Soil Dynamics and Nitrogen Absorption by a Natural Grassland under Cow Urine and Dung Patches in an Andisol in Southern Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Total N Determination in Excretes
2.3. Soil Samples
2.4. Herbage Sampling
2.5. Statistical Analysis
3. Results
3.1. Weather
3.2. Dynamics of N Mineralization in the Soil
3.3. DM Yield and N Utilization by Herbage
4. Discussion
4.1. Mineral N Dynamics in the Soil
4.2. Dynamics of Mineral N Utilization by Grass
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardgett, R.D.; Wardle, D.A. Herbivore-mediated linkages between aboveground and belowground communities. Ecology 2003, 84, 2258–2268. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Nutrient cycling y soil fertility in the grazed pasture ecosystem. Adv. Agron. 1993, 49, 119–199. [Google Scholar]
- Whitehead, D.C. Nutrient Elements in Grassland: Soil-Plant-Animal Relationships; CABI Publishing: New York, NY, USA, 2000; 384p. [Google Scholar]
- Shand, C.A.; Williams, B.L.; Dawson, L.A.; Smith, S.; Young, M.E. Sheep urine affects soil solution nutrient composition and roots: Differences between field and sward box soils and the effects of synthetic and natural sheep urine. Soil Biol. Biochem. 2002, 34, 163–171. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.W.; Spek, J.W.; Van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle y N2O emissions. Animal 2013, 7, 292–302. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, S.C.; Scholefield, D.; Pain, B. Nitrogen cycling in grazing systems. In Nitrogen Fertilization in the Environment; Bacon, P.E., Ed.; Marcel Dekker: New York, NY, USA, 1995; pp. 381–419. [Google Scholar]
- Petersen, S.O.; Sommera, S.G.; Aaesa, O.; Soegaard, K. Ammonia losses from urine y dung of grazing cattle: Effect of N intake. Atmos. Environ. 1998, 32, 295–300. [Google Scholar] [CrossRef]
- Williams, P.H.; Haynes, R.J. Comparison of initial wetting pattern, nutrient concentrations in soil solution and fate of 15N-labelled urine in sheep and cattle urine patch areas of pasture soil. Plant Soil 1994, 162, 49–59. [Google Scholar] [CrossRef]
- Haynes, R.J.; Williams, P.H. Changes in soil solution composition y pH in urine affected areas of pasture. J. Soil Sci. 1992, 43, 323–334. [Google Scholar] [CrossRef]
- Deenen, P.J.A.G.; Middelkoop, N. Effects of dung y urine in nitrogen uptake y yield of perennial ryegrass. Neth. J. Agric. Res. 1992, 40, 469–482. [Google Scholar] [CrossRef]
- Saarijärvi, K.; Virkajärvi, P. Nitrogen dynamics of cattle dung y urine patches on intensively managed boreal pasture. J. Agric. Sci. 2009, 147, 479–491. [Google Scholar] [CrossRef]
- Wachendorf, C.; Lampe, C.; Taube, F.; Dittert, K. Nitrous oxide emissions y dynamics of soil nitrogen under 15N-labeled cow urine y dung patches on a sandy grassly soil. J. Soil Sci. Plant Nutr. 2008, 171, 171–180. [Google Scholar] [CrossRef]
- Decau, M.L.; Simon, J.C.; Jacquet, A. Fate of urine nitrogen in three soils throughout a grazing season. J. Environ. Qual. 2003, 32, 1405–1413. [Google Scholar] [CrossRef] [PubMed]
- Selbie, D.R.; Buckthought, L.E.; Shepherd, M. The Challenge of the Urine Patch for Managing Nitrogen in Grazed Pasture Systems. Adv. Agron. 2015, 129, 229–292. [Google Scholar]
