doi.org/10.3390/agronomy12030703