Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Detection and Quantification of 2,4 DAPG and PCA-Producing Pseudomonas spp.
3.2. Genotypic Diversity of the Gene phlD+ in Sampling Sites
3.3. Relation between the Prevalence of Phytopathogens (Incidence and Severity) and Yield Variables in Sampling Points with and without Populations of 2,4 DAPG-Producing Pseudomonas
3.4. Relation between Prevalence of Phytopathogens (Incidence and Severity) and Diversity of Fungi in Sampling Points with and without Populations of 2,4 DAPG Producing Pseudomonas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bellgard, S.E.; Williams, S.E. Response of mycorrhizal diversity to current climatic changes. Diversity 2011, 3, 8–90. [Google Scholar] [CrossRef] [Green Version]
- Vujanovic, V. Fungal communities associated with durum wheat production system: A characterization by growth stage, plant organ and preceding crop. Crop Prot. 2012, 37, 26–34. [Google Scholar] [CrossRef]
- Durán, P.; Tortella, G.; Viscardi, S.; Barra, P.J.; Carrión, V.J.; Mora, M.L.; Pozo, M.J. Microbial community composition in Take-All suppressive soils. Front. Microbiol. 2018, 9, 2198. [Google Scholar] [CrossRef] [PubMed]
- Thomashow, L.S.; Kwak, Y.-S.; Weller, D.M. Root-associated microbes in sustainable agriculture: Models, metabolites and mechanisms. Pest Manag. Sci. 2019, 75, 2360–2367. [Google Scholar] [CrossRef] [PubMed]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. Fusarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef]
- Weller, D.M. Take-all decline and beneficial pseudomonads. In Principles of Plant-Microbe Interactions; Microbes For Sustainable Agriculture, 1st ed.; Lugtenberg, B., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 363–370. [Google Scholar] [CrossRef]
- Hansen, J.C.; Schillinger, W.F.; Sullivan, T.S.; Paulitz, T.C. Soil microbial biomass and fungi reduced with canola introduced into long-term monoculture wheat rotations. Front. Microbiol. 2019, 10, 1488. [Google Scholar] [CrossRef] [Green Version]
- Castro, M.P.; Madariaga, R.P.; Ruiz, B.E.; Vargas, M.; Vera, C.; Moya-Elizondo, E.A. Antagonistic activity of Chilean strains of Pseudomonas protegens against fungi causing crown and root rot of wheat (Triticum aestivum L.). Front. Plant Sci. 2020, 11, 951. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Paulitz, T.C.; Steinberg, C.; Alabouvette, C.; Moënne-Loccoz, Y. The rhizosphere: A playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 2008, 321, 341–361. [Google Scholar] [CrossRef] [Green Version]
- Expósito, R.G.; De Bruijn, I.; Postma, J.; Raaijmakers, J.M. Current insights into the role of rhizosphere bacteria in disease suppressive soils. Front. Microbiol. 2017, 8, 2529. [Google Scholar] [CrossRef]
- Imperiali, N.; Chiriboga, X.; Schlaeppi, K.; Fesselet, M.; Villacrés, D.; Jaffuel, G.; Bender, S.F.; Dennert, F.; Blanco-Pérez, R.; van der Heijden, M.G.A.; et al. Combined field inoculations of Pseudomonas bacteria, arbuscular mycorrhizal fungi, and entomopathogenic nematodes and their effects on wheat performance. Front. Plant Sci. 2017, 8, 1809. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.M.; Mavrodi, D.M.; Thomashow, L.S.; Weller, D.M. Differential response of wheat cultivars to Pseudomonas brassicacearum and Take-all decline soil. Phytopathology 2018, 108, 1363–1372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vera, C.; Madariaga, R.; Gerding, M.; Ruiz, B.; Moya-Elizondo, E.A. Integration between Pseudomonas protegens strains and fluquinconazole for the control of take-all in wheat. Crop Prot. 2019, 121, 163–172. [Google Scholar] [CrossRef]
