Production of Meat and Milk from Grass in the United Kingdom
Abstract
:1. Introduction
2. Home-Fed Production of Livestock Products
3. Edible Animal Protein Production
4. Edible Animal Protein Production from Grass and Forage Crops
5. Edible Animal Protein Consumption by the Human Population
6. Ability of Extensive Grass-Based Production to Upgrade Low into High Quality Protein
7. Potential Implications of Changes in Meat Consumption Patterns
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock: A global Assessment of Emissions and Mitigation Opportunities; FAO: Rome, Italy, 2013. [Google Scholar]
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; De Haan, C. Livestock’s Long Shadow: Environmental Issues and Options; FAO: Rome, Italy, 2006. [Google Scholar]
- Willett, W.; Rockstrom, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT-Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.; Charlson, F.J. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1659–1724. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, S.; Overvad, K.; Bueno-de-Mesquita, H.B.; Jakobsen, M.U.; Egeberg, R.; Tjønneland, A.; Nailler, L.; Boutron-Ruault, M.C.; Clavel-Chapelon, F.; Krogh, V. Meat consumption and mortality-results from the European Prospective Investigation into Cancer and Nutrition. BMC Med. 2013, 11, 63. [Google Scholar] [CrossRef]
- Rose, D.; Willits-Smith, A.; Heller, M. Diet and planetary health: Single-item substitutions significantly reduce the carbon footprint of self-selected diets reported in NHANES. Curr. Dev. Nutr. 2019, 3, nzz047. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Clark, M. Global diets link environmental sustainability and human health. Nature 2014, 515, 518–522. [Google Scholar] [CrossRef]
- Ripple, W.J.; Smith, P.; Haberl, H.; Montzka, S.A.; McAlpine, C.; Boucher, D.H. Ruminants, climate change and climate policy. Nat. Clim. Chang. 2014, 4, 2–5. [Google Scholar] [CrossRef]
- Climate Change Committee. Land Use: Policies for a Net Zero UK. Available online: https://www.theccc.org.uk/publication/land-use-policies-for-a-net-zero-uk/ (accessed on 3 March 2022).
- FAOSTAT. Food Balances (2010-). Available online: https://www.fao.org/faostat/en/#data (accessed on 3 March 2022).
- Pierrehumbert, R.T.; Eshel, G. Climate impact of beef: An analysis considering multiple time scales and production methods without use of global warming potentials. Environ. Res. Lett. 2015, 10, 085002. [Google Scholar] [CrossRef] [Green Version]
- Makkar, H.P.S. Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Mottet, A.; de Haan, C.; Falucci, A.; Tempio, G.; Opio, C.; Gerber, P. Livestock: On our plate or eating at our table? A new analysis of the feed/food debate. Glob. Food Secur. 2017, 14, 1–8. [Google Scholar] [CrossRef]
- Prout, J.M.; Shepherd, K.D.; McGrath, S.P.; Kirk, G.J.; Haefele, S.M. What is a good level of soil organic matter? An index based on organic carbon to clay ratio. Eur. J. Soil Sci. 2021, 72, 2493–2503. [Google Scholar]
- Van Zanten, H.H.E.; Herrero, M.; Van Hal, O.; Roos, E.; Muller, A.; Garnett, T.; Gerber, P.; Schader, C.; De Boer, I. Defining a land boundary for sustainable livestock consumption. Glob. Chang. Biol. 2018, 24, 4185–4194. [Google Scholar] [CrossRef] [PubMed]
- Schader, C.; Muller, A.; El-Hage Scialabba, N.; Hecht, J.; Isensee, A.; Erb, K.; Smith, P.; Makkar, H.P.S.; Klocke, P.; Leiber, F. Impacts of feeding less food-competing feedstuffs to livestock on global food system sustainability. J. R. Soc. Interface 2015, 12, 20150891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Zanten, H.H.E.; Meerburg, B.G.; Bikker, P.; Herrero, M.; De Boer, I.J.M. Opinion paper: The role of livestock in a sustainable diet: A land-use perspective. Animal 2016, 10, 547–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnett, T.; Godde, C.; Muller, A.; Röös, E.; Smith, P.; de Boer, I.; zu Ermgassen, E.; Herrero, M.; van Middelaar, C.; Schader, C.; et al. Grazed and Confused? Ruminating on Cattle, Grazing Systems, Methane, Nitrous Oxide, the Soil Carbon Sequestration Question—and What It All Means for Greenhouse Gas Emissions; Food Climate Research Network; University of Oxford: Oxford, UK, 2017. [Google Scholar]
- Department for Environment, Fisheries and Rural Affairs (DEFRA). Agriculture in the United Kingdom. 2019. Available online: https://www.gov.uk/government/statistics/agriculture-in-the-united-kingdom-2019 (accessed on 11 November 2020).
