Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples Collection and Handling
2.2. Isolation of Drought-Tolerant Rhizobacteria
2.3. Exopolysaccharide Production
2.4. Indole Acetic Acid (IAA) Production
2.5. Growth Potential of EPS-Producing Rhizobacterial Strains under PEG-6000-Induced Drought Stress
2.6. The Effect of PEG-Induced Drought Stress on Selected Strains’ Growth, EPS Production, and IAA Production Ability
2.7. Rhizobacterial Strains with Plant Growth-Promoting Properties
2.8. Screening of Wheat Varieties against Drought Stress
2.9. In Vitro Jar Trial for Plant Growth Promotion of Wheat Using EPS-Producing Rhizobacterial Strains
2.10. Identification of EPS-Producing Rhizobacterial Strains
2.11. Statistical Analysis
3. Results
3.1. Isolation of Drought-Tolerant, EPS-Producing Rhizobacteria
3.2. Quantification of Exopolysaccharides and IAA Production by Rhizobacterial Isolates
3.3. Growth Potential of EPS-Producing Rhizobacterial Strains under PEG-6000-Induced Drought Stress
3.4. Effect of PEG-Induced Drought Stress on Growth, EPS Production, and IAA Production Ability of Selected Strains
3.5. Plant Growth-Promoting Traits of Selected Rhizobacterial Strains
3.6. Screening of Wheat Varieties against Drought Stress
3.7. In Vitro Jar Trial for Plant Growth Promotion of Wheat Using EPS-Producing Rhizobacterial Strains
3.8. Identification of Selected Rhizobacterial Isolates
4. Discussion
4.1. Screening of Wheat Varieties under Drought Stress
4.2. Screening of EPS-Producing Plant Growth-Promoting Rhizobacteria under Drought Stress
4.3. Impact of EPS-Producing PGPR on Wheat Growth under Drought Stress
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fahad, S.; Bajwa, A.; Nazir, U.; Anjum, S.A.; Farooq, A.; Zohaib, A.; Sadia, S.; Nasim, W.; Adkins, S.; Saud, S.; et al. Crop Production under Drought and Heat Stress: Plant Responses and Management Options. Front. Plant Sci. 2017, 8, 1147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, S.M.F.; Karim, Z. World’s Demand for Food and Water: The Consequences of Climate Change. In Desalination—Challenges and Opportunities; IntechOpen: London, UK, 2020. [Google Scholar]
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a cultivated planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seleiman, M.F.; Al-Suhaibani, N.; Ali, N.; Akmal, M.; Alotaibi, M.; Refay, Y.; Dindaroglu, T.; Abdul-Wajid, H.H.; Battaglia, M.L. Drought Stress Impacts on Plants and Different Approaches to Alleviate Its Adverse Effects. Plants 2021, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Fathi, A.; Tari, D.B. Effect of Drought Stress and its Mechanism in Plants. Int. J. Life Sci. 2016, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.; Davies, W.; Downey, C. ADB Climate Risk Country Profile: Azerbaijan. Asian Development Bank. 2021. Available online: http://hdl.handle.net/11540/13785 (accessed on 3 May 2022).
