Combined Application of Organic and Inorganic Amendments Improved the Yield and Nutritional Quality of Forage Sorghum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Materials
2.3. Treatments and Experimental Design
2.4. Crop Husbandry
2.5. Data Collected
2.5.1. Forage-Yield-Related Traits
2.5.2. Qualitative Traits
2.6. Data Analysis
3. Results
3.1. Morphological Traits
3.2. Forage Yield Variables
3.3. Nutritional Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Xu, H.; Yi, H. Impact of fertilizer on crop yield and C: N: P stoichiometry in arid and semi-arid soil. Int. J. Environ. Res. Public Health 2021, 18, 4341. [Google Scholar] [CrossRef]
- Guo, J.H.; Liu, X.J.; Zhang, Y.; Shen, J.L.; Han, W.X.; Zhang, W.F.; Christie, P.; Goulding, K.W.T.; Vitousek, P.M.; Zhang, F.S. Significant acidification in major Chinese croplands. Science 2010, 327, 1008–1010. [Google Scholar] [CrossRef] [Green Version]
- Shisanya, C.A.; Mucheru, M.W.; Mugendi, D.N.; Kung’u, J.B. Effect of organic and inorganic nutrient sources on soil mineral nitrogen and maize yields in central highlands of Kenya. Soil Tillage Res. 2009, 103, 239–246. [Google Scholar] [CrossRef]
- Hepperly, Y.P.; Lotter, D.; Ulsh, C.Z.; Siedel, R.; Reider, C. Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci. Util. 2009, 17, 117–126. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, W.; Yu, X.; Huang, Q. Effects of long-term fertilization on corn productivity and its sustainability in an Ultisol of southern China. Agric. Ecosyst. Environ. 2010, 138, 44–50. [Google Scholar] [CrossRef]
- Song, Z.; Gao, H.; Zhu, P.; Peng, C.; Deng, A.; Zheng, C.; Mannaf, M.A.; Islam, M.N.; Zhang, W. Organic amendments increase corn yield by enhancing soil resilience to climate change. Crop J. 2015, 3, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Bidabadi, S.S.; Dehghanipoodeh, S.; Wright, G.C. Vermicompost leachate reduces some negative effects of salt stress in pomegranate. Int. J. Recycl. Org. Waste Agric. 2017, 6, 255–263. [Google Scholar] [CrossRef]
- Faloye, O.T.; Alatise, M.O.; Ajayi, A.E.; Ewulo, B.S. Synergistic effects of biochar and inorganic fertiliser on maize (Zea mays) yield in an alfisol under drip irrigation. Soil Tillage Res. 2017, 174, 214–220. [Google Scholar] [CrossRef]
- Calamai, A.; Chiaramonti, D.; Casini, D.; Masoni, A.; Palchetti, E. Short-term effects of organic amendments on soil properties and maize (Zea maize L.) growth. Agriculture 2020, 10, 158. [Google Scholar] [CrossRef]
- Zhang, M.; Ok, Y.S. Biochar soil amendment for sustainable agriculture with carbon and contaminant sequestration. Carbon Manag. 2014, 5, 255–257. [Google Scholar] [CrossRef]
- Roy, P.; Dias, G. Prospects for pyrolysis technologies in the bioenergy sector: A review. Renew. Sustain. Energy Rev. 2017, 77, 59–69. [Google Scholar]