- Ramette, A.; Frapolli, M.; Saux, M.F.; Le Gruffaz, C.; Meyer, J.M.; Défago, G.; Sutra, L.; Moënne-Loccoz, Y. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 2011, 34, 180–188. [Google Scholar] [CrossRef] [PubMed]
- Loper, J.E.; Hassan, K.A.; Mavrodi, D.V.; Davis, E.W.; Lim, C.K.; Shaffer, B.T.; Elbourne, L.D.H.; Stockwell, V.O.; Hartney, S.L.; Breakwell, K.; et al. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet. 2012, 8, e1002784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De La Fuente, L.; Landa, B.B.; Weller, D.M. Host crop affects rhizosphere colonization and competitiveness of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 2006, 96, 751–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haas, D.; Défago, G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 2005, 3, 307–319. [Google Scholar] [CrossRef]
- De La Fuente, L.; Mavrodi, D.V.; Landa, B.B.; Thomashow, L.S.; Weller, D.M. phID-based genetic diversity and detection of genotypes of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. FEMS Microbiol. Ecol. 2006, 56, 64–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.; Ramette, A.; Punjasamarnwong, P.; Zala, M.; Natsch, A.; Moënne-Loccoz, Y.; Défago, G. Cosmopolitan distribution of phlD-containing dicotyledonous crop-associated biocontrol pseudomonads of worldwide origin. FEMS Microbiol. Ecol. 2001, 37, 105–116. [Google Scholar] [CrossRef]
- Meyer, J.B.; Lutz, M.P.; Frapolli, M.; Péchy-Tarr, M.; Rochat, L.; Keel, C.; Défago, G.; Maurhofer, M. Interplay between wheat cultivars, biocontrol pseudomonads, and soil. Appl. Environ. Microbiol. 2010, 76, 6196–6204. [Google Scholar] [CrossRef] [Green Version]
- Rotenberg, D.; Joshi, R.; Benitez, M.-S.; Chapin, L.G.; Camp, A.; Zumpetta, C.; Osborne, A.; Dick, W.A.; McSpadden Gardener, B.B. Farm management effects on rhizosphere colonization by native populations of 2,4-diacetylphloroglucinol-producing Pseudomonas spp. and their contributions to crop health. Phytopathology 2007, 97, 756–766. [Google Scholar] [CrossRef] [Green Version]
- Von Felten, A.; Meyer, J.B.; Défago, G.; Maurhofer, M. Novel T-RFLP method to investigate six main groups of 2,4-diacetylphloroglucinol-producing pseudomonads in environmental samples. J. Microbiol. Methods 2011, 84, 379–387. [Google Scholar] [CrossRef] [PubMed]
- McSpadden Gardener, B.B.; Schroeder, K.L.; Kalloger, S.E.; Raaijmakers, J.M.; Thomashow, L.S.; Weller, D.M. Genotypic and phenotypic diversity of phlD-containing Pseudomonas strains isolated from the rhizosphere of wheat. Appl. Environ. Microbiol. 2000, 66, 1939–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landa, B.B.; Mavrodi, O.V.; Schroeder, K.L.; Allende-Molar, R.; Weller, D.M. Enrichment and genotypic diversity of phlD-containing fluorescent Pseudomonas spp. in two soils after a century of wheat and flax monoculture. FEMS Microbiol. Ecol. 2006, 55, 351–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huygens, D.; Boeckx, P.; Van Cleemput, O.; Oyarzún, C.; Godoy, R. Aggregate and soil organic carbon dynamics in South Chilean Andisols. Biogeosciences 2005, 2, 159–174. [Google Scholar] [CrossRef] [Green Version]