- Fleury, D.; Jefferies, S.; Kuchel, H.; Langridge, P. Genetic and genomic tools to improve drought tolerance in wheat. J. Exp. Bot. 2010, 61, 3211–3222. [Google Scholar] [CrossRef] [Green Version]
- Panda, D.; Mishra, S.S.; Behera, P.K. Drought Tolerance in Rice: Focus on Recent Mechanisms and Approaches. Rice Sci. 2021, 28, 119–132. [Google Scholar] [CrossRef]
- Zargar, S.M.; Mir, R.A.; Ebinezer, L.B.; Masi, A.; Hami, A.; Manzoor, M.; Salgotra, R.K.; Sofi, N.R.; Mushtaq, R.; Rohila, J.S.; et al. Physiological and Multi-Omics Approaches for Explaining Drought Stress Tolerance and Supporting Sustainable Production of Rice. Front. Plant Sci. 2022, 12, 3603. [Google Scholar] [CrossRef]
- Lamers, J.; van der Meer, T.; Testerink, C. How Plants Sense and Respond to Stressful Environments. Plant. Physiol. 2020, 182, 1624–1635. [Google Scholar] [CrossRef] [Green Version]
- Zia, R.; Nawaz, M.S.; Siddique, M.J.; Hakim, S.; Imran, A. Plant survival under drought stress: Implications, adaptive responses, and integrated rhizosphere management strategy for stress mitigation. Microbiol. Res. 2020, 242, 126626. [Google Scholar] [CrossRef]
- Yang, F.; Li, H.; Wang, S.; Zhao, F.; Fang, F.; Guo, J.; Long, M.; Shen, Y. Differences in exopolysaccharides of three microbial aggregates. Environ. Technol. 2021, 1–13. [Google Scholar] [CrossRef]
- Nadeem, S.M.; Ahmad, M.; Tufail, M.A.; Asghar, H.N.; Nazli, F.; Zahir, Z.A. Appraising the potential of EPS-producing rhizobacteria with ACC-deaminase activity to improve growth and physiology of maize under drought stress. Physiol. Plant. 2020, 172, 463–476. [Google Scholar] [CrossRef]
- Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; et al. A Review of the Microbial Production of Bioactive Natural Products and Biologics. Front. Microbiol. 2019, 10, 1404. [Google Scholar] [CrossRef] [Green Version]
- Molina-Santiago, C.; de Vicente, A.; Romero, D. Bacterial extracellular matrix as a natural source of biotechnologically multivalent materials. Comput. Struct. Biotechnol. J. 2021, 19, 2796–2805. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef] [Green Version]
- Angelin, J.; Kavitha, M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Meena, K.K.; Sorty, A.M.; Bitla, U.M.; Choudhary, K.; Gupta, P.; Pareek, A.; Singh, D.P.; Prabha, R.; Sahu, P.K.; Gupta, V.K.; et al. Abiotic Stress Responses and Microbe-Mediated Mitigation in Plants: The Omics Strategies. Front. Plant Sci. 2017, 8, 172. [Google Scholar] [CrossRef]
- Bibi, A.; Xiong, Y.; Rajoka, M.S.R.; Mehwish, H.M.; Radicetti, E.; Umair, M.; Shoukat, M.; Khan, M.K.I.; Aadil, R.M. Recent Advances in the Production of Exopolysaccharide (EPS) from Lactobacillus spp. and Its Application in the Food Industry: A Review. Sustainability 2021, 13, 12429. [Google Scholar] [CrossRef]