- White-Leech, R.; Liu, K.; Sollenberger, L.E.; Woodard, K.R.; Interrante, S.M. Excreta Deposition on Grassland Patches. I. Forage harvested, Nutritive Value and Nitrogen Recovery. Crop Sci. 2013, 53, 688–695. [Google Scholar] [CrossRef]
- White-Leech, R.; Liu, K.; Sollenberger, L.E.; Woodard, K.R.; Interrante, S.M. Excreta Deposition on Grassly Patches. II. Spatial Pattern y Duration of Forage Responses. Crop Sci. 2013, 53, 696–703. [Google Scholar] [CrossRef]
- Whitehead, D.C. Grassland Nitrogen; CAB International: Wallingford, UK, 1995; 385p. [Google Scholar]
- Dickinson, C.H.; Craig, G. Effects of water on the decomposition y release of nutrients from cow pats. New Phytol. 1990, 115, 139–147. [Google Scholar] [CrossRef]
- Rowarth, J.S.; Gillingham, A.G.; Tillman, R.W.; Syers, J.K. Release of phosphorus from sheep feces on grazed, hill country pastures. N. Z. J. Agric. Res. 1985, 28, 497–504. [Google Scholar] [CrossRef]
- Wilkerson, V.A.; Mertens, D.R.; Casper, D.P. Prediction of excretion of manure y nitrogen by Holstein dairy cattle. J. Dairy Sci. 1997, 80, 3193–3204. [Google Scholar] [CrossRef]
- Aarons, S.R.; O’Connor, C.R.; Gourley, C.J.P. Dung decomposition in temperate dairy pastures I. Changes in soil chemical properties. Aust. J. Soil Res. 2004, 42, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Wall, R. Cow-dung colonization and decomposition following insect exclusion. Bull. Entomol. 2006, 96, 315–322. [Google Scholar] [CrossRef]
- Luzio, W. Suelos de Chile; Departamento de Ingeniería y Suelos, Facultad de Ciencias Agronómicas, Universidad de Chile: Santiago, Chile, 2010; 364p. [Google Scholar]
- Besoain, E. Minerales secundarios. In Suelos Volcánicos de Chile; Tosso, J., Ed.; Instituto de Investigaciones Agropecuarias, INIA: Santiago, Chile, 1985; pp. 23–106. [Google Scholar]
- Shoji, S.; Nanzyo, M.; Dahlgren, R. Volcanic Ash Soils: Genesis, Properties and Utilization. Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 1994; 288p. [Google Scholar]
- Soil Survey Staff. USDA-Natural Resources Conservation Services, 11th ed.; Natural Resources Conservation Service: Washington, DC, USA, 2010.
- Armas-Espinel, S.J.; Hernández-Moreno, J.M.; Muñoz-Carpena, R.; Regalado, C.J. Physical properties of “sorriba”—Cultivated volcanic soils from Tenerife in relation to andic diagnostic parameters. Geoderma 2003, 117, 297–311. [Google Scholar] [CrossRef]
- Ellies, A.; Grez, R.; Ramírez, R. La conductividad hidráulica en fase saturada como herramienta para el diagnóstico de la estructura del suelo. Agro Sur 1997, 25, 51–56. [Google Scholar] [CrossRef]
- Matus, F.; Amigo, X.; Kristiansen, S. Aluminium stabilization controls organic carbon levels in Chilean volcanic soils. Geoderma 2006, 132, 158–168. [Google Scholar] [CrossRef] [Green Version]
- Huber, A. Beitrag ztir Klimatologie und Klimai:ikologie von Chile. Ph.D. Thesis, Ludwig Maximilian Universitat, Mtinchen, Germany, 1975; 81p. [Google Scholar]
- Sadzawka, A.; Carrasco, M.; Grez, R.; Mora, M.; Flores, H.; Neaman, A. Métodos de Análisis Recomendados Para los Suelos de Chile; Instituto de Investigaciones Agropecuarias, Serie Actas INIA: Santiago, Chile, 2006; Volume 34, 164p. [Google Scholar]
- Fierer, N.; Schimel, J.P. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 2002, 34, 777–787. [Google Scholar] [CrossRef]
