Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer
Abstract
:1. Introduction
2. Results
2.1. Effect of Phenolic Compounds on the Germination of Allium cepa and Lactuca sativa
2.2. Effect of Phenolic Compounds on the Seedling Growth of Allium cepa and Lactuca sativa
3. Discussion
4. Materials and Methods
4.1. Plant and Substrate Sources
4.2. Phytotoxic Activity Test
4.3. Measured Indices to Quantify the Phytotoxic Effect
4.4. Statistical Analysis
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Macías, F.A.; Molinillo, J.M.; Varela, R.M.; Galindo, J.C. Allelopathy—A natural alternative for weed control. Pest Manag Sci. 2007, 63, 327–348. [Google Scholar] [CrossRef] [PubMed]
- Blanco, Y. La utilización de la alelopatía y sus efectos en diferentes cultivos agrícolas. Cultiv. Trop. 2006, 27, 5–16. Available online: https://www.redalyc.org/articulo.oa?id=193215825001 (accessed on 25 September 2021).
- Kuiters, A.T. Effects of phenolic acids on germination and early growth of herbaceous woodland plants. J. Chem. Ecol. 1989, 15, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Muller, C.H. The Role of Allelopathy and the Evolution of Vegetation. In Biochemical Coevolution; Oregon States University Press: Corvaillis, OR, USA, 1970; pp. 13–32. [Google Scholar]
- Einhelling, F.A. Allelopathy: Current Status and Future Goals. In Allelopathy: Organisms, Processes, and Applications; Inderjit, K.M., Dakshini, M., Einhelling, F.A., Eds.; American Chemical Society: Washington, DC, USA, 1995; pp. 1–24. [Google Scholar]
- Herranz, J.M.; Farrandis, P.; Copete, M.A.; Duro, E.M.; Zalacaín, A. Effect of allelopathic compounds produced by Cistus ladanifer on germination of 20 Mediterranean taxa. Plant Ecol. 2006, 184, 259–272. [Google Scholar] [CrossRef]
- Tena, C.; Santiago, A.d.R.; Osuna, D.; Sosa, T. Phytotoxic Activity of p-Cresol, 2-Phenylethanol and 3-Phenyl-1-Propanol, Phenolic Compounds Present in Cistus ladanifer L. Plants 2021, 10, 1136. [Google Scholar] [CrossRef]
- Chaves, N.; Alías, J.C.; Sosa, T. Phytotoxicity of Cistus ladanifer L.: Role of allelopathy. Allelopath. J. 2016, 38, 113–132. [Google Scholar]
- Chaves, N.; Sosa, T.; Alías, J.C.; Escudero, J.C. Identification and effects of interaction phytotoxic compounds from exudate of Cistus ladanifer leaves. J. Chem. Ecol. 2001, 27, 3. [Google Scholar]
- Chaves, N.; Sosa, T.; Escudero, J.C. Plant growth inhibiting flavonoids in exudate of Cistus ladanifer and in associated soils. J. Chem. Ecol. 2001, 27, 623–631. [Google Scholar] [CrossRef]
- Chaves, N.; Ríos, J.L.; Gutiérrez, C.; Escudero, J.C.; Olías, J.M. Analysis of secreted flavonoids of Cistus ladanifer L. by high- performance liquid chromatography-particle beam mass spectrometry. J. Chromatogr. A 1998, 799, 111–115. [Google Scholar] [CrossRef]
- Dias, A.S.; Costa, C.T.; Dias, L.S. Allelopathic Plants. XVII. Cistus Ladanifer L. Allelopath. J. 2005, 16, 1–30. [Google Scholar]
- Verdeguer, M.; Blázquez, M.A.; Boira, H. Chemical composition and herbicidal activity of the essential oil from a Cistus ladanifer L. population from Spain. Nat. Prod. Res. Former. Nat. Prod. Lett. 2012, 26, 1602–1609. [Google Scholar]
- Muller, C.H.; Hanawalt, R.B.; McPherson, J.K. Allelopathic control of herb growth in the fire cycle of Californian chaparral. Bull. Torrey Bot. Club 1968, 95, 225–231. [Google Scholar] [CrossRef]
- Malato-Belíz, J.; Escudero, J.C.; Buyolo, T. Application of traditional indices and of diversity to an ecotonal area of different biomes. In The State of the Art in Vegetation Science; International Association for Vegetation Science (IAVS): Toledo, Spain, 1992; Volume 75. [Google Scholar]
- Ruiz, J. Matorrales. Tratado del Medio Natural; Ramos, J.L., Ed.; Universidad Politécnica de Madrid: Madrid, Spain, 1981; Volume 2, pp. 501–541. [Google Scholar]
- López-González, G. Los Árboles y Arbustos de la Península Lbérica E Islas Baleares; Mundi-Prensa: Madrid, Spain, 2001. [Google Scholar]