- Moya-Elizondo, E.A.; Cattan Suitter, N.; Arismendi, N.L.; Doussoulin, H.A. Determination of 2,4-diacetylphloroglucinol (2,4-DAPG) and phenazine-producing Pseudomonas spp. in wheat crops in southern Chile. Phytopathology 2013, 103, S100. [Google Scholar]
- Durán, P.; Jorquera, M.; Viscardi, S.; Carrion, V.J.; Mora, M.L.; Pozo, M.J. Screening and characterization of potentially suppressive soils against Gaeumannomyces graminis under extensive wheat cropping by Chilean indigenous communities. Front. Microbiol. 2017, 8, 1552. [Google Scholar] [CrossRef]
- Moya-Elizondo, E.A.; Arismendi, N.L.; Castro, M.P.; Doussoulin, H.A. Distribution and prevalence of crown rot pathogens affecting wheat crops in southern Chile. Chil. J. Agric. Res. 2015, 75, 78–84. [Google Scholar] [CrossRef] [Green Version]
- De Souza, J.T.; Arnould, C.; Deulvot, C.; Lemanceau, P.; Gianinazzi-Pearson, V.; Raaijmakers, J.M. Effect of 2,4-diacetylphloroglucinol on Pythium: Cellular responses and variation in sensitivity among propagules and species. Phytopathology 2003, 93, 966–975. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, D.V.; Mavrodi, O.V.; Parejko, J.A.; Bonsall, R.F.; Kwak, Y.; Paulitz, T.C.; Thomashow, L.S.; Weller, D.M. Accumulation of the antibiotic phenazine-1-carboxylic acid in the rhizosphere of dryland cereals. Appl. Environ. Microbiol. 2012, 78, 804–812. [Google Scholar] [CrossRef] [Green Version]
- Penton, C.R.; Gupta, V.V.S.R.; Tiedje, J.M.; Neate, S.M.; Ophel-Keller, K.; Gillings, M.; Harvey, P.; Pham, A.; Roget, D.K. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS ONE 2014, 9, e93893. [Google Scholar] [CrossRef] [Green Version]
- Moya-Elizondo, E.A.; Rew, L.J.; Jacobsen, B.J.; Hogg, A.C.; Dyer, A.T. Distribution and prevalence of Fusarium crown rot and common root rot pathogens of wheat in Montana. Plant Dis. 2011, 95, 1099–1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, H.L.; Hunter, B.B. Illustrated Genera of Imperfect Fungi, 4th ed.; The American Phytopathological Society: St. Paul, MN, USA, 2006; p. 218. [Google Scholar]
- Nelson, P.E.; Toussoun, T.A.; Marasas, W.F.O. Fusarium Species: An Illustrated Manual for Identification, 1st ed.; The Pennsylvania State University Press: University Park, PA, USA, 1983; p. 193. [Google Scholar]
- Leslie, J.F.; Summerell, B.A. The Fusarium Laboratory Manual, 1st ed.; Blackwell Publishing Ltd.: Ames, IA, USA, 2008; p. 388. [Google Scholar]
- Montalva, C.; Arismendi, N.L.; Barta, M.; Rojas, E. Molecular differentiation of recently described Neozygites osornensis (Neozygitales: Neozygitaceae) from two morphologically similar species. J. Invertebr. Pathol. 2014, 115, 92–94. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.; Akinsanmi, O.; Mitter, V.; Simpfendorfer, S.; Dill-Macky, R.; Chakraborty, S. Prevalence of Fusarium crown rot pathogens of wheat in southern Queensland and northern New South Wales. In Proceedings of the 4th International Crop Science Congress, Brisbane, Australia, 26 September–1 October 2004. [Google Scholar]