- Khan, S.; Qureshi, I.; Shifa, M.S.; Waziri, A.H. An efficient calixarene-based functional material for the sorption and recovery of Cr (VI) from water. Int. J. Environ. Anal. Chem. 2019, 99, 1123–1134. [Google Scholar] [CrossRef]
- Bashir, S.; Bashir, S.; Gulshan, A.B.; Khan, M.J.; Iqbal, J.; Sherani, J.; Husain, A.; Ahmed, N.; Shah, A.N.; Bukhari, M.A.; et al. The role of different organic amendments to improve maize growth in wastewater irrigated soil. J. King Saud Univ. Sci. 2021, 33, 101583. [Google Scholar] [CrossRef]
- Chiu, C.C.; Cheng, C.J.; Lin, T.H.; Juang, K.W.; Lee, D.Y. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr (VI) in Cr (VI)-contaminated soils. J. Hazard. Mater. 2009, 161, 1239–1244. [Google Scholar] [CrossRef]
- Sabir, M.; Hanafi, M.M.; Aziz, T.; Ahmad, H.R.; Zia-Ur-Rehman, M.; Saifullah, G.M.; Hakeem, K.R. Comparative effect of activated carbon, press mud and poultry manure on immobilization and concentration of metals in maize (Zea mays) grown on contaminated soil. Int. J. Agric. Biol. 2013, 15, 559–564. [Google Scholar]
- Farhad, W.; Saleem, M.F.; Cheema, M.A.; Hammad, H.M. Effect of poultry manure levels on the productivity of spring maize (Zea mays L.). J. Ani. Plant Sci. 2009, 19, 122–125. [Google Scholar]
- Adekiya, A.O.; Aboyeji, C.M.; Dunsin, O.; Festus, A.; Ayotunde, O.; Aremu, C.O.; Oyetunji, D.A.; Oloye, A.D.; Owolabi, I.O. Poultry manure addition affects production, plant nutritional status and heavy metals accumulation in green Amaranth (Amaranthus hybridus). Int. J. Agric. Biol. 2019, 22, 993–1000. [Google Scholar]
- Ul-Allah, S.; Khan, A.A.; Fricke, T.; Buerkert, A.; Wachendorf, M. Effect of fertiliser and irrigation on forage yield and irrigation water use efficiency in semi-arid regions of Pakistan. Exp. Agric. 2015, 51, 485–500. [Google Scholar] [CrossRef]
- Aina, O.E.; Amoo, S.O.; Mugivhisa, L.L.; Olowoyo, J.O. Effect of organic and inorganic sources of nutrients on the bioactive compounds and antioxidant activity of tomato. Appl. Ecol. Environ. Res. 2019, 17, 3681–3694. [Google Scholar] [CrossRef]
- Stamenković, O.S.; Siliveru, K.; Veljković, V.B.; Banković-Ilić, I.B.; Tasić, M.B.; Ciampitti, I.A.; Đalović, I.G.; Mitrović, P.M.; Sikora, V.Š.; Prasad, P.V. Production of biofuels from sorghum. Renew. Sustain. Energ. Rev. 2020, 124, 109769. [Google Scholar] [CrossRef]
- Kusvuran, A.; Bilgici, M.; Kusvuran, S.; Nazli, R.I. The effect of different organic matters on plant growth regulation and nutritional components under salt stress in sweet sorghum [Sorghum bicolor (L.) Moench.]. Maydica 2021, 66, 9. [Google Scholar]
- Mahmood, F.; Khan, I.; Ashraf, U.; Shahzad, T.; Hussain, S.; Shahid, M.; Abid, M.; Ullah, S. Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. J. Soil Sci. Plant Nutr. 2017, 17, 22–32. [Google Scholar] [CrossRef] [Green Version]