- Regino, J.M.B.; Frazio, S.; Canno, M.M.; Venancio, F. Estudo-da Parte Volátil do Concreto de Esteva; Jornadas Nacionais de Plantas Aromáticas e Óleos Essenciais: Lisboa, Portugal, 1987; pp. 81–99. [Google Scholar]
- Guy, I.; Vernin, G. Minor Compounds from Cistus ladaniferus L. Essential Oil from Esterel. 2. Acids and Phenols. J. Essent Oil Res. 1996, 8, 455–462. [Google Scholar] [CrossRef]
- Warnecke, H.-U. Constituents of the Essential Oil of Cistus Ladaniferus (Acids and Phenols). Dragoco Rep. 1978, 9, 192–195. [Google Scholar]
- Proksch, P.; Gülz, P.-G.; Budzikiewicz, H. Phenylpropanoic Acid Esters in the Essential Oil of Cistus ladanifer L. (Cistaceae). Z. Naturforsch. 1980, 35, 201–203. [Google Scholar]
- Vernin, G. Mass spectra and Kovats indices of some phenylpropanoic acid esters found in the essential oil of Cistus ladaniferus L. J. Essent. Oil Res. 1993, 5, 563–569. [Google Scholar] [CrossRef]
- Tak, I.R.; Mohiuddin, D.; Ganai, B.A.; Chishti, M.Z.; Ahmad, F.; Dar, J.S. Phytochemical studies on the extract and essential oils of Artemisia dracunculus L. (Tarragon). Afr. J. Plant Sci. 2014, 8, 72–75. [Google Scholar]
- Fraternalea, D.; Flaminib, G.; Riccia, D. Essential Oil Composition and Antigermination Activity of Artemisia dracunculus (Tarragon). Nat. Prod. Commun. 2015, 10, 1469–1472. [Google Scholar] [CrossRef] [Green Version]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 8815, Estragole. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Estragole (accessed on 8 September 2021).
- ECHA. Search for Chemicals. 1-methoxy-4-(2-propenyl) benzene (140-67-0) Registered Substances Dossier. Available online: https://echa.europa.eu/ (accessed on 25 September 2021).
- National Center for Biotechnology Information. PubChem Compound Summary for CID 6943, 2-Isopropylphenol. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/2-Isopropylphenol (accessed on 8 September 2021).
- Oliveros-Bastidas, A.J.; Rodríguez-Hernández, D.C.; Calcagno-Pissarelli, M.P. Estandarización de un bioensayo para la búsqueda de compuestos fitotóxicos en extractos vegetales. Ciencia 2011, 19, 187–202. [Google Scholar]
- Kapanen, A.; Itavaara, M. Ecotoxicity tests for compost applications. Ecotoxicol. Environ. Saf. 2001, 49, 1–16. [Google Scholar] [CrossRef]
- Haugland, E.; Brandsaeter, L.O. Experiments on bioassay sensitivity in the study of allelopathy. J. Chem. Ecol. 1996, 22, 1845–1859. [Google Scholar] [CrossRef] [PubMed]
- Viña, S.; Ringuelet, J. Compuestos fenólicos. In Productos Naturales Vegetales; Edulp Integra la Red de Editoriales Universitarias Nacionales (REUN): Buenos Aires, Argentina, 2013. [Google Scholar]
- Dayan, F.; Cantrell, C.; Duke, S. Natural product in crop protection. Bioorganic Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Vyvyan, J. ChemInform Abstract: Allelochemicals as Leads for New Herbicides and Agrochemicals. Tetrahedron 2002, 58, 1631–1646. [Google Scholar] [CrossRef]
- Rice, E.L. Allelophatic; Academic Press: Orlando, FL, USA, 1984. [Google Scholar]
- Kuuluvaine, T. Gap disturbance, ground microtopography, and the regeneration dynamics of boreal coniferous forest in Finland: A review. Ann. Zool. Fenn. 1994, 31, 35–51. [Google Scholar]
- Ghimire, B.K.; Hwang, M.H.; Sacks, E.J.; Yu, C.Y.; Kim, S.H.; Chung, I.M. Screening of allelochemicals in Miscanthus sacchariflorus extracts and assessment of their effects on germination and seedling growth of common weeds. Plants 2020, 9, 1313. [Google Scholar] [CrossRef] [PubMed]
- Desai, S.M.; Govind, R.; Tabak, H.H. Development of quantitative structure—Activity relationships for predicting biodegradation kinetics. Environ. Toxicol. Chem. 1990, 9, 473–477. [Google Scholar] [CrossRef]
- Van Agteren, M.H.; Keuning, S.; Janssen, D. Handbook on Biodegradation and Biological Treatment of Hazardous Organic Compounds; Springer: Dordrecht, The Netherlands, 1998. [Google Scholar]
- Bhowmik, P.C.; Inderjit. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Protect. 2003, 22, 661–671. [Google Scholar]