- Fouly, H.M.; Wilkinson, H.T. Detection of Gaeumannomyces graminis varieties using Polymerase Chain Reaction with variety-specific primers. Plant Dis. 2000, 84, 947–951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McSpadden Gardener, B.B.; Mavrodi, D.V.; Thomashow, L.S.; Weller, D.M. A rapid polymerase chain reaction-based assay characterizing rhizosphere populations of 2,4-diacetylphloroglucinol-producing bacteria. Phytopathology 2001, 91, 44–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaijmakers, J.M.; Weller, D.M.; Thomashow, L.S. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 1997, 63, 881–887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargouri, S.; Khemir, E.; Souissi, A.; Paulitz, T.C.; Murray, T.D.; Fakhfakh, M.; Achour, I.; Chekali, S.; Mliki, Y.; Burgess, L.W. Survey of take-all (Gaeumannomyces tritici) on cereals in Tunisia and impact of crop sequences. Crop Prot. 2020, 135, 105189. [Google Scholar] [CrossRef]
- Özer, G.; Paulitz, T.C.; Imren, M.; Alkan, M.; Muminjanov, H.; Dababat, A.A. Identity and pathogenicity of fungi associated with crown and root rot of dryland winter wheat in Azerbaijan. Plant Dis. 2020, 104, 2149–2157. [Google Scholar] [CrossRef]
- Shikur Gebremariam, E.; Sharma-Poudyal, D.; Paulitz, T.C.; Erginbas-Orakci, G.; Karakaya, A.; Dababat, A.A. Identity and pathogenicity of Fusarium species associated with crown rot on wheat (Triticum spp.) in Turkey. Eur. J. Plant Pathol. 2018, 150, 387–399. [Google Scholar] [CrossRef]
- Poole, G.J.; Smiley, R.W.; Walker, C.; Huggins, D.; Rupp, R.; Abatzoglou, J.; Garland-Campbell, K.; Paulitz, T.C. Effect of climate on the distribution of Fusarium spp. causing crown rot of wheat in the Pacific Northwest of the United States. Phytopathology 2013, 103, 1130–1140. [Google Scholar] [CrossRef] [Green Version]
- Smiley, R.W.; Gourlie, J.A.; Easley, S.A.; Patterson, L.M.; Whittaker, R.G. Crop damage estimates for crown rot of wheat and barley in the Pacific Northwest. Plant Dis. 2005, 89, 595–604. [Google Scholar] [CrossRef] [Green Version]
- Cook, R.J. Fusarium root, crown, and foot rots and associated seedling diseases. In Compendium of Wheat Diseases and Pests, 3rd ed.; Bockus, W., Bowden, R., Hunger, R., Morrill, W., Murray, T., Smiley, R., Eds.; The Pennsylvania State University Press: University Park, PA, USA, 2010; pp. 37–39. [Google Scholar]
- Andrade, O.; Campillo, R.; Peyrelongue, A.; Barrientos, L. Soils suppressive against Gaeumannomyces graminis var. tritici identified under wheat crop monoculture in southern Chile. Cienc. Investig. Agrar. 2011, 38, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Campillo, R.; Andrade, O.; Contreras, E. Variaciones del contenido de Mn de dos suelos sometidos a esterilización y su efecto sobre la pudrición radical del trigo o “mal de pie”. Agric. Téc. 2001, 61, 339–351. [Google Scholar] [CrossRef]
