First Report of Field Resistance to Afidopyropen, the Novel Pyropene Insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insects
2.2. Insecticides and Chemicals
2.3. Bioassays and Tests of Synergism
2.4. Afidopyropen Resistance Heritability Tests
3. Results
3.1. Monitoring and Cross-Resistance Tests
3.2. Synergism Assays
3.3. Heritability of Afidopyropen Resistance in The HD B. tabaci Strain
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.W.; Li, P.; Liu, S.S. Whitefly interactions with plants. Curr. Opin. Insect Sci. 2017, 19, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, A.R.; Ghanim, M.; Roditakis, E.; Nauen, R.; Ishaaya, I. Insecticide resistance and its management in Bemisia tabaci species. J. Pest Sci. 2020, 93, 893–910. [Google Scholar] [CrossRef]
- Wei, J.; He, Y.Z.; Guo, Q.; Guo, T.; Liu, Y.Q.; Zhou, X.P.; Liu, S.S.; Wang, X.W. Vector development and vitellogenin determine the transovarial transmission of begomoviruses. P. Natl. Acad. Sci. USA 2017, 114, 6746–6751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mota-Sanchez, D.; Wise, J.C. The Arthropod Pesticide Resistance Database. Michigan State University. 2017. Available online: http://www.pesticideresistance (accessed on 10 January 2022).
- Peng, Z.K.; Zheng, H.X.; Xie, W.; Wang, S.L.; Wu, Q.J.; Zhang, Y.J. Field resistance monitoring of the immature stages of the whitefly Bemisia tabaci to spirotetramat in China. Crop Prot. 2017, 98, 243–247. [Google Scholar] [CrossRef]
- Zheng, H.X.; Xie, W.; Wang, S.L.; Wu, Q.J.; Zhou, X.M.; Zhang, Y.J. Dynamic monitoring (B versus Q) and further resistance status of Q type Bemisia tabaci in China. Crop Prot. 2017, 94, 115–121. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.D.; Che, W.N.; Luo, C. First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. J. Integr. Agric. 2018, 17, 158–163. [Google Scholar] [CrossRef]
- Wang, R.; Fang, Y.; Mu, C.Q.; Qu, C.; Li, F.Q.; Wang, Z.Y.; Luo, C. Baseline susceptibility and cross-resistance of cycloxaprid, a novel cis-nitromethylene neonicotinoid insecticide, in Bemisia tabaci MED from China. Crop Prot. 2018, 110, 283–287. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.D.; Che, W.N.; Fang, Y.; Luo, C. Baseline susceptibility and biochemical mechanism of resistance to flupyradifurone in Bemisia tabaci. Crop Prot. 2020, 132, 105132. [Google Scholar] [CrossRef]
- Gerwick, B.C.; Sparks, T.C. Natural products for pest control: An analysis of their role, value and future. Pest Manag. Sci. 2014, 70, 1169–1185. [Google Scholar] [CrossRef]
- Leichter, C.A.; Thompson, N.; Johnson, B.R.; Scott, J.G. The high potency of ME-5343 to aphids is due to a unique mechanism of action. Pestic. Biochem. Physiol. 2013, 107, 169–176. [Google Scholar] [CrossRef]
- Jeanmart, S.; Edmunds, A.J.; Lamberth, C.; Pouliot, M. Synthetic approaches to the 2010-2014 new agrochemicals. Bioogr. Med. Chem. Lett. 2016, 24, 317–341. [Google Scholar] [CrossRef] [PubMed]