- Miller, A.; Schimel, J.; Meixner, T.; Sickman, J.; Melack, J. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol. Biochem. 2005, 37, 2195–2204. [Google Scholar] [CrossRef]
- Rey, A.; Petsikos, C.; Jarvis, P.G.; Grace, J. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. Eur. J. Soil Sci. 2005, 56, 589–599. [Google Scholar] [CrossRef]
- Rudaz, A.O.; Davidson, E.A.; Firestone, M.K. Sources of nitrous-oxide production following wetting of dry soil. FEMS Microbiol. Ecol. 1991, 8, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Fierer, N.; Schimel, J.P. A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil. SSSA 2003, 67, 798–805. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.; Honeycutt, C.; Schomberg, H.H.; Hons, F.M. Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. SSSA 2000, 64, 613–623. [Google Scholar] [CrossRef]
- Pesaro, M.; Nicollier, G.; Zeyer, J.; Widmer, F. Impact of drying-rewetting stress on microbial communities and activities and on degradation of two crop protection products. Appl. Environ. Microbiol. 2004, 70, 2577–2587. [Google Scholar] [CrossRef] [Green Version]
- Buckthought, L.E.; Clough, T.J.; Cameron, K.C.; Di, H.J.; Shepherd, M.A. Plant N uptake in the periphery of a bovine urine patch: Determining the ‘effective area’. N. Z. J. Agric. Res. 2016, 59, 122–140. [Google Scholar] [CrossRef]
- Dickinson, C.H.; Underhay, V.S.H.; Ross, V. Effect of season, soil fauna and water content on the decomposition of cattle dung pats. New Phytol. 1981, 88, 129–141. [Google Scholar] [CrossRef]
- Cameron, K.C.; Haynes, R.J. Retention y movement of nitrogen in soils. In Mineral Nitrogen in the Plant-Soil System; Haynes, R.J., Ed.; Academic Press: London, UK, 1986; pp. 166–241. [Google Scholar]
- Dörner, J.; Dec, D.; Peng, X.; Horn, R. Effect of land use change on the dynamic behaviour of structural properties of an Andisol in southern Chile under saturated and unsaturated hydraulic conditions. Geoderma 2010, 159, 189–197. [Google Scholar] [CrossRef]
- Monaghan, R.M.; Carey, P.A.; Metherell, K.; Singleton, P.L.; Drewry, J.; Addison, B. Depth distribution of simulated urine in a range of soils soon after deposition. N. Z. J. Agric. Res. 1999, 42, 501–511. [Google Scholar] [CrossRef]
- Wachendorf, C.; Taube, F.; Wachendorf, M. Nitrogen leaching from N-15 labelled cow urine and dung applied to grassland on a sandy soil. Nutr. Cycl. Agroecosyst. 2005, 73, 89–100. [Google Scholar] [CrossRef]
- Yokoyama, K.; Kai, H.; Koga, T.; Kawaguchi, S. Effect of dung beetle, Onthophagus lenzii H. on nitrogen transformation in cow dung and dung balls. Soil Sci. Plant Nutr. 1991, 37, 341–345. [Google Scholar] [CrossRef]
- Fincher, G.T.; Menson, W.G.; Burton, G.W. Effects of cattle feces rapidly buried by dung beetles on yield and quality of Coastal Bermudagrass. Agron. J. 1981, 73, 775–779. [Google Scholar] [CrossRef]
- Macdiarmid, B.N.; Watkin, B.R. The cattle dung patch. 3. Distribution and rate of decay of dung patches and their influence on grazing behaviour. J. Br. Grassl. Soc. 1972, 27, 48–54. [Google Scholar]
- Silva, R.G.; Cameron, K.C.; Di, H.J.; Hendry, T. A lysimeter study of the impact of cow urine, dairy shed effluent, and nitrogen fertiliser on nitrate leaching. Aust. J. Soil Res. 1999, 37, 357–369. [Google Scholar] [CrossRef]