- Moya-Elizondo, E.A.; Jacobsen, B.J.; Hogg, A.C.; Dyer, A.T. Population dynamics between Fusarium pseudograminearum and Bipolaris sorokiniana in wheat stems using Real-Time qPCR. Plant Dis. 2011, 95, 1089–1098. [Google Scholar] [CrossRef] [Green Version]
- Schreiner, K.; Hagn, A.; Kyselková, M.; Moënne-Loccoz, Y.; Welzl, G.; Munch, J.C.; Schloter, M. Comparison of barley succession and Take-all disease as environmental factors shaping the rhizobacterial community during Take-all decline. Appl. Environ. Microbiol. 2010, 76, 4703–4712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weller, D.M.; Raaijmakers, J.M.; McSpadden Gardener, B.B.; Thomashow, L.S. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 2002, 40, 309–348. [Google Scholar] [CrossRef] [Green Version]
- Raudales, R.E.; Stone, E.; McSpadden Gardener, B.B. Seed treatment with 2,4-diacetylphloroglucinol-producing pseudomonads improves crop health in low-pH soils by altering patterns of nutrient uptake. Phytopathology 2009, 99, 506–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, M.-M.; Mavrodi, D.V.; Mavrodi, O.V.; Bonsall, R.F.; Parejko, J.A.; Paulitz, T.C.; Thomashow, L.S.; Yang, H.-T.; Weller, D.M.; Guo, J.-H. Biological control of Take-All by fluorescent Pseudomonas spp. from Chinese wheat fields. Phytopathology 2011, 101, 1481–1491. [Google Scholar] [CrossRef] [Green Version]
- Mavrodi, D.V.; Mavrodi, O.V.; Elbourne, L.; Tetu, S.; Bonsall, R.; Parejko, J.; Yang, M.M.; Paulsen, I.; Weller, D.M.; Thomashow, L.S. Long-term irrigation affects the dynamics and activity of the wheat rhizosphere microbiome. Front. Plant Sci. 2018, 21, 345. [Google Scholar] [CrossRef]
- Raaijmakers, J.M.; Weller, D.M. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: Characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl. Environ. Microbiol. 2001, 67, 2545–2554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwak, Y.-S.; Bonsall, R.F.; Okubara, P.A.; Paulitz, T.C.; Thomashow, L.S.; Weller, D.M. Factors impacting the activity of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens against Take-all of wheat. Soil Biol. Biochem. 2012, 54, 48–56. [Google Scholar] [CrossRef]
- Weller, D.M.; Landa, B.B.; Mavrodi, O.V.; Schroeder, K.L.; De La Fuente, L.; Blouin Bankhead, S.; Allende Molar, R.; Bonsall, R.F.; Mavrodi, D.V.; Thomashow, L.S. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. Stuttg. Ger. 2007, 9, 4–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzola, M.; Funnell, D.L.; Raaijmakers, J.M. Wheat cultivar-specific selection of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas species from resident soil populations. Microb. Ecol. 2004, 48, 338–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergsma-Vlami, M.; Prins, M.E.; Raaijmakers, J.M. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp. FEMS Microbiol. Ecol. 2005, 52, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Hulbert, S.H.; Schroeder, K.L.; Mavrodi, O.V.; Mavrodi, D.V.; Dhingra, A.; Schillinger, W.F.; Paulitz, T.C. Role of bacterial communities in the natural suppression of Rhizoctonia solani Bare patch disease of wheat (Triticum aestivum L.). Appl. Environ. Microbiol. 2013, 79, 7428–7438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sampled Farm- Location (Season) | Coordinate | Cultivar | Crop Rotation 1 | Soil pH |