- Kandasamy, R.; London, D.; Stam, L.; Von Deyn, W.; Zhao, X.; Salgado, V.L.; Nesterov, A. Afidopyropen: New and potent modulator of insect transient receptor potential channels. Insect Biochem. Mol. Biol. 2017, 84, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P. Status and outlook for acaricide and insecticide discovery. Pest Manag. Sci. 2021, 77, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.D.; Ashfaq, M.; Stelinski, L.L. Susceptibility of Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae), to the insecticide afidopyropen: A new and potent modulator of insect transient receptor potential channels. Appl. Entomol. Zool. 2018, 53, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.V. Repellent effects of insecticides on Stephanitis pyrioides Scott (Hemiptera: Tingidae) under laboratory conditions. Crop Prot. 2020, 127, 104985. [Google Scholar] [CrossRef]
- Slusher, E.K.; Cottrell, T.; Acebes-Doria, A.L. Effects of aphicides on pecan aphids and their parasitoids in pecan orchards. Insects 2021, 12, 241. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, H.J.; Xu, W.; Liu, J.T.; Geng, Z.Q.; Chu, D.; Guo, L. Pymetrozine-resistant whitefly Bemisia tabaci (Gennadius) populations in China remain susceptible to afidopyropen. Crop Prot. 2021, 149, 105757. [Google Scholar] [CrossRef]
- Kumar, V.; McKenzie, C.L.; Osborne, L.S. Effect of foliar application of afidopyropen on Bemisia tabaci and Amblyseius swirskii. Arthropod Manage. Tests 2018, 43, 1–2. [Google Scholar]
- Koch, R.L.; Queiroz, O.D.S.; Aita, R.C.; Hodgson, E.W.; Potter, B.D.; Nyoike, T.; Ellers-Kirk, C.D. Efficacy of afidopyropen against soybean aphid (Hemiptera: Aphididae) and toxicity to natural enemies. Pest Manag. Sci. 2020, 76, 375–383. [Google Scholar] [CrossRef]
- Queiroz, O.D.S.; Nyoike, T.W.; Koch, R.L. Baseline susceptibility to afidopyropen of soybean aphid (Hemiptera: Aphididae) from the north central United States. Crop Prot. 2020, 129, 105020. [Google Scholar] [CrossRef]
- Shi, D.D.; Liang, P.Z.; Zhang, L.; Lv, H.X.; Gao, X.W.; You, H.; Li, J.H.; Ma, K.S. Susceptibility baseline of Aphis gossypii Glover (Hemiptera: Aphididae) to the novel insecticide afidopyropen in China. Crop Prot. 2022, 151, 105834. [Google Scholar] [CrossRef]
- Pan, H.P.; Chu, D.; Ge, D.Q.; Wang, S.L.; Wu, Q.J.; Xie, W.; Jiao, X.G.; Liu, B.M.; Yang, X.; Yang, N.N.; et al. Further spread of and domination by Bemisia tabaci (Hemiptera: Aleyrodidae) biotype Q on field crops in China. J. Econ. Entomol. 2011, 104, 978–985. [Google Scholar] [CrossRef]
- Luo, C.; Yao, Y.; Wang, R.J.; Yan, F.M.; Hu, D.X. The use of mitochondrial cytochrome oxidase mtCOI gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Acta Entomol. Sin. 2002, 4, 759–763. [Google Scholar]
- LeOra Software. Polo Plus, A User’s Guide to Probit or Logit Analysis; LeOra Software: Berkeley, CA, USA, 2002. [Google Scholar]
- Wang, R.; Wang, J.D.; Che, W.N.; Sun, Y.; Li, W.X.; Luo, C. Characterization of field-evolved resistance to cyantraniliprole in Bemisia tabaci MED from China. J. Integr. Agric. 2019, 18, 2571–2578. [Google Scholar] [CrossRef]