- Roberson, E.B.; Firestone, M.K. Relationship between Desiccation and Exopolysaccharide Production in a Soil Pseudomonas sp. Appl. Environ. Microbiol. 1992, 58, 1284–1291. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.-T.; Nguyen, T.-T.; Bui, D.-C.; Hong, P.-T.; Hoang, Q.-K.; Nguyen, H.-T. Exopolysaccharide production by lactic acid bacteria: The manipulation of environmental stresses for industrial applications. AIMS Microbiol. 2020, 6, 451–469. [Google Scholar] [CrossRef]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.A.; Sarwar, G.; Haque, E.U.; et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 2020, 10, 18013. [Google Scholar] [CrossRef]
- Marzan, L.W.; Hossain, M.; Mina, S.A.; Akter, Y.; Chowdhury, A.M.M.A. Isolation and biochemical characterization of heavy-metal resistant bacteria from tannery effluent in Chittagong city, Bangladesh: Bioremediation viewpoint. Egypt J. Aquat. Res. 2017, 43, 65–74. [Google Scholar] [CrossRef]
- Ansari, R.A.; Qureshi, A.A.; Ramteke, D.S. Isolation and characterization of heavy-metal resistant microbes from Industrial soil. Int. J. Environ. Sci. 2016, 6, 100–110. [Google Scholar]
- Tallgren, A.H.; Airaksinen, U.; von Weissenberg, R.; Ojamo, H.; Kuusisto, J.; Leisola, M. Exopolysaccharide-Producing Bacteria from Sugar Beets. Appl. Environ. Microbiol. 1999, 65, 862–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verhoef, R.; de Waard, P.; Schols, H.A.; Siika-Aho, M.; Voragen, A.G. Methylobacterium sp. isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide. Carbohydr. Res. 2003, 338, 1851–1859. [Google Scholar] [CrossRef]
- De Vuyst, L.; Vanderveken, F.; van de Ven, S.; Degeest, B. Production by and isolation of exopolysaccharides from Streptococcus thermophilus grown in milk medium and evidence for their growth associated biosynthesis. J. Appl. Microbiol. 1998, 84, 1059–1068. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bric, J.M.; Bostock, R.M.; Silverstone, S.E. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Appl. Environ. Microbiol. 1991, 57, 535–538. [Google Scholar] [CrossRef] [Green Version]
- Simons, M.; van der Bij, A.J.; Brand, I.; de Weger, L.A.; Wijffelman, A.C.; Lugtenberg, B.J. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 1996, 9, 600–607. [Google Scholar] [CrossRef]
- Fasim, F.; Ahmed, N.; Parsons, R.; Gadd, G.M. Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol. Lett. 2002, 213, 1–6. [Google Scholar] [CrossRef]
- Pikovskaya, R.I. Mobilization of phosphorus in soil connection with the vital activity of some microbial species. Microbiologiya 1948, 17, 362–370. [Google Scholar]
- Lorck, H. Production of Hydrocyanic Acid by Bacteria. Physiol. Plant. 1948, 1, 142–146. [Google Scholar] [CrossRef]
- Gairola, K.C.; Nautiyal, A.R.; Dwivedi, A.K. Effect of temperatures and germination media on seed germination of Jatropha Curcas Linn. Adv. Biores. 2011, 2, 66–71. [Google Scholar]
- Iqbal, Z.; Ahmad, M.; Jamil, M.; Akhtar, M.F. Appraising the potential of integrated use of Bacillus strains for improving wheat growth. Int. J. Agric. Bot. 2020, 24, 1439–1448. [Google Scholar]
- Benson, H.J. Microbiological Application—A Lab Manual Ingeneral Microbiology, 5th ed.; W.C. Brown Publishers: Dubuque, IA, USA, 1990. [Google Scholar]