- Bussink, D.W.; Oenema, O. Ammonia volatilization from dairy farming systems in temperate areas: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 19–33. [Google Scholar] [CrossRef]
- Cárdenas, L.M.; Misselbrook, T.M.; Hodgson, C.; Donovan, N.; Gilhespy, S.; Smith, K.A.; Dhanoa, M.S.; Chadwick, D. Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from a UK grassland soil. Agric. Ecosyst. Environ. 2016, 235, 229–241. [Google Scholar] [CrossRef] [Green Version]
- Cárdenas, L.M.; Bol, R.; Lewicka-Szczebak, D.; Gregory, A.S.; Matthews, G.P.; Whalley, W.R.; Misselbrook, T.H.; Scholefield, D.; Well, R. Effect of soil saturation on denitrification in a grassland soil. Biogeosciences 2017, 14, 4691–4710. [Google Scholar] [CrossRef] [Green Version]
- Di, H.J.; Cameron, K.C. Nitrate leaching losses and pasture yields as affected by different rates of animal urine nitrogen returns and application of a nitrification inhibitor—A lysimeter study. Nutr. Cycl. Agroecosyst. 2007, 79, 281–290. [Google Scholar] [CrossRef]
- Richards, I.R.; Wolton, K.M. A note on urine scorch caused by grazing animals. Grass Forage Sci. 1975, 30, 187–188. [Google Scholar] [CrossRef]
- Descalzi, C.A.; López, I.F.; Kemp, P.D.; Dörner, J.; Ordóñez, I. Pasture restoration improvement methods for temperate degraded pastures and consequences of the climatic seasonality on soil–pasture complex. J. Agron. Crop Sci. 2020, 206, 130–147. [Google Scholar] [CrossRef]
- Dickson, T.L.; Foster, B.L. The relative importance of the species pool, productivity and disturbance in regulating grassland plant species richness: A field experiment. J. Ecol. 2008, 96, 937–946. [Google Scholar] [CrossRef]
- Keim, J.P.; López, I.F.; Balocchi, O.A. Sward herbage accumulation and nutritive value as affected by pasture renovation strategy. Grass Forage Sci. 2015, 70, 283–295. [Google Scholar] [CrossRef]
- Butkuviene, E.; Butkute, R. Effects of pasture improvement measures on sward productivity, botanical and chemical composition. Zemes Ukio Moksl. 2008, 15, 46–52. [Google Scholar]
- Lodge, G. Temperate native Australian grass improvement by selection. N. Z. J. Agric. Res. 1996, 39, 487–497. [Google Scholar] [CrossRef]
- Mehrhoff, L.A.; Turkington, R. Microevolution and site-specific outcomes of competition among pasture plants. J. Ecol. 1990, 78, 745–756. [Google Scholar] [CrossRef]
- Williams, W. Genetic resources of temperate native and low-input grasses in New Zealand and Australian collections. N. Z. J. Agric. Res. 1996, 39, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Balocchi, O.; López, I. Especies pratenses nativas y naturalizadas del sur de Chile [Native and naturalized grassland species of southern Chile]. In Producción Animal; Serie B—20; Latrille, L., Ed.; Facultad de Ciencias Agrarias, Instituto de Producción Animal, Universidad Austral de Chile: Valdivia, Chile, 1996; pp. 65–81. [Google Scholar]
- López, I.; Balocchi, O.; Lailhacar, P.; Oyarzún, C. Characterization of the growing sites of six native and naturalized species in the Dominio Húmedo of Chile. Agro Sur 1997, 25, 62–80. [Google Scholar]
- Cartes, P.; Mcmanus, M.; Wulff-Zottele, C.; Leung, S.; Gutierrez-Moraga, A.; Mora, M.L. Differential superoxide dismutase expression in ryegrass cultivars in response to short term aluminium stress. Plant Soil 2012, 350, 353–363. [Google Scholar] [CrossRef]