- Stone, B. A formula for determining degree of dominance in cases of monofactorial inheritance of resistance to chemicals. Bull. World Health Organ. 1968, 38, 325–326. [Google Scholar] [PubMed]
- Fowler, M.A.; Montell, C. Drosophila TRP channels and animal behavior. Life Sci. 2013, 92, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nesterov, A.; Spalthoff, C.; Kandasamy, R.; Katana, R.; Rankl, N.B.; Andrés, M.; Jähde, P.; Dorsch, J.A.; Stam, L.F.; Braun, F.; et al. TRP channels in insect stretch receptors as insecticide targets. Neuron 2015, 86, 665–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausborn, J.; Wolf, H.; Mader, W.; Kayser, H. The insecticide pymetrozine selectively affects chordotonal mechanoreceptors. J. Exp. Biol. 2005, 208, 4451–4466. [Google Scholar] [CrossRef] [Green Version]
- Yao, F.L.; Zheng, Y.; Huang, X.Y.; Ding, X.L.; Zhao, J.W.; Desneux, N.; He, Y.X.; Weng, Q.Y. Dynamics of Bemisia tabaci biotypes and insecticide resistance in Fujian province in China during 2005-2014. Sci. Rep. 2017, 7, 40803. [Google Scholar] [CrossRef] [Green Version]
- Bielza, P.; Moreno, I.; Belando, A.; Grávalos, C.; Izquierdo, J.; Nauen, R. Spiromesifen and spirotetramat resistance in field populations of Bemisia tabaci Gennadius in Spain. Pest Manag. Sci. 2019, 75, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Lv, H.; Tan, D.; Liang, N.; Guo, C.; Chu, D. Resistance to insecticides in the field and baseline susceptibility to cyclaniliprole of whitefly Bemisia tabaci (Gennadius) in China. Crop Prot. 2020, 130, 105065. [Google Scholar] [CrossRef]
- Wang, R.; Wang, J.D.; Zhang, J.S.; Che, W.N.; Luo, C. Characterization of flupyradifurone resistance in the whitefly Bemisia tabaci Mediterranean (Q biotype). Pest Manag. Sci. 2020, 76, 4286–4292. [Google Scholar] [CrossRef] [PubMed]
- Bouvier, J.C.; Buès, R.; Boivin, T.; Boudinhon, L.; Beslay, D.; Sauphanor, B. Deltamethrin resistance in the codling moth (Lepidoptera: Tortricidae): Inheritance and number of genes involved. Heredity 2001, 87, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Roush, R.T.; McKenzie, J.A. Ecological genetics of insecticide and acaricide resistance. Annu. Rev. Entomol. 1987, 32, 361–380. [Google Scholar] [CrossRef] [PubMed]
- Denholm, I.; Rowland, M.W. Tactics for managing pesticide resistance in arthropods: Theory and practice. Annu. Rev. Entomol. 1992, 37, 91–112. [Google Scholar] [CrossRef]
- Horowitz, A.R.; Gorman, K.; Ross, G.; Denholm, I. Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Arch. Insect Biochem. Physiol. 2003, 54, 177–186. [Google Scholar] [CrossRef]
- Pu, X.; Yang, Y.H.; Wu, S.W.; Wu, Y.D. Characterisation of abamectin resistance in a field-evolved multiresistant population of Plutella xylostella. Pest Manag. Sci. 2010, 66, 371–378. [Google Scholar] [CrossRef]
- Wang, X.L.; Wu, S.W.; Gao, W.Y.; Wu, Y.D. Dominant inheritance of field-evolved resistance to fipronil in Plutella xylostella (Lepidoptera: Plutellidae). J. Econ. Entomol. 2016, 109, 334–338. [Google Scholar] [CrossRef]