- Vellinga, T.V.; van den Pol-van Dasselaar, A.; Kuikman, P.J. The impact of grassland ploughing on CO2 and NsO emissions in the Netherlands. Nutr. Cycl. Agroecosystems 2004, 70, 33–45. [Google Scholar] [CrossRef]
- Hayek, M.; Harwatt, H.; Ripple, W.; Mueller, N. The carbon opportunity cost of animal-sourced food production on land. Nat. Sustain. 2020, 4, 21–24. [Google Scholar] [CrossRef]
- Monbiot, G. The Best Way to Save the Planet? Drop Meat and Dairy. Guardian. 2018. Available online: https://www.theguardian.com/commentisfree/2018/jun/08/save-planet-meat-dairy-livestock-food-free-range-steak (accessed on 21 January 2021).
- Climate Change Committee. The Sixth Carbon Budget: Agriculture and Land Use, Land Use Change and Forestry. Available online: https://www.theccc.org.uk/publication/sixth-carbon-budget/ (accessed on 12 February 2021).
- Office for National Statistics. Overview of the UK Population. 2020. Available online: https://www.ons.gov.uk/peoplepopulationandcommunity/populationandmigration/populationestimates/articles/overviewoftheukpopulation/august2019 (accessed on 11 November 2020).
- Department for Environment, Fisheries and Rural Affairs (DEFRA). Agriculture in the United Kingdom. 2011. Available online: https://www.gov.uk/government/statistics/agriculture-in-the-united-kingdom-2011 (accessed on 8 January 2021).
- Neijat, M.; House, J.; Guenter, W.; Kebreab, E. Calcium and phosphorus dynamics in commercial laying hens housed in conventional or enriched cage systems. Poult. Sci. 2011, 90, 2383–2396. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; p. 106. [Google Scholar]
- MacLeod, M.; Gerber, P.; Mottet, A.; Tempio., G.; Falcucci, A.; Opio, C.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Pig and Chicken Supply Chains—A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Food and Agriculture Organisation of the United Nations (FAO). Global Livestock Assessment Model: Version 2.0 Model Description. Available online: https://www.fao.org/fileadmin/user_upload/gleam/docs/GLEAM_2.0_Model_description.pdf (accessed on 25 November 2021).
- Public Health England. McCance and Widdowson’s Composition of Foods Integrated Dataset (CoFID) 2019. Available online: https://www.gov.uk/government/publications/composition-of-foods-integrated-dataset-cofid (accessed on 12 November 2020).
- British Nutrition Foundation (BNF). Nutrients, Food and Ingredients: Protein. Available online: https://www.nutrition.org.uk/nutritionscience/nutrients-food-and-ingredients/protein.html?start=2 (accessed on 12 November 2020).
- Pasture Fed Livestock Association. About Us. Available online: https://www.pastureforlife.org/about-us/ (accessed on 28 December 2021).
- Wilkinson, J.M. Redefining Efficiency of Feed Use by Livestock. Animal 2011, 5, 1014–1022. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.; Audsley, E.; Sanders, D. Determining the Environmental Burdens and Resource Use in the Production of Agricultural and Horticultural Commodities; Main Report: Defra Research Project IS0205; Cranfield University: Bedford, UK, 2006. [Google Scholar]
- Public Health England. National Diet and Nutrition Survey—Rolling Programme Years 9 to 11 (2016/17 to 2018/19). Available online: https://www.gov.uk/government/statistics/ndns-results-from-years-9-to-11-2016-to-2017-and-2018-to-2019 (accessed on 19 August 2021).
- YouGov. Dietary Choices of Brits (e.g., Vegetarian, Flexitarian, Meat-Eater etc.)? Available online: https://yougov.co.uk/topics/lifestyle/trackers/dietery-choices-of-brits-eg-vegeterian-flexitarian-meat-eater-etc (accessed on 2 March 2022).