- Balocchi, O. Recursos forrajeros utilizados en producción de leche [Forages used in dairy production]. In Competitividad de la Producción Lechera Nacional; Anrique, R., Latrille, L., Balocchi, O., Alomar, D., Moreira, V., Smith, R., Pinochet, D., Vargas, G., Eds.; Universidad Austral de Chile: Valdivia, Chile, 1999; pp. 29–74. [Google Scholar]
- Sanderson, M.A.; Skinner, R.H.; Barker, D.J.; Edwards, G.R.; Tracy, B.F.; Wedin, D.A. Plant species diversity and management of temperate forage and grazing land ecosystems. Crop Sci. 2004, 44, 1132–1144. [Google Scholar] [CrossRef]
- Di, H.J.; Cameron, K.C. Reducing environmental impacts of agriculture by using a fine particle suspension nitrification inhibitor to decrease nitrate leaching from grazed pastures. Agric. Ecosyst. Environ. 2005, 109, 202–212. [Google Scholar] [CrossRef]
- Moir, J.L.; Cameron, K.C.; Di, H.J. Effects of the nitrification inhibitor dicyandiamide on soil mineral N, pasture yield, nutrient uptake and pasture quality in a grazed pasture system. Soil Use Manag. 2007, 23, 111–120. [Google Scholar] [CrossRef]
- Moir, J.L.; Malcolm, B.J.; Cameron, K.C.; Di, H.J. The effect of Dicyandiamide on pasture nitrate concentration, yield and N offtake under high N loading in winter and spring. Grass Forage Sci. 2012, 67, 391–402. [Google Scholar] [CrossRef]
- Buckthought, L.E.; Clough, T.J.; Cameron, K.C.; Di, H.J.; Shepherd, M.A. Fertiliser and seasonal urine effects on N2O emissions from the urine-fertiliser interface of a grazed pasture. N. Z. J. Agric. Res. 2015, 58, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Fontes, J.C.; Cameira, M.R.; Borba, L.G.; Amado, E.D.; Pereira, L.S. Nitrogen dynamics in volcanic soils under permanent pasture. Geoderma 2011, 160, 384–393. [Google Scholar] [CrossRef]
- Ledgard, S.F.; Saunders, W.M.H. Effects of nitrogen fertilizer and urine on pasture performance and the influence of soil phosphorus and potassium status. N. Z. J. Agric. Res. 1982, 25, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Middelkoop, N.; Deenen, P.J.A.G. The local influence of cattle dung and urine and its interactions with fertilizer nitrogen on herbage dry matter production. In Proceedings of 13th General Meeting of the European Grassland Federation, Banská Bystrica, Czechoslovakia, 25–29 June 1990. Volume II Soil-Grassland-Animal Relationships; Gaborcik, N., Krajovic, V., Zimkova, M., Eds.; European Grassland Federation: Banska Bustrica, Czechoslovakia, 1990; pp. 67–70. [Google Scholar]
- Sakadevan, K.; Mackay, A.D.; Hedley, M.J. Influence of sheep excreta on pasture uptake and leaching losses of sulphur, nitrogen and potassium from grazed pastures. Aust. J. Soil Res. 1993, 31, 151–162. [Google Scholar] [CrossRef]
Day 23 (27 December 2018) | Day 49 (22 January 2019) | Day 199 (21 June 2019) | Day 304 (8 October 2019) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | s.e. | p Value | Mean | s.e. | p Value | Mean | s.e. | p Value | Mean | s.e. | p Value | |
DM yield (kg·ha−1) | ||||||||||||
Control | 1565 | 154 | 792 | 36 | 1208 | 41 | 661 | 34 | ||||
Urine | ||||||||||||
Patch area | +103 | 157 | 0.6491 | +145 | 195 | 0.4795 | −157 | 81 | 0.1139 | +129 | 127 | 0.3818 |
0–5 cm | −527 | 54 | 0.0090 | −116 | 67 | 0.1595 | −249 | 66 | 0.0089 | −101 | 50 | 0.1691 |