- Yang, F.; Head, G.P.; Price, P.A.; González, J.C.S.; Kerns, D.L. Inheritance of Bacillus thuringiensis Cry2Ab2 protein resistance in Helicoverpa zea (Lepidoptera: Noctuidae). Pest Manag. Sci. 2020, 76, 3676–3684. [Google Scholar] [CrossRef]
Population | Location of Collection | Site of Collection | Date of Collection | Host Plant |
---|---|---|---|---|
LY | Liaoyang, Liaoning | 41.19° N, 123.11° E | August 2021 | Eggplant |
CY | Chaoyang, Liaoning | 41.59° N, 120.50° E | August 2021 | Cucumber |
HD | Haidian, Beijing | 39.97° N, 116.31° E | April 2021 | Tomato |
TZ | Tongzhou, Beijing | 39.73° N, 116.69° E | June 2021 | Tomato |
WQ | Wuqing, Tianjin | 39.35° N, 117.10° E | June 2021 | Tomato |
JH | Jinghai, Tianjin | 38.90° N, 116.94° E | June 2021 | Tomato |
ZJK | Zhangjiakou, Hebei | 40.58° N, 115.00° E | July 2021 | Pepper |
BD | Baoding, Hebei | 38.82° N, 115.39° E | July 2021 | Tomato |
ZZ | Zhengzhou, Henan | 34.91° N, 113.56° E | July 2021 | Cucumber |
XZ | Xinzheng, Henan | 34.33° N, 113.75° E | July 2021 | Pepper |
JN | Jinan, Shandong | 36.78° N, 117.23° E | August 2021 | Tomato |
TA | Taian, Shandong | 36.14° N, 117.22° E | August 2021 | Tomato |
WH | Wuhan, Hubei | 30.28° N, 114.32° E | June 2021 | Pepper |
XY | Xiangyang, Hubei | 32.12° N, 112.03° E | June 2021 | Cucumber |
CS | Changsha, Hunan | 28.28° N, 113.09° E | September 2021 | Pepper |
YY | Yueyang, Hunan | 29.30° N, 113.26° E | September 2021 | Pepper |
HK | Haikou, Hainan | 19.76° N, 110.33° E | April 2021 | Melon |
SY | Sanya, Hainan | 18.40° N, 109.14° E | April 2021 | Melon |
Population | N a | Slope ± SE | LC50 (95% FL) (mg/L) | X2 (df) | RR b |
---|---|---|---|---|---|
MED-S | 957 | 1.01 ± 0.10 | 6.61 (5.48–8.12) | 1.61 (3) | |
LY | 957 | 1.81 ± 0.12 | 14.70 (12.93–16.53) | 1.46 (3) | 2.2 |
CY | 970 | 1.79 ± 0.11 | 17.98 (15.95–20.13) | 2.14 (3) | 2.7 |
HD | 933 | 1.18 ± 0.10 | 287.76 (244.03–341.11) | 1.24 (3) | 43.5 |
TZ | 946 | 2.21 ± 0.13 | 14.27 (12.79–15.80) | 2.51 (3) | 2.2 |
WQ | 959 | 1.86 ± 0.12 | 9.61 (8.57–10.73) | 1.56 (3) | 1.5 |
JH | 939 | 1.70 ± 0.12 | 10.37 (8.80–11.93) | 1.17 (3) | 1.6 |
ZJK | 951 | 1.98 ± 0.11 | 11.58 (10.41–12.86) | 1.99 (3) | 1.8 |
BD | 975 | 2.02 ± 0.12 | 16.96 (15.21–18.81) | 2.84 (3) | 2.6 |
ZZ | 948 | 1.74 ± 0.15 | 7.48 (6.55–8.45) | 2.44 (3) | 1.1 |
XZ | 961 | 1.75 ± 0.13 | 10.16 (8.66–11.65) | 2.04 (3) | 1.5 |
JN | 937 | 1.59 ± 0.13 | 6.24 (5.39–7.12) | 2.63 (3) | 0.9 |
TA | 964 | 1.93 ± 0.12 | 19.05 (17.06–21.20) | 1.53 (3) | 2.9 |
WH | 948 | 1.89 ± 0.13 | 12.62 (11.04–14.21) | 1.90 (3) | 1.9 |
XY | 963 | 1.62 ± 0.13 | 6.72 (5.53–7.89) | 1.47 (3) | 1.0 |
CS | 940 | 1.39 ± 0.11 | 13.83 (11.62–16.10) | 1.12 (3) | 2.1 |
YY | 961 | 2.03 ± 0.14 | 7.72 (6.70–8.72) | 2.72 (3) | 1.2 |
HK | 936 | 1.51 ± 0.11 | 16.69 (14.42–19.09) | 1.81 (3) | 2.5 |
SY | 944 | 1.79 ± 0.12 | 18.91 (16.89–21.08) | 2.20 (3) | 2.9 |
Insecticide | Strain | N a | LC50 (mg L−1) (95% CL) b | Slope ± SE | X2 (df) | RR c |
Afidopyropen | MED-S | 952 | 7.21 (4.83–12.04) | 1.12 ± 0.10 | 1.76 (3) | |
HD | 940 | 268.64 (213.55–344.87) | 1.01 ± 0.12 | 2.54 (3) | 37.3 | |
Flonicamid | MED-S | 931 | 1.79 (1.48–2.07) | 1.32 ± 0.10 | 2.54 (3) | |