- Food and Agriculture Organisation of the United Nations (FAO). Dietary Protein Quality Evaluation in Human Nutrition: Report of an FAO Expert Consultation; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Patel, M.; Sonesson, U.; Hessle, A. Upgrading plant amino acids through cattle to improve the nutritional value for humans: Effects of different production systems. Animal 2016, 11, 519–528. [Google Scholar] [CrossRef] [Green Version]
- Ertl, P.; Knaus, W.; Zollitsch, W. An approach to including protein quality when assessing the net contribution of livestock. Animal 2016, 10, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- Schonfeldt, H.C.; Gibson Hall, N. Dietary protein quality and malnutrition in Africa. Br. J. Nutr. 2012, 108, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonesson, U.; Davis, J.; Flysjo, A.; Gustavsson, J.; Witthoft, C. Protein quality as functional unit—A methodological framework for inclusion in life cycle assessment of food. J. Clean. Prod. 2017, 140, 470–478. [Google Scholar] [CrossRef]
- McAuliffe, G.; Takahashi, T.; Lee, M. Application of nutritional functional units in commodity-level life cycle assessment (LCA) of agri-food systems. Int. J. Life Cycle Assess. 2019, 25, 208–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scottish Agricultural College (SAC). Farming’s Retreat from the Hills. 2008. Available online: http://www.sruc.ac.uk/info/120484/support_to_agriculture_archive/54/2008_farmings_retreat_from_the_hills (accessed on 4 March 2022).
- Herrero, M.; Grace, D.; Njuki, J.; Johnson, N.; Enahoro, D.; Silvestri, S.; Rufino, M. The roles of livestock in developing countries. Animal 2013, 7, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organisation of the United Nations (FAO). Livestock Policy Brief 03: Cattle Ranching and Deforestation. Available online: https://www.fao.org/3/a0262e/a0262e.pdf (accessed on 3 March 2022).
- Natural England. The Importance of Livestock Grazing for Wildlife Conservation. 2005. Available online: http://publications.naturalengland.org.uk/publication/68026?category=48011 (accessed on 21 January 2021).
- Lomba, A.; Moreira, F.; Klimek, S.; Jongman, R.H.G.; Sullivan, C.; Moran, J.; Poux, X.; Honrado, J.P.; Pinto-Correia, T.; Plieninger, T.; et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 2019, 18, 36–42. [Google Scholar] [CrossRef]
- Arnott, G.; Ferris, C.P.; O’Connell, N.E.O. Review: Welfare of dairy cows in continuously housed and pasture-based production systems. Animal 2017, 11, 261–273. [Google Scholar] [CrossRef] [Green Version]
- Agriculture and Horticulture Development Board (AHDB). GB Fertiliser Prices. Available online: https://ahdb.org.uk/GB-fertiliser-prices (accessed on 3 March 2022).
- Varah, A.; Ahodo, K.; Coutts, S.R.; Hicks, H.L.; Comont, D.; Crook, L.; Hull, R.; Neve, P.; Childs, D.Z.; Freckleton, R.P. The costs of human-induced evolution in an agricultural system. Nat. Sustain. 2019, 3, 63–71. [Google Scholar] [CrossRef]
- National Sheep Association. The Benefits of Sheep in Arable Rotations. Available online: https://www.agricology.co.uk/resources/benefits-sheep-arable-rotations (accessed on 20 August 2021).
- Richardson, D. Opinion: Growers Should Turn to Sheep for Healthier Soils. Farmers Weekly. 2017. Available online: https://www.fwi.co.uk/news/opinion/growers-should-turn-to-sheep-for-healthier-soils (accessed on 8 September 2021).