---|---|---|---|---|
Potrero 11- Perquenco (2012/13) | 38°22′41,42″ S–72°28′25,59″ W | Ikaro | W-O-W | 5.6–5.8 |
El Reten- Osorno (2012/13) | 40°41′48,36″ S–73°15′57,25″ W | Maxi | W-T-W | 5.4–5.6 |
Cajón- Temuco (2013/14) | 38°40′04,40″ S–72°29′56,38″ W | Impulso | T-L-T | 5.8–6.0 |
Potrero 13- Perquenco (2013/14) | 38°23′05,00″ S–72°28′20,95″ W | Bakan | O-L-T | 5.6–5.8 |
Sampled Farm- Location (Season) | Fusarium spp. 1 (%) | |||||||
---|---|---|---|---|---|---|---|---|
Fac | Fav | Fc | Fdim | Fg | Fo | Fs | F. spp | |
Potrero 11- Perquenco (2012/13) | 0.6 2 | 1.3 | 0.0 | 2.9 | 1.3 | 0.6 | 0.3 | 2.9 |
El Retén- Osorno (2012/13) | 0.0 | 2.5 | 2.5 | 7.4 | 3.7 | 0.0 | 1.0 | 8.3 |
Cajón- Temuco (2013/14) | 2.2 | 1.2 | 0.60 | 6.8 | 0.0 | 0.3 | 0.0 | 1.8 |
Potrero 13- Perquenco (2013/14) | 3.1 | 5.0 | 7.3 | 15.3 | 0.0 | 6.5 | 0.4 | 2.7 |
Mean | 1.5 | 2.5 | 2.6 | 8.1 | 1.3 | 1.9 | 0.4 | 3.9 |
Sampled Farm- Location (Season) | Shannon–Wiener (H) Diversity Index | Abundance 1 | Evenness (E) 2 |
---|---|---|---|
Potrero 11- Perquenco (2012/13) | 2.11 | 315 | 0.70 |
El Retén- Osorno (2012/13) | 1.39 | 404 | 0.46 |
Cajón- Temuco (2013/14) | 2.33 | 323 | 0.74 |
Potrero 13- Perquenco (2013/14) | 1.81 | 262 | 0.59 |
Mean | 1.91 | 326 | 0.62 |
χ2 (p-value) | ns 3 | <0.001 | ns |
Sampled Farm- Location (Season) | phlD+ (%) | phzCD+ (%) | ||
---|---|---|---|---|
Grain Filling | Harvest | Grain Filling | Harvest | |
Potrero 11- Perquenco (2012/13) | 50 | 38 | 83 | 50 |
El Retén- Osorno (2012/13) | 38 | 29 | 0 | 12 |
Cajón- Temuco (2013/14) | 42 | 38 | 4 | 0 |
Potrero 13- Perquenco (2013/14) | 71 | 96 | 0 | 0 |
Mean | 50 | 50 | 22 | 16 |
χ2 (p-value) | <0.05 | <0.001 | <0.001 | <0.001 |
Factor | Spearman Correlation Coefficient | |||
---|---|---|---|---|
Grain Yield | Plant Height | |||
phlD+ | phlD− | phlD+ | phlD− | |
Incidence | ||||
Total samples | 0.58 (<0.001) | 0.63 (<0.001) | −0.04 (ns) | −0.39 (0.006) |
2012/2013 | −0.17 (ns 2) | 0.20 (ns) | −0.73 (<0.001) | −0.58 (0.002) |
2013/2014 | −0.07 (ns) | −0.65 (0.002) | 0.34 (ns) | 0.40 (ns) |
Severity | ||||
Total samples | 0.64 (<0.001) | 0.62 (<0.001) | −0.01 (ns) | −0.33 (0.021) |
2012/2013 | −0.11 (ns) | 0.19 (ns) | −0.46 (0.035) | −0.42 (0.027) |
2013/2014 | 0.29 (ns) | −0.57 (0.007) | −0.24 (ns) | 0.33 (ns) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doussoulin, H.A.; Arismendi, N.L.; Moya-Elizondo, E.A. Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile. Agronomy 2022, 12, 710. https://doi.org/10.3390/agronomy12030710
Doussoulin HA, Arismendi NL, Moya-Elizondo EA. Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile. Agronomy. 2022; 12(3):710. https://doi.org/10.3390/agronomy12030710
Chicago/Turabian StyleDoussoulin, Herman A., Noberto L. Arismendi, and Ernesto A. Moya-Elizondo. 2022. "Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile" Agronomy 12, no. 3: 710. https://doi.org/10.3390/agronomy12030710
APA StyleDoussoulin, H. A., Arismendi, N. L., & Moya-Elizondo, E. A. (2022). Pseudomonas spp. Producing Antimicrobial Compounds Regulate Fungal Communities Inhabiting Wheat Crown in Southern Chile. Agronomy, 12(3), 710. https://doi.org/10.3390/agronomy12030710