HD | 966 | 2.14 (1.89–2.36) | 1.01 ± 0.11 | 2.15 (3) | 1.2 | |
Cyantraniliprole | MED-S | 948 | 1.38 (1.18–1.62) | 1.32 ± 0.10 | 2.81 (3) | |
HD | 925 | 1.58 (1.40–1.71) | 0.89 ± 0.10 | 1.99 (3) | 1.1 | |
Imidacloprid | MED-S | 950 | 11.84 (10.78–13.56) | 1.39 ± 0.11 | 2.87 (3) | |
HD | 917 | 15.63 (13.16–18.19) | 1.03 ± 0.11 | 3.10 (3) | 1.3 | |
Pymetrozine | MED-S | 933 | 1.24 (1.02–1.50) | 1.19 ± 0.10 | 1.58 (3) | |
HD | 928 | 1.63 (1.29–1.97) | 1.33 ± 0.11 | 2.83 (3) | 1.3 | |
Sulfoxaflor | MED-S | 940 | 9.05 (6.89–12.04) | 1.39 ± 0.11 | 2.69 (3) | |
HD | 922 | 131.57 (105.27–157.80) | 1.03 ± 0.11 | 2.27 (3) | 14.5 | |
Thiamethoxam | MED-S | 914 | 12.18 (9.97–15.14) | 1.21 ± 0.11 | 2.35 (3) | |
HD | 936 | 10.08 (8.29–13.00) | 1.01 ± 0.11 | 1.69 (3) | 0.8 |
Strain | Insecticide/Synergist | LC50 (mg L−1) (95% CL) a | Slope ± SE | X2 (df) | SR b |
---|---|---|---|---|---|
MED-S | Afidopyropen | 7.78 (6.76–8.82) | 1.76 ± 0.12 | 1.90 (3) | |
Afidopyropen + PBO | 6.42 (5.55–7.33) | 1.52 ± 0.11 | 1.08 (3) | 1.21 | |
Afidopyropen + DEM | 7.63 (6.38–8.87) | 1.62 ± 0.12 | 2.67 (3) | 1.02 | |
Afidopyropen + TPP | 6.34 (5.49–7.23) | 1.55 ± 0.11 | 2.21 (3) | 1.23 | |
HD | Afidopyropen | 281.68 (241.85–324.19) | 1.40 ± 0.11 | 1.86 (3) | |
Afidopyropen + PBO | 59.62 (51.68–67.85) | 1.59 ± 0.11 | 1.90 (3) | 4.72 | |
Afidopyropen + DEM | 247.99 (198.95–297.42) | 1.17 ± 0.11 | 1.03 (3) | 1.14 | |
Afidopyropen + TPP | 234.41 (189.19–279.85) | 1.22 ± 0.11 | 2.19 (3) | 1.20 |
Strain or Cross | LC50 (mg L−1) (95% FL) a | Slope ± SE | X2 (df) | RR b | Dc |
---|---|---|---|---|---|
MED-S | 7.07 (6.05–8.12) | 1.51 ± 0.11 | 2.45 (3) | 1 | |
HD | 276.77 (232.75–321.76) | 1.39 ± 0.11 | 1.41 (3) | 39.1 | |
F1A (MED-S ♂ × HD ♀) | 161.85 (142.75–181.83) | 1.79 ± 0.12 | 2.26 (3) | 22.9 | 0.71 |
F1B (HD ♂ × MED-S ♀) | 175.05 (153.61–198.66) | 1.56 ± 0.11 | 1.45 (3) | 24.8 | 0.75 |
F1 (pooled) | 171.62 (148.61–197.27) | 1.40 ± 0.11 | 2.03 (3) | 24.3 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Gao, B.; Che, W.; Qu, C.; Zhou, X.; Luo, C. First Report of Field Resistance to Afidopyropen, the Novel Pyropene Insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China. Agronomy 2022, 12, 724. https://doi.org/10.3390/agronomy12030724
Wang R, Gao B, Che W, Qu C, Zhou X, Luo C. First Report of Field Resistance to Afidopyropen, the Novel Pyropene Insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China. Agronomy. 2022; 12(3):724. https://doi.org/10.3390/agronomy12030724
Chicago/Turabian StyleWang, Ran, Bingli Gao, Wunan Che, Cheng Qu, Xuan Zhou, and Chen Luo. 2022. "First Report of Field Resistance to Afidopyropen, the Novel Pyropene Insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China" Agronomy 12, no. 3: 724. https://doi.org/10.3390/agronomy12030724
APA StyleWang, R., Gao, B., Che, W., Qu, C., Zhou, X., & Luo, C. (2022). First Report of Field Resistance to Afidopyropen, the Novel Pyropene Insecticide, on Bemisia tabaci Mediterranean (Q Biotype) from China. Agronomy, 12(3), 724. https://doi.org/10.3390/agronomy12030724