- McAuliffe, G.A.; Takahashi, T.; Lee, M.R.F. Framework for life cycle assessment of livestock production systems to account for the nutritional quality of final products. Food Energy Secur. 2018, 7, e00143. [Google Scholar] [CrossRef]
- Poux, X.; Aubert, P.M. An Agroecological Europe in 2050: Multifunctional Agriculture for Healthy Eating. Findings from the Ten Years for Agroecology (TYFA) Modelling Exercise; Iddri-AScA: Paris, France, 2018. [Google Scholar]
- Poux, X.; Schiavo, M.; Aubert, P.M. Modelling an Agroecological UK in 2050—Findings From TYFAREGIO; Iddri-AScA: Paris, France, 2021. [Google Scholar]
Home-Fed Production (‘000 Tonnes Per Year) | Edible Proportion of Total Product e | Crude Protein Proportion of Edible Product f | |||
---|---|---|---|---|---|
Average 2007–2009 c | Average 2017–2019 d | Change (%) | |||
Beef and veal a,b | 859 | 907 | 5.63 | 0.75 | 0.21 |
Sheep meat a,b | 325 | 308 | −5.03 | 0.70 | 0.20 |
Milk | 13,362 | 14,933 | 11.80 | 1.00 | 0.03 |
Pig meat a,b | 698 | 893 | 28.00 | 0.65 | 0.20 |
Poultry meat a,b | 1463 | 1893 | 29.40 | 0.75 | 0.19 |
Eggs | 489 | 632 | 29.10 | 0.90 | 0.13 |
Animal Protein Production | ||||
---|---|---|---|---|
‘000 Tonnes/Year | Per Capita, g/day c | |||
Average 2007–2009 a | Average 2017–2019 b | Average 2007–2009 | Average 2017–2019 | |
Beef and veal | 135 | 143 | 5.98 | 5.89 |
Sheep meat | 45.50 | 43.12 | 2.02 | 1.78 |
Milk | 441 | 493 | 19.50 | 20.30 |
Pig meat | 92 | 117 | 4.08 | 4.82 |
Poultry meat | 210 | 271 | 9.29 | 11.20 |
Eggs | 55.90 | 72.20 | 2.48 | 2.98 |
Total | 979.40 | 1139.32 | 43.35 | 46.97 |
Total Production | Grass and Forage Crops in Typical Diet | Produced from Grass and Forage Crops | |||||
---|---|---|---|---|---|---|---|
Fresh Weight Per Year (‘000 Tonnes) a (A) | Protein Per Year (‘000 Tonnes) b (B) | Protein Per Capita (g/day) b (C) | Proportion of Total DM c (D) | Fresh Weight Per Year (‘000 Tonnes) (A × D) | Protein Per Year (‘000 Tonnes) (B × D) | Protein Per Capita (g/day) d (C × D) | |
Beef | 907 | 143 | 5.89 | 0.80 (0.70) | 726 (635) | 114.40 (100.10) | 4.71 (4.12) |
Sheep meat | 308 | 43.12 | 1.78 | 0.90 (0.80) | 278 (246) | 38.79 (34.48) | 1.60 (1.42) |
Milk | 14,933 | 493 | 20.30 | 0.75 (0.65) | 11,200 (9706) | 369.80 (320.50) | 15.20 (13.20) |
Total | 16,148 | 679.12 | 27.97 | 12,204 (10,587) | 522.99 (455.08) | 21.51 (18.74) |
Average Livestock Protein Intake Per Capita, 2016–2019 (g/day) a | Amount of Livestock Protein Available for Consumption Per Capita, 2017–2019 (g/day) b | |
---|---|---|
Beef | 4.6 | 7.2 |
Sheep meat | 1.5 | 1.7 |
Milk | 9.9 | 19 |
Pig meat | 3.8 | 7.6 |
Poultry meat | 12.2 | 12.3 |
Eggs | 3.8 | 3.4 |
Other processed meats | 3.8 | No comparable data |
Total | 39.6 | 51.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbour, R.; Young, R.H.; Wilkinson, J.M. Production of Meat and Milk from Grass in the United Kingdom. Agronomy 2022, 12, 914. https://doi.org/10.3390/agronomy12040914
Barbour R, Young RH, Wilkinson JM. Production of Meat and Milk from Grass in the United Kingdom. Agronomy. 2022; 12(4):914. https://doi.org/10.3390/agronomy12040914
Chicago/Turabian StyleBarbour, Robert, Richard H. Young, and J. Michael Wilkinson. 2022. "Production of Meat and Milk from Grass in the United Kingdom" Agronomy 12, no. 4: 914. https://doi.org/10.3390/agronomy12040914
APA StyleBarbour, R., Young, R. H., & Wilkinson, J. M. (2022). Production of Meat and Milk from Grass in the United Kingdom. Agronomy, 12(4), 914. https://doi.org/10.3390/agronomy12040914