- Bremner, J.M.; Mulvaney, C.S. Nitrogen-Total. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 595–624. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; The United States Department of Agriculture: Washington, DC, USA, 1954; Volume 939, pp. 1–19. [Google Scholar]
- Yun-long, B.; Seiji, Y.; Maiko, I.; Hong-Wei, C. QTLs for sugar contents of stalks in sweet sorghum (Sorghum bicolor L. Moench). Agric. Sci. China 2016, 5, 736–744. [Google Scholar]
- Van Soest, P.J.; Robertson, J.D.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- AOAC. Official Method of Analysis, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2002. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co. Inc.: New York, NY, USA, 1997; pp. 400–428. [Google Scholar]
- Dineshkumar, R.; Subramanian, J.; Arumugam, A.; Rasheeq, A.A.; Sampath Kumar, P. Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste Biomass Val. 2018, 11, 77–87. [Google Scholar] [CrossRef]
- Darini, M.T. Studies of chemıcal sandy soil and physiological properties of Aloe vera L. plant on nutrient stress condition. Int. J. Curr. Res. 2017, 7, 208–212. [Google Scholar]
- Zameer, R.; Sadaqat, M.; Fatima, K.; Fiaz, S.; Zafar, H.; Qayyum, A.; Nashat, N.; Raza, A.; Shah, A.N.; Batool, R.; et al. Two-component system genes in Sorghum bicolor: Genome-wide identification and expression profiling in response to environmental stresses. Front. Genet. 2021, 12, 794305. [Google Scholar] [CrossRef]
- Sutrisno, S.; Yusnawan, E. Effect of manure and inorganic fertilizers on vegetative, generative characteristics, nutrient, and secondary metabolite contents of mungbean. Biosaintifika 2018, 10, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Asghari, R.; Dadashi, M.; Razavi, A.; Feizi, H.; Bakhtiari, S. The study of some physiological responses of saffron to salinity stress and humic acid treatment. J. Med. Spice Plants 2018, 23, 162–167. [Google Scholar]
- Hosseinzadeh, S.R.; Amiri, H.; Ismaili, A. Evaluation of photosynthesis, physiological, and biochemical responses of chickpea (Cicer arietinum L. cv. Pirouz) under water deficit stress and use of vermi compost fertilizer. J. Integr. Agric. 2018, 17, 2426–2437. [Google Scholar] [CrossRef] [Green Version]
- Mubeen, K.; Iqbal, A.; Hussain, M.; Zahoor, F.; Siddiqui, M.H.; Mohsin, A.U.; Bakht, H.F.S.G.; Hanif, M. Impact of nitrogen and phosphorus on the growth, yield and quality of maize (Zea mays L.) fodder in Pakistan. Philipp. J. Crop Sci. 2013, 38, 43–46. [Google Scholar]
- Hao, X.; Liu, S.; Wu, J.; Hu, R.; Tong, C.; Su, Y. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr. Cycl. Agroecosys. 2008, 81, 17–24. [Google Scholar] [CrossRef]
- Birkhofer, K.; Bezemer, T.M.; Bloem, J.; Bonkowski, M.; Christensen, S.; Dubois, D.; Ekelund, F.; Fließach, A.; Gunst, L.; Hedlund, K.; et al. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biol. Biochem. 2008, 40, 2297–2308. [Google Scholar] [CrossRef]