15–30 cm | −968 | 76 | 0.0002 | −405 | 33 | <0.0001 | −181 | 132 | 0.2168 | −196 | 144 | 0.2547 |
Dung | ||||||||||||
0–10 cm | +373 | 393 | 0.3975 | +367 | 210 | 0.1151 | +916 | 346 | 0.0252 | −178 | 113 | 0.3185 |
10–20 cm | −342 | 156 | 0.1501 | −239 | 42 | 0.0015 | +383 | 187 | 0.0729 | −306 | 67 | 0.0186 |
N yield (g·N·m−2) | ||||||||||||
Control | 2.2 | 0.4 | 1.0 | 0.2 | 2.2 | 0.4 | 1.4 | 0.2 | ||||
Urine | ||||||||||||
Patch area | +3.2 | 0.8 | 0.0064 | +1.3 | 0.4 | 0.0127 | +0.8 | 0.4 | 0.1780 | + 0.5 | 0.4 | 0.2886 |
0–15 cm | +0.7 | 0.3 | 0.2064 | +0.3 | 0.2 | 0.2583 | +0.4 | 0.3 | 0.4345 | −0.3 | 0.1 | 0.1572 |
15–30 cm | −0.8 | 0.2 | 0.1203 | −0.4 | 0.1 | 0.0413 | −0.5 | 0.2 | 0.3592 | −0.2 | 0.4 | 0.6419 |
Dung | ||||||||||||
0–10 cm | +2.3 | 1.5 | 0.1635 | +1.3 | 0.1 | 0.0002 | +3.6 | 1.0 | 0.0080 | −0.3 | 0.2 | 0.3108 |
10–20 cm | +0.2 | 0.2 | 0.6137 | +1.4 | 0.2 | 0.0002 | +1.9 | 0.8 | 0.0463 | +0.1 | 0.3 | 0.7800 |
g·N·kg−1 DM | ||||||||||||
Control | 14.8 | 2.6 | 12.6 | 2.1 | 18.2 | 3.6 | 21.1 | 1.9 | ||||
Urine | ||||||||||||
Patch area | +16.8 | 2.6 | 0.001 | +12.4 | 0.8 | 0.0002 | +9.5 | 1.6 | 0.0360 | +2.6 | 1.4 | 0.3202 |
0–15 cm | +12.8 | 1.9 | 0.0026 | +6.5 | 1.5 | 0.0322 | +8.2 | 1.6 | 0.0621 | −2.0 | 0.7 | 0.3706 |
15–30 cm | +8.9 | 0.4 | 0.0067 | +2.5 | 2.3 | 0.4410 | −1.0 | 2.1 | 0.8202 | +2.9 | 3.9 | 0.5378 |
Dung | ||||||||||||
0–10 cm | +7.0 | 3.6 | 0.1441 | +11.2 | 4.8 | 0.0584 | +9.0 | 2.3 | 0.0603 | +8.3 | 1.3 | 0.0075 |
10–20 cm | −1.7 | 0.5 | 0.5531 | +0.5 | 0.5 | 0.8108 | +7.1 | 2.6 | 0.1370 | +8.8 | 2.3 | 0.0416 |
DM Yield (kg·ha−1) | N Yield (g·N·m−2) | g·N·kg−1 DM | |||||||
---|---|---|---|---|---|---|---|---|---|
Mean | s.e. | p Value | Mean | s.e. | p Value | Mean | s.e. | p Value | |
Control | 4232 | 174 | 6.9 | 0.6 | 67.5 | 3.3 | |||
Urine | |||||||||
Patch area | +195 | 220 | 0.5050 | +5.6 | 0.8 | 0.0002 | +31.8 | 3.8 | <0.0001 |
0–15 cm | −1011 | 84 | 0.0004 | +0.9 | 0.2 | 0.2079 | +25.5 | 1.1 | <0.0001 |
15–30 cm | −1757 | 107 | <0.0001 | −2.2 | 0.2 | 0.0074 | +11.5 | 1.7 | 0.0125 |
Dung | |||||||||
0–10 cm | +1473 | 814 | 0.1071 | +6.8 | 2.1 | 0.0096 | +34.7 | 5.5 | 0.0003 |
10–20 cm | −510 | 165 | 0.0595 | +3.7 | 0.8 | 0.0048 | +14.0 | 3.5 | 0.0162 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Sandoval, M.; Pinochet, D.; Rivero, M.J. Soil Dynamics and Nitrogen Absorption by a Natural Grassland under Cow Urine and Dung Patches in an Andisol in Southern Chile. Agronomy 2022, 12, 719. https://doi.org/10.3390/agronomy12030719
Ramírez-Sandoval M, Pinochet D, Rivero MJ. Soil Dynamics and Nitrogen Absorption by a Natural Grassland under Cow Urine and Dung Patches in an Andisol in Southern Chile. Agronomy. 2022; 12(3):719. https://doi.org/10.3390/agronomy12030719
Chicago/Turabian StyleRamírez-Sandoval, Magdalena, Dante Pinochet, and M. Jordana Rivero. 2022. "Soil Dynamics and Nitrogen Absorption by a Natural Grassland under Cow Urine and Dung Patches in an Andisol in Southern Chile" Agronomy 12, no. 3: 719. https://doi.org/10.3390/agronomy12030719
APA StyleRamírez-Sandoval, M., Pinochet, D., & Rivero, M. J. (2022). Soil Dynamics and Nitrogen Absorption by a Natural Grassland under Cow Urine and Dung Patches in an Andisol in Southern Chile. Agronomy, 12(3), 719. https://doi.org/10.3390/agronomy12030719