- Hussain, S.; Devers-Lamrani, M.; El Azhari, N.; Martin-Laurent, F. Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 2010, 22, 637–650. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Tamura, K.; Nei, M.; Kumar, S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004, 101, 11030–11035. [Google Scholar] [CrossRef] [Green Version]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book International Co.: Singapore, 1997; pp. 204–227. [Google Scholar]
- Khan, A.; Singh, A.V. Multifarious effect of ACC deaminase and EPS producing Pseudomonas sp. and Serratia marcescens to augment drought stress tolerance and nutrient status of wheat. World J. Microbiol. Biotechnol. 2021, 37, 198. [Google Scholar] [CrossRef]
- Harris, D.; Tripathi, R.S.; Joshi, A. On-farm seed priming to improve crop establishment and yield in dry direct-seeded rice. In Direct Seeding: Research Strategies and Opportunities; Pandey, S.M., Mortimer, L., Wade, T.P., Tuong, K., Lopes, K., Hardy, B., Eds.; International Research Institute: Manila, Philippines, 2002; pp. 231–240. [Google Scholar]
- Blunk, S.; Hoffer, J.; Brosda, S.; De Heer, M.I.; Sturrock, C.J.; Mooney, S.J. Impact of fruit orientation and pelleting material on water uptake and germination performance in artificial substrate for sugar beet. PLoS ONE 2020, 15, e0232875. [Google Scholar] [CrossRef]
- Liu, H.; Able, A.J.; Able, J.A. Transgenerational Effects of Water-Deficit and Heat Stress on Germination and Seedling Vigour—New Insights from Durum Wheat microRNAs. Plants 2020, 9, 189. [Google Scholar] [CrossRef] [Green Version]
- Smolikova, G.; Leonova, T.; Vashurina, N.; Frolov, A.; Medvedev, S. Desiccation Tolerance as the Basis of Long-Term Seed Viability. Int. J. Mol. Sci. 2020, 22, 101. [Google Scholar] [CrossRef]
- Nazli, F.; Wang, X.; Ahmad, M.; Hussain, A.; Bushra; Dar, A.; Nasim, M.; Jamil, M.; Panpluem, N.; Mustafa, A. Efficacy of Indole Acetic Acid and Exopolysaccharides-Producing Bacillus safensis Strain FN13 for Inducing Cd-Stress Tolerance and Plant Growth Promotion in Brassica juncea (L.). Appl. Sci. 2021, 11, 4160. [Google Scholar] [CrossRef]
- Primo, E.; Bogino, P.; Cossovich, S.; Foresto, E.; Nievas, F.; Giordano, W. Exopolysaccharide II Is Relevant for the Survival of Sinorhizobium meliloti under Water Deficiency and Salinity Stress. Molecules 2020, 25, 4876. [Google Scholar] [CrossRef]
- Morcillo, R.; Manzanera, M. The Effects of Plant-Associated Bacterial Exopolysaccharides on Plant Abiotic Stress Tolerance. Metabolites 2021, 11, 337. [Google Scholar] [CrossRef]
- Ali, S.Z.; Sandhya, V.; Rao, L.V. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol. 2013, 64, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H. Plant–microbe interactions in plants and stress tolerance. In Plant Life Under Changing Environment; Academic Press: Cambridge, CA, USA, 2020; pp. 355–396. [Google Scholar]
- Yasmin, H.; Naeem, S.; Bakhtawar, M.; Jabeen, Z.; Nosheen, A.; Naz, R.; Keyani, R.; Mumtaz, S.; Hassan, M.N. Halotolerant rhizobacteria Pseudomonas pseudoalcaligenes and Bacillus subtilis mediate systemic tolerance in hydroponically grown soybean (Glycine max L.) against salinity stress. PLoS ONE 2020, 15, e0231348. [Google Scholar] [CrossRef]