- Lima, D.L.D.; Santos, S.M.; Scherer, H.W.; Schneider, R.J.; Duarte, A.C.; Santos, E.B.H.; Esteves, V.I. Effects of organic and inorganic amendments on soil organic matter properties. Geoderma 2009, 150, 38–45. [Google Scholar] [CrossRef]
- Gangwar, K.S.; Singh, K.K.; Sharma, S.K.; Tomar, O.K. Alternative tillage and crop residue management in wheat after rice in sandy loam soils of Indo- Gengetic plains. Soil Till. Res. 2006, 88, 242–252. [Google Scholar] [CrossRef]
- Papini, R.; Valboa, G.; Favilli, F.; L’abate, G. Influence of land use on organic carbon pool and chemical properties of Vertic Cambisols in central and southern Italy. Agric. Ecosyst. Environ. 2011, 140, 68–79. [Google Scholar] [CrossRef]
- Souri, M.K.; Rashidi, M.; Kianmehr, M.H. Effects of manure-based urea pellets on growth, yield, and nitrate content in coriander, garden cress, and parsley plants. J. Plant Nutr. 2018, 41, 1405–1413. [Google Scholar] [CrossRef]
- Ul-Allah, S.; Khan, A.A.; Fricke, T.; Buerkert, A.; Wachendorf, M. Fertilizer and irrigation effects on forage protein and energy production under semi-arid conditions of Pakistan. Field Crops Res. 2014, 159, 62–69. [Google Scholar] [CrossRef]
- El-Aal, A.; Shiref, A.E.A.; Awadalla, H.A. Assessment of the organic and inorganic fertilizers application on maize/wheat production in calcareous soil. Fayoum J. Agric. Res. Dev. 2012, 26, 112–129. [Google Scholar] [CrossRef]
- Dinka, T.B.; Goshu, T.A.; Haile, E.H. Effect of integrated nutrient management on growth and yield of food barley (Hordeum vulgare) variety in toke kutaye district, west showa zone, Ethiopia. Adv. Crop Sci. Tech. 2018, 6, 1–8. [Google Scholar] [CrossRef]
- Naiji, M.; Souri, M.K. Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Sci. Pol. Hortorum Cultus 2018, 17, 167–175. [Google Scholar] [CrossRef]
- Souri, M.K. Effectiveness of chloride compared to 3, 4-dimethylpyrazole phosphate on nitrification inhibition in soil. Commun Soil Sci. Plant Anal. 2010, 41, 1769–1778. [Google Scholar] [CrossRef]
- Souri, M.K.; Naiji, M.; Kianmehr, M.H. Nitrogen release dynamics of a slow release urea pellet and its effect on growth, yield, and nutrient uptake of sweet basil (Ocimum basilicum L.). J. Plant Nutr. 2019, 42, 604–614. [Google Scholar] [CrossRef]
- Souri, M.K.; Neumann, G. Indications for passive rather than active release of natural nitrification inhibitors in Brachiariahumidicola root exudates. J. Plant Nutr. 2018, 41, 477–486. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Ejue, W.S.; Olayanju, A.; Dunsin, O.; Aboyeji, C.M.; Aremu, C.; Adegbite, K.; Akinpelu, O. Different organic manure sources and NPK fertilizer on soil chemical properties, growth, yield and quality of okra. Sci. Rep. 2020, 10, 16083. [Google Scholar] [CrossRef]