- Bouhaouel, I.; Richard, G.; Fauconnier, M.L.; Ongena, M.; Franzil, L.; Gfeller, A.; Amara, H.S.; du Jardin, P. Identification of barley (Hordeum vulgare L. subsp. vulgare) root exudates allelochemicals, their autoallelopathic activity and against Bromus diandrus Roth. Germination. Agronomy 2019, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Li Liu, D.; An, M.; Johnson, I.R.; Lovett, J.V. Mathematical modeling of allelopathy. III. A model for curve-fitting allelochemical dose responses. Nonlinearity Biol. Toxicol. Med. 2003, 1, 37–50. [Google Scholar] [CrossRef] [Green Version]
- Calabrese, E.J. Paradigm lost, paradigm found: The re-emergence of hormesis as a fundamental dose response model in the toxicological sciences. Environ. Pollut. 2005, 138, 378–411. [Google Scholar] [CrossRef]
- Calabrese, E.J. Hormesis: Why it is important to toxicologists and toxicology. Environ. Toxicol. Chem. 2008, 27, 1451–1471. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.J. Hormesis is central to toxicology, pharmacology and risk assessment. Hum. Exp. Toxicol. 2010, 29, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Belz, R.G.; Cedergreen, N.; Duke, S.O. Herbicide hormesisecan it be useful in crop production? Weed Res. 2011, 51, 321–332. [Google Scholar] [CrossRef]
- Kaya, C.; Tuna, A.L.; Yokas, I. The role of plant hormones in plants under salinity stress. In Salinity and Water Stress: Improving Crop Efficiency; Ashraf, M., Ozturk, M., Athar, H.R., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 45–50. [Google Scholar]
- Yu, J.Q.; Ye, S.F.; Zhan, M.F.; Hu, W.H. Effects of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Syst. Ecol. 2003, 31, 129–139. [Google Scholar] [CrossRef]
- Belz, R.G.; Van der Laan, M.; Reinhardt, C.F.; Hurle, K. Soil degradation of parthenind does it contradict the role of allelopathy in the invasive weed Parthenium hysterophorus L.? J. Chem. Ecol. 2009, 35, 1137–1150. [Google Scholar] [CrossRef]
- Blum, U.; Shafer, S.R.; Lehman, M.E. Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: Concepts vs. an experimental model. Crit. Rev. Plant Sci. 1999, 18, 673–693. [Google Scholar] [CrossRef]
- Liu, D.L.; Lovett, J.V. Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J. Chem. Ecol. 1993, 19, 2231–2244. [Google Scholar] [CrossRef]
- Hura, T.; Dubert, F.; Dabkowska, T.; Stupnicka-Rodzynkiewicz, E.; Stoklosa, A.; Lepiarczyk, A. Quantitative analysis of phenolics in selected crop species and biological activity of these compound sevaluated by sensitivity of Echinochloa crus-Gall. Acta Physiol. Plant. 2006, 28, 537–545. [Google Scholar] [CrossRef]
- Inderjit; Nilsen, E.T. Bioassays and field studies for allelopathy in terrestrial plants: Progress and problems. Crit. Rev. Plant Sci. 2003, 22, 221–238. [Google Scholar] [CrossRef]
- Dakshini, K.M.M. Formononetin 7-O-glucoside (ononin), an additional inhibitor in soils associated with the weed, Pluchea lanceolata (DC.) C. B. Clarke (Asteraceae). J. Chem. Ecol. 1992, 18, 713–718. [Google Scholar]
- Lehman, M.E.; Blum, U.; Gerig, T.M. Simultaneous effects of ferulic and p-coumaric acids on cucumber leaf expansion in split-root experiments. J. Chem. Ecol. 1994, 20, 1773–1782. [Google Scholar] [CrossRef] [PubMed]
- Sosa, T.; Valares, C.; Alías, J.C.; Chaves, N. Persistence of flavonoids in Cistus ladanifer soils. Plant Soil 2010, 377, 51–63. [Google Scholar] [CrossRef]
- Macías, F.A.; Oliveros-Bastidas, A.; Marín, D.; Carrera, C.; Chinchilla, N.; Molinillo, J.M.G. Plant biocommunicators: Their phytotoxicity, degradation studies and potential use as herbicide models. Phytochem. Rev. 2007, 7, 179–194. [Google Scholar] [CrossRef]
- Lehman, M.E.; Blum, U. Influence of pretreatment stresses on inhibitory effects of ferulic acid, an allelopathic phenolic acid. J. Chem. Ecol. 1999, 25, 1517–1529. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Wu, F.; Liu, B. Effect of cinnamic acid on physiological chahracteristics of cucumber seedlings under salt stress. Front. Agric. China 2007, 1, 58–61. [Google Scholar] [CrossRef]