- Vijay, R.; Ravichandran, V.; Boominathan, P. Screening of rice apoplast associated endophytic bacterial isolates for moisture stress tolerance and plant growth promoting traits. Madras Agric. J. 2019, 106, 5–11. [Google Scholar]
- Ahmad, M.; Zahir, Z.A.; Nazli, F.; Akram, F.; Arshad, M.; Khalid, M. Effectiveness of halo-tolerant, auxin producing Pseudomonas and Rhizobium strains to improve osmotic stress tolerance in mung bean (Vigna radiata L.). Braz. J. Microbiol. 2013, 44, 1341–1348. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, D.; Gupta, A.; Mohapatra, S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana. World J. Microbiol. Biotechnol. 2019, 35, 90. [Google Scholar] [CrossRef]
- Abaid-Ullah, M.; Nadeem, M.; Hassan, M.; Ganter, J.; Muhammad, B.; Nawaz, K.; Shah, A.S.; Hafeez, F.Y. Plant growth promoting rhizobacteria: An alternate way to improve yield and quality of wheat (Triticum aestivum). Int. J. Agric. Biol. 2015, 17, 51–60. [Google Scholar]
- Intorne, A.C.; de Oliveira, M.V.V.; Lima, M.L.; da Silva, J.F.; Olivares, F.L.; Filho, G.A.D.S. Identification and characterization of Gluconacetobacter diazotrophicus mutants defective in the solubilization of phosphorus and zinc. Arch. Microbiol. 2009, 191, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, Z.M.; Ahmad, M.; Jamil, M.; Asad, S.A.; Hafeez, F. Bacillus strains as potential alternate for zinc biofortification of maize grains. Int. J. Agric. Biol. 2020, 20, 1779–1786. [Google Scholar]
- Agbodjato, N.A.; Noumavo, P.A.; Baba-Moussa, F.; Salami, H.A.; Sina, H.; Sèzan, A.; Bankolé, H.; Adjanohoun, A.; Baba-Moussa, L. Characterization of Potential Plant Growth Promoting Rhizobacteria Isolated from Maize (Zea mays L.) in Central and Northern Benin (West Africa). Appl. Environ. Soil Sci. 2015, 2015, 901656. [Google Scholar] [CrossRef] [Green Version]
- Crowley, D.E. Microbial siderophores in the plant rhizospheric. In Iron Nutrition in Plants and Rhizospheric Microorganisms; Barton, L.L., Abadía, J., Eds.; Springer: Dordrecht, The Netherlands, 2006; pp. 169–198. [Google Scholar]
- Hassan, M.; McInroy, J.; Kloepper, J. The Interactions of Rhizodeposits with Plant Growth-Promoting Rhizobacteria in the Rhizosphere: A Review. Agriculture 2019, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, N.; Mumtaz, K.; Akhtar, N.; Yasmin, H.; Sayyed, R.; Khan, W.; Enshasy, H.; Dailin, D.; Elsayed, E.; Ali, Z. Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability 2020, 12, 8876. [Google Scholar] [CrossRef]
- Lin, Y.; Watts, D.B.; Kloepper, J.W.; Feng, Y.; Torbert, H.A. Influence of Plant Growth-Promoting Rhizobacteria on Corn Growth under Drought Stress. Commun. Soil Sci. Plant. Anal. 2019, 51, 250–264. [Google Scholar] [CrossRef]
- Asghari, B.; Khademian, R.; Sedaghati, B. Plant growth promoting rhizobacteria (PGPR) confer drought resistance and stimulate biosynthesis of secondary metabolites in pennyroyal (Mentha pulegium L.) under water shortage condition. Sci. Hortic. 2019, 263, 109132. [Google Scholar] [CrossRef]