Months | Rainfall (mm) | Temperature °C | ||||
---|---|---|---|---|---|---|
2019 | 2020 | Last 10 Years Average | 2019 | 2020 | Last 10 Years Average | |
July | 70.2 | 58.6 | 72 | 32.1 | 33.7 | 33.1 |
August | 93 | 86.5 | 92 | 32.7 | 33.4 | 33.2 |
September | trace | 28 | 24 | 32.6 | 30.8 | 31.0 |
October | 33 | trace | 25 | 25.3 | 25.4 | 25.1 |
Treatments (Trt) | Plant Height (cm) | Number of Leaves per Plant | Stem Diameter (mm) | Stem Dry Weight (g) | Leaves Dry Weight (g) | Leaf Area (cm) |
---|---|---|---|---|---|---|
Control (no inorganic or organic ammendments added) | 169.2 ± 1.57 I | 9 ± 0.70 G | 12.2 ± 0.18 J | 158.4 ± 4.13 I | 22.3 ± 0.87 H | 94.2 ± 6.74 I |
NPK, 59:72:30 kg ha−1 | 173.2 ± 1.29 HI | 9 ± 0.85 FG | 12.6 ± 0.18 IJ | 163.4 ± 4.80 HI | 22.8 ± 1.07 H | 99.6 ± 7.57 HI |
1/2 NPK, 29.5:36:15 kg ha−1 | 177 ± 0.63 GH | 10 ± 0.67 FG | 13.2 ± 0.22 HI | 168.4 ± 5.33 GHI | 23.2 ± 1.05 GH | 105.3 ± 7.09 HI |
Poultry manure (PM), 5 t ha−1 | 178.7 ± 1.19 FG | 10 ± 0.94 FG | 13.7 ± 0.18 GH | 171.6 ± 5.17 FGH | 23.6 ± 0.87 GH | 109.56.80 GHI |
Press mud (MUD), 40 t ha−1 | 181.7 ± 1.49 FG | 10 ± 0.85 FG | 14.2 ± 0.22 FG | 174.8 ± 4.92 EFG | 24.1 ± 1.02 FGH | 114.9 ± 7.15 FGH |
Biochar (BC), 11 t ha−1 | 183.3 ± 1.70 EF | 11 ± 0.79 EF | 14.7 ± 0.28 EF | 177.3 ± 6.13 EFG | 24.8 ± 0.86 EFG | 121.6 ± 8.12 EFG |
BC + 1/2 NPK | 187 ± 1.93 DE | 13 ± 0.67 DE | 15.1 ± 0.27 DE | 180.4 ± 5.89 DEF | 25.6 ± 0.77 DEF | 128.0 ± 7.35 EF |
MUD + 1/2 NPK | 188.3 ± 0.79 D | 14 ± 0.43 CD | 15.6 ± 0.26 D | 184.8 ± 5.41 CDE | 26.6 ± 0.73 CDE | 135.0 ± 7.44 DE |
PM + 1/2 NPK | 190.7 ± 1.19 CD | 14 ± 0.37 CD | 16.3 ± 0.43 C | 188.5 ± 6.04 BCD | 27.2 ± 0.67 BCD | 147.8 ± 5.36 CD |
PM + BC + 1/2 NPK | 193.8 ± 1.18 BC | 15 ± 0.24 BC | 16.9 ± 0.61 BC | 192.5 ± 5.99 ABC | 27.6 ± 0.75 BC | 159.8 ± 5.51 BC |
PM + MUD + 1/2 NPK | 196.8 ± 1.18 AB | 15 ± 0.48 BC | 17.4 ± 0.49 AB | 196.5 ± 5.42 AB | 28.7 ± 0.47 AB | 171.6 ± 7.73 AB |
BC + MUD + 1/2 NPK | 198.7 ± 2.02 AB | 16 ± 0.92 AB | 17.8 ± 0.46 A | 200.1 ± 5.76 A | 29.9 ± 0.40 A | 179.6 ± 10.16 A |
PM + BC + MUD + 1/2 NPK | 201 ± 2.37 A | 17 ± 1.08 A | 18.0 ± 0.59 A | 201.7 ± 6.51 A | 30.4 ± 0.59 A | 184.3 ± 13.02 A |
HSD (p ≤ 0.05) | 5.0 | 2 | 0.65 | 10.2 | 1.9 | 15.5 |
Years (Y) | ||||||
2019 | 185.8 ± 6.04 | 12 ± 1.63 B | 15.0 ± 1.00 B | 175.8 ± 8.22 B | 25.2 ± 1.95 B | 132.1 ± 13.34 B |
2020 | 186.4 ± 5.53 | 13 ± 1.88 A | 15.4 ± 1.30 A | 187.0 ± 9.34 A | 26.6 ± 1.28 A | 137.4 ± 23.17 A |
HSD (p ≤ 0.05) | ns | 0.40 | 0.15 | 2.3 | 0.44 | 3.5 |
Significance interactions | ||||||
Treatments | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.001 ** |
Years | ns | <0.002 ** | <0.001 ** | <0.001 ** | <0.001 ** | <0.004 ** |
Trt × Y | ns | ns | <0.001 ** | ns | <0.04 * | <0.001 ** |