- Abbas, T.; Nadeem, M.A.; Tanveer, A.; Chauhan, B.S. Can hormesis of plant-released phytotoxins be used to boost and sustain crop production? Crop Prot. 2017, 93, 69–76. [Google Scholar] [CrossRef]
- Cheema, Z.A.; Khaliq, A.; Akhtar, S. Use of sorgaab (sorghum water extract) as a natural weed inhibitor in spring mungbean. Int. J. Agric. Biol. 2001, 3, 515–518. [Google Scholar]
- Ashraf, M.; Akhlaq, M. Effects of sorghum leaves, roots and stems water extract, hand weeding and herbicide on weeds suppression and yield of wheat. Sarhad J. Agric. 2007, 23, 321–327. [Google Scholar]
- Jamil, M.; Cheema, Z.A.; Mushtaq, M.N.; Farooq, M.; Cheema, M.A. Alternative control of wild oat and canary grass in wheat fields by allelopathic plant water extracts. Agron. Sustain. Dev. 2009, 29, 475–482. [Google Scholar] [CrossRef]
- Khan, E.A.; Khakwani, A.A.; Ghazanfarullah, A. Effects of allelopathic chemicals extracted from various plant leaves on weed control and wheat crop productivity. Pak. J. Bot. 2015, 47, 735–740. [Google Scholar]
- EMEA/HMPC/137212/2005, Committee on Herbal Medicinal Products (HMPC). Public Statement on the Use of Herbal Medicinal Products Containing Estragole. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2010/04/WC500089960.pdf (accessed on 20 September 2021).
- Dorota, S.; Urszula, K.; Renata, B.; Agnieszka, G. Allelochemicals as Bioherbicides-Present and Perspectives. Herbicides-Current Research and Case Studies in Use; Price, A.J., Kelton, J.A., Eds.; IntechOpen: London, UK, 2013; pp. 517–542. Available online: https://www.intechopen.com/chapters/44466 (accessed on 26 September 2021). [CrossRef] [Green Version]
- Belz, R.G.; Hurle, K.; Duke, S.O. Dose-response- A challenge for allelopathy? Nonlinearity Biol. Toxicol. Med. 2005, 3, 173–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Inoue, M.; Nishimura, H.; Mizutani, J.; Tsuzuki, E. Interactions of trans-cinnamic acid, its related phenolic allelochemicals, and abscisic acid in seedling growth and seed germination of lettuce. J. Chem. Ecol. 1993, 19, 1775–1787. [Google Scholar] [CrossRef] [PubMed]
- Chiapusio, G.; Sánchez, M.A.; Reigosa, J.M.; González, L.; Pellissier, F. Do germination indices adequately reflect allelochemical effects on the germination process? J. Chem. Ecol. 1997, 23, 11. [Google Scholar] [CrossRef]
- Wang, W. Literature review on higher plants for toxicity testing. Water Air Soil Poll. 1991, 59, 381–400. [Google Scholar] [CrossRef]
- International Organization for Standarization (ISO). Soil Quality-Determination of the Effects of Pollutants on Soil Flora. Part 1. Method for the Measurement of Inhibition of Root Growth; ISO: Geneva, Switzerland, 1993; p. 9. [Google Scholar]
- Organization of Economical Cooperation and Development (OECD). Terrestrial Plants, Growth Test; Guideline for Testing of Chemicals 208; OECD: Paris, France, 1984; p. 15. [Google Scholar]
- Arango, M.C.; Ringuelet, J.; Viña, S. Intervención de los Compuestos Secundarios en las Interacciones Biológicas. In Productos Naturales Vegetales; Edulp integra la Red de Editoriales Universitarias Nacionales (REUN): Buenos Aires, Argentina, 2013. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Requesón, E.; Osuna, D.; Santiago, A.d.R.; Sosa, T. Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer. Agronomy 2022, 12, 1139. https://doi.org/10.3390/agronomy12051139
Requesón E, Osuna D, Santiago AdR, Sosa T. Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer. Agronomy. 2022; 12(5):1139. https://doi.org/10.3390/agronomy12051139
Chicago/Turabian StyleRequesón, Elena, Dolores Osuna, Ana del Rosario Santiago, and Teresa Sosa. 2022. "Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer" Agronomy 12, no. 5: 1139. https://doi.org/10.3390/agronomy12051139
APA StyleRequesón, E., Osuna, D., Santiago, A. d. R., & Sosa, T. (2022). Evaluation of the Activity of Estragole and 2-Isopropylphenol, Phenolic Compounds Present in Cistus ladanifer. Agronomy, 12(5), 1139. https://doi.org/10.3390/agronomy12051139