- Rani, F.M.; Rahman, N.I.A.; Ismail, S.; Alattraqchi, A.G.; Cleary, D.; Clarke, S.C.; Yeo, C.C. Acinetobacter spp. Infections in Malaysia: A Review of Antimicrobial Resistance Trends, Mechanisms and Epidemiology. Front. Microbiol. 2017, 8, 2479. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yu, S.M. Complete Genome Sequence of Chryseobacterium sp. Strain NBC 122, a Plant Growth-Promoting Bacterium Isolated from Freshwater. Microbiol. Resour. Announc. 2020, 9. [Google Scholar] [CrossRef] [Green Version]
- Sharath, S.; Triveni, S.; Nagaraju, Y.; Latha, P.C.; Vidyasagar, B. The Role of Phyllosphere Bacteria in Improving Cotton Growth and Yield Under Drought Conditions. Front. Agron. 2021, 3, 466. [Google Scholar] [CrossRef]
- Leontidou, K.; Genitsaris, S.; Papadopoulou, A.; Kamou, N.; Bosmali, I.; Matsi, T.; Madesis, P.; Vokou, D.; Karamanoli, K.; Mellidou, I. Plant growth promoting rhizobacteria isolated from halophytes and drought-tolerant plants: Genomic characterisation and exploration of phyto-beneficial traits. Sci. Rep. 2020, 10, 14857. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, Q.; Hou, J.; Tu, C.; Luo, Y.; Christie, P. Whole genome analysis of halotolerant and alkalotolerant plant growth-promoting rhizobacterium Klebsiella sp. D5A. Sci. Rep. 2016, 6, 26710. [Google Scholar] [CrossRef] [PubMed]
Rhizobacterial Isolate | Production of EPS | Growth (OD600) | Rhizobacterial Isolate | Production of EPS | Growth (OD600) |
---|---|---|---|---|---|
LEW1 | − | 0.95 ± 0.02 | LEW16 * | + | 1.72 ± 0.04 |
LEW2 | − | 0.89 ± 0.02 | LEW17 | − | 0.89 ± 0.03 |
LEW3 * | + | 1.62 ± 0.02 | LEW18 | − | 0.96 ± 0.03 |
LEW4 * | + | 0.69 ± 0.02 | LEW19 * | + | 0.81 ± 0.03 |
LEW5 | − | 0.76 ± 0.02 | LEW20 | − | 0.76 ± 0.02 |
LEW6 | − | 0.83 ± 0.04 | LEW21 * | + | 0.74 ± 0.02 |
LEW7 | − | 0.94 ± 0.04 | LEW22 | − | 0.86 ± 0.04 |
LEW8 | − | 0.97 ± 0.03 | LEW23 * | + | 0.94 ± 0.03 |
LEW9 * | + | 1.36 ± 0.03 | LEW24 | − | 0.87 ± 0.03 |
LEW10 | − | 0.78 ± 0.02 | LEW25 | − | 0.77 ± 0.02 |
LEW11 * | + | 0.86 ± 0.04 | LEW26 * | + | 0.85 ± 0.03 |
LEW12 | − | 1.05 ± 0.03 | LEW27 | − | 0.74 ± 0.03 |
LEW13 | − | 0.67 ± 0.02 | LEW28 * | + | 1.27 ± 0.06 |
LEW14 | − | 0.75 ± 0.04 | LEW29 | − | 0.89 ± 0.02 |
LEW15 | − | 0.93 ± 0.03 | LEW30 | − | 0.73 ± 0.04 |
Rhizobacterial Isolate | EPS Production (µg mL−1) | IAA Production | |
---|---|---|---|
Without L-Tryp | With L-Tryp | ||
LEW3 * | 72.4 ± 0.37 | 3.82 ± 0.115 | 11.57 ± 1.213 |
LEW4 | 45.4 ± 0.48 | ND | ND |
LEW9 * | 63.5 ± 0.56 | 2.76 ± 0.095 | 12.71 ± 1.271 |
LEW11 | 57.8 ± 0.38 | 2.71 ± 0.062 | 6.15 ± 0.215 |
LEW16 * | 81.3 ± 0.84 | 8.36 ± 0.137 | 10.29 ± 1.138 |
LEW19 | 29.8 ± 0.65 | 1.84 ± 0.125 | 4.17 ± 0.218 |
LEW21 | 32.4 ± 0.61 | ND | ND |
LEW23 | 10.8 ± 0.57 | 1.79 ± 0.136 | 3.56 ± 0.219 |
LEW26 | 42.3 ± 0.73 | 1.52 ± 0.073 | 5.14 ± 0.251 |
LEW28 * | 86.2 ± 0.98 | 4.74 ± 0.106 | 13.17 ± 1.236 |
Strains | OD600 for Growth | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
24 h | 48 h | 72 h | ||||||||||
0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | |
LEW3 | 0.66 bc | 0.55 de | 0.44 f | 0.42 f | 0.88 ab 0.95 a | 0.73 de | 0.67 e | 0.53 g | 0.98 b–d | 0.85 e–g | 0.76 gh | 0.63 i |