Treatments (Trt) | Green Biomass Yield (Mg ha−1) | Dry Biomass Yield (Mg ha−1) | Brix Value (g kg−1) |
---|---|---|---|
Control (no inorganic or organic ammendments added) | 26.0 ± 0.93 H | 9.7 ± 0.27 H | 74.1 ± 3.07 H |
NPK, 59:72:30 kg ha−1 | 26.8 ± 0.47 GH | 10.0 ± 0.36 GH | 82.1 ± 5.14 GH |
1/2 NPK, 29.5:36:15 kg ha−1 | 27.8 ± 0.35 FG | 10.2 ± 0.43 FGH | 85.7 ± 4.48 GH |
Poultry manure (PM), 5 t ha−1 | 28.0 ± 0.39 EFG | 10.5 ± 0.51 E–H | 88.9 ± 4.43 FGH |
Press mud (MUD), 40 t ha−1 | 28.2 ± 0.43 DEF | 10.9 ± 0.55 D–G | 91.9 ± 4.47 EFG |
Biochar (BC), 11 t ha−1 | 28.6 ± 0.57 DEF | 11.2 ± 0.48 C–F | 95.7 ± 6.28 D–G |
BC + 1/2 NPK | 29.1 ± 0.50 CDE | 11.4 ± 0.47 B–E | 101.4 ± 6.77 C–F |
MUD + 1/2 NPK | 29.4 ± 0.51 CD | 11.6 ± 0.55 BCD | 104.6 ± 6.89 CDE |
PM + 1/2 NPK | 30.2 ± 0.69 BC | 11.9 ± 0.46 ABC | 109.2 ± 7.09 BCD |
PM + BC + 1/2 NPK | 31.0 ± 0.88 AB | 12.3 ± 0.53 AB | 113.8 ± 7.11 AB |
PM + MUD + 1/2 NPK | 31.3 ± 0.86 AB | 12.3 ± 0.39 AB | 124.2 ± 7.26 AB |
BC + MUD + 1/2 NPK | 31.8 ± 0.94 A | 12.7 ± 0.50 A | 130.5 ± 7.64 A |
PM + BC + MUD + 1/2 NPK | 31.8 ± 0.71 A | 12.6 ± 0.17 A | 132.9 ± 8.14 A |
HSD (p ≤ 0.05) | 1.28 | 0.99 | 15.3 |
Years (Y) | |||
2019 | 29.0 ± 0.81 B | 10.8 ± 0.64 B | 104.7 ± 12.42 A |
2020 | 29.5 ± 1.53 A | 11.8 ± 0.65 A | 100.7 ± 11.42 B |
HSD (p ≤ 0.05) | 0.29 | 0.22 | 3.5 |
Significance interactions | |||
Treatments | <0.001 ** | <0.001 ** | <0.001 ** |
Years | <0.001 ** | <0.001 ** | <0.02 * |
Trt × Y | <0.001 ** | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sher, A.; Adnan, M.; Sattar, A.; Ul-Allah, S.; Ijaz, M.; Hassan, M.U.; Manaf, A.; Qayyum, A.; Elesawy, B.H.; Ismail, K.A.; et al. Combined Application of Organic and Inorganic Amendments Improved the Yield and Nutritional Quality of Forage Sorghum. Agronomy 2022, 12, 896. https://doi.org/10.3390/agronomy12040896
Sher A, Adnan M, Sattar A, Ul-Allah S, Ijaz M, Hassan MU, Manaf A, Qayyum A, Elesawy BH, Ismail KA, et al. Combined Application of Organic and Inorganic Amendments Improved the Yield and Nutritional Quality of Forage Sorghum. Agronomy. 2022; 12(4):896. https://doi.org/10.3390/agronomy12040896
Chicago/Turabian StyleSher, Ahmad, Muhammad Adnan, Abdul Sattar, Sami Ul-Allah, Muhammad Ijaz, Muhammad Umair Hassan, Abdul Manaf, Abdul Qayyum, Basem H. Elesawy, Khadiga Ahmed Ismail, and et al. 2022. "Combined Application of Organic and Inorganic Amendments Improved the Yield and Nutritional Quality of Forage Sorghum" Agronomy 12, no. 4: 896. https://doi.org/10.3390/agronomy12040896
APA StyleSher, A., Adnan, M., Sattar, A., Ul-Allah, S., Ijaz, M., Hassan, M. U., Manaf, A., Qayyum, A., Elesawy, B. H., Ismail, K. A., Gharib, A. F., & El Askary, A. (2022). Combined Application of Organic and Inorganic Amendments Improved the Yield and Nutritional Quality of Forage Sorghum. Agronomy, 12(4), 896. https://doi.org/10.3390/agronomy12040896