LEW9 | 0.74 ab | 0.65 dc | 0.51 ef | 0.46 ef | 0.79 b–d | 0.72 de | 0.54 g | 1.22 a | 1.03 bc | 0.81 fg | 0.66 hi | |
LEW16 | 0.62 cd | 0.51 ef | 0.46 ef | 0.42 f | 0.84 a–c | 0.70 de | 0.66 ef | 0.56 fg | 1.07 b | 0.91 d–f | 0.76 gh | 0.60 i |
LEW28 | 0.78 a | 0.65 bc | 0.42 f | 0.42 f | 0.93 a | 0.76 c–e | 0.67 ef | 0.55 g | 0.94 c–e | 1.00 b–d | 0.79 g | 0.61 i |
HSD (p ≤ 0.05) | 0.0951 | 0.1056 | 0.1067 | |||||||||
EPS Production | ||||||||||||
Strains | 24 h | 48 h | 72 h | |||||||||
0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | |
LEW3 | 68.3 b–d | 64.3 c–e | 49.3 gh | 34.0 j | 85.7 ab | 73.0 c–e | 55.7 gh | 43.3 i | 101.7 c | 81.3 ef | 65.7 hi | 50.7 k |
LEW9 | 77.7 a | 71.7 a–c | 54.7 fg | 44.3 hi | 94.0 a | 78.3 b–d | 64.7 e–g | 52.3 hi | 122.0 a | 107.3 bc | 79.7 fg | 60.3 ij |
LEW16 | 66.0 b–e | 59.3 ef | 49.7 gh | 36.3 j | 82.0 bc | 71.7 d–f | 61.7 g | 46.0 i | 99.0 cd | 90.7 de | 71.3 gh | 52.3 jk |
LEW28 | 72.0 ab | 61.3 d–f | 51.3 gh | 41.3 ij | 86.7 ab | 72.3 d–f | 63.3 fg | 49.7 hi | 112.0 b | 102.7 bc | 75.3 fg | 56.3 i–k |
HSD (p ≤ 0.05) | 7.65 | 9.15 | 9.51 | |||||||||
IAA Production | ||||||||||||
Strains | 24 h | 48 h | 72 h | |||||||||
0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | 0 | 3% | 6% | 9% | |
LEW3 | 17.3 c | 15.7 cd | 7.67 f | 1.43 g | 36.3 bc | 34.0 cd | 19.3 fg | 2.37 h | 47.7 a–d | 46.7 b–d | 24.0 f | 4.40 g |
LEW9 | 24.7 a | 22.3 ab | 13.3 de | 2.33 g | 44.3 a | 40.3 ab | 23.3 f | 3.33 h | 53.7 a | 52.7 ab | 31.3 e | 6.97 g |
LEW16 | 19.3 bc | 18.7 bc | 10.0 ef | 1.60 g | 34.3 cd | 28.3 e | 17.7 g | 2.17 h | 45.3 cd | 44.7 d | 25.3 ef | 4.23 g |
LEW28 | 22.0 ab | 21.3 ab | 13.3 de | 1.80 g | 39.7 ab | 31.3 de | 20.3 fg | 2.87 h | 51.3 a–c | 49.3 a–d | 29.7 ef | 5.93 g |
HSD (p ≤ 0.05) | 3.73 | 4.81 | 6.15 |
Characteristic | LEW3 | LEW9 | LEW16 | LEW28 |
---|---|---|---|---|
Root colonization (CFU cm−2) | 3.52 × 106 | 4.16 × 106 | 2.91 × 106 | 2.34 × 106 |
Phosphate solubilization | ++ | ++ | + | + |
Zinc solubilization | ++ | ++ | ++ | + |
Hydrogen cyanide production | + | + | − | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, M.; Bukhari, S.A.H.; Alrajhi, A.A.; Alotaibi, F.S.; Ahmad, M.; Shahzad, A.N.; Dewidar, A.Z.; Mattar, M.A. Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy 2022, 12, 1140. https://doi.org/10.3390/agronomy12051140
Latif M, Bukhari SAH, Alrajhi AA, Alotaibi FS, Ahmad M, Shahzad AN, Dewidar AZ, Mattar MA. Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy. 2022; 12(5):1140. https://doi.org/10.3390/agronomy12051140
Chicago/Turabian StyleLatif, Muhammad, Syed Asad Hussain Bukhari, Abdullah A. Alrajhi, Fahad S. Alotaibi, Maqshoof Ahmad, Ahmad Naeem Shahzad, Ahmed Z. Dewidar, and Mohamed A. Mattar. 2022. "Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria" Agronomy 12, no. 5: 1140. https://doi.org/10.3390/agronomy12051140
APA StyleLatif, M., Bukhari, S. A. H., Alrajhi, A. A., Alotaibi, F. S., Ahmad, M., Shahzad, A. N., Dewidar, A. Z., & Mattar, M. A. (2022). Inducing Drought Tolerance in Wheat through Exopolysaccharide-Producing Rhizobacteria. Agronomy, 12(5), 1140. https://doi.org/10.3390/agronomy12051140