Machine Learning Strategy for Improved Prediction of Micronutrient Concentrations in Soils of Taif Rose Farms Based on EDXRF Spectra
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. XRF Measurements
2.4. Modeling
2.4.1. Overview of MLR, RF, and MARS
2.4.2. Model Implementation and Validation
3. Results and Discussion
3.1. Measurements of EDXRF of the Farm Dataset
3.2. Performance Metrics
3.3. Modeling
3.4. Validation
3.5. Outcomes of the MLR, RF, and MARS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senapati, S.K.; Rout, G.R. Study of culture conditions for improved micropropagation of hybrid rose. Hortic. Sci. 2008, 35, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Guterman, I.; Shalit, M.; Menda, N.; Piestun, D.; Dafny-Yelin, M.; Shalev, G.; Bar, E.; Davydov, O.; Ovadis, M.; Emanuel, M.; et al. Rose scent: Genomics approach to discovering novel floral fragrance-related genes. Plant Cell 2002, 14, 2325–2338. [Google Scholar] [CrossRef] [Green Version]
- Uggla, M.; Gustavsson, K.E.; Olsson, M.E.; Nybom, H. Changes in colour and sugar content in rose hips (Rosa dumalis L. and Rosa rubiginosa L.) during ripening. J. Hortic. Sci. Biotechnol. 2005, 80, 204–208. [Google Scholar] [CrossRef]
- Kaur, N.; Sharma, R.K.; Sharma, M.; Singh, V.; Ahuja, P.S. Molecular evaluation and micropropagation of field selected elites of R. damascene. Gen. Appl. Plant Physiol. 2007, 33, 171–186. [Google Scholar]
- Nilsson, O. Rosa. In Flora of Turkey and the East Aegean Islands; Davis, P.H., Ed.; Edinburgh University Press: Edinburgh, Scotland, 1997; Volume 4, pp. 106–128. [Google Scholar]
- Naquvi, K.J.; Ansari, S.H.; Ali, M.; Najmi, K. Volatile oil composition of Rosa damascena Mill (Rosaceae). J. Pharmacogn. Phytochem. 2014, 2, 177–181. [Google Scholar]
- Rusanov, K.; Kovacheva, N.; Stefanova, K.; Atanassov, A.; Atanassov, I. Rosa damascena—Genetic resources and capacity building for molecular breeding. Biotechnol. Biotechnol. Equip. 2009, 23, 1436–1439. [Google Scholar] [CrossRef] [Green Version]
- Shohayeb, M.; Arida, H.; Abdel-Hameed, E.S.; Bazaid, S. Effects of Macro-and Microelements in Soil of Rose Farms in Taif on Essential Oil Production by Rosa damascena Mill. J. Chem. 2015, 2015, 935235. [Google Scholar]
- Niu, G.; Rodriguez, S.; Aguiniga, L. Effect of saline water irrigation on growth and physiological responses of three rose rootstocks. HortScience 2002, 43, 1479–1492. [Google Scholar] [CrossRef] [Green Version]
- Bongiovanni, R.; Lowenberg-Deboer, J. Precision Agriculture and Sustainability. Precis. Agric. 2004, 5, 359–387. [Google Scholar] [CrossRef]
- Mertens, J.; Smolder, E. Zinc. In Heavy Metals in Soils: Trace Metals and Metalloids in Soil and Their Bioavailability; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 465–493. [Google Scholar]
- Oorts, K. Copper. In Heavy Metals in Soils: Trace Metals and Metalloids in Soil and Their Bioavailability; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 367–394. [Google Scholar]
- Savvas, D. General introduction. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H.C., Eds.; Embryo Publications: Athens, Greece, 2002. [Google Scholar]
- Adler, K.; Piikki, K.; Söderström, M.; Eriksson, J.; Alshihabi, O. Predictions of Cu, Zn, and Cd Concentrations in Soil Using Portable X-Ray Fluorescence Measurements. Sensors 2020, 20, 474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemiére, B. A review of pxrf (field portable X-ray fluorescence) applications for applied geochemistry. J. Geochem. Explor. 2018, 188, 350–363. [Google Scholar] [CrossRef] [Green Version]
- Weindorf, D.C.; Zhu, Y.; Chakraborty, S.; Bakr, N.; Huang, B. Use of portable X-ray fluorescence spectrometry for environmental quality assessment of peri-urban agriculture. Environ. Monit. Assess. 2012, 184, 217–227. [Google Scholar] [CrossRef]
- Santana, E.; dos Santos, F.R.; Mastelini, S.M.; Melquiade, F.L. Improved prediction of soil properties with Multi-target Stacked Generalisation on EDXRF spectra. Chemom. Intell. Lab. Syst. 2021, 209, 102431. [Google Scholar] [CrossRef]
- Kilbride, C.; Poole, J.; Hutchings, T.R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/icp-oes and ex situ field portable X-ray fluorescence analyses. Environ. Pollut. 2006, 143, 16–23. [Google Scholar] [CrossRef]
- Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mwangi, F.K. Energy dispersive X-ray fluorescence and scattering assessment of soil quality via partial least squares and artificial neural networks analytical modeling approaches. Talanta 2012, 98, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Parsons, C.; Grabulosa, E.M.; Pili, E.; Floor, G.H.; Roman-Ross, G.; Charlet, L. Quantification of trace arsenic in soils by fieldportable X-ray fluorescence spectrometry: Considerations for sample preparation and measurement conditions. J. Hazard. Mater. 2013, 262, 1213–1222. [Google Scholar] [CrossRef]
- Caporale, A.G.; Adamo, P.; Capozzi, F.; Langella, G.; Terribile, F.; Vingiani, S. Monitoring metal pollution in soils using portable-XRF and conventional laboratory-based techniques: Evaluation of the performance and limitations according to metal properties and sources. Sci. Total Environ. 2018, 643, 516–526. [Google Scholar] [CrossRef]
- Xia, F.; Fan, T.; Chen, Y.; Ding, D.; Wei, J.; Jiang, D.; Deng, S. Prediction of Heavy Metal Concentrations in Contaminated Sites from Portable X-ray Fluorescence Spectrometer Data Using Machine Learning. Processes 2022, 10, 536. [Google Scholar] [CrossRef]
- Sirsat, M.; Cernadas, E.; Fernández-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Comput. Electron. Agric. 2018, 154, 120–133. [Google Scholar] [CrossRef]
- Grunwald, S.; Vasques, G.M.; Rivero, R.G. Fusion of soil and remote sensing data to model soil properties. Adv. Agron. 2015, 131, 1–109. [Google Scholar]
- Xu, Y.; Smith, S.E.; Grunwald, S.; Abd-Elrahman, A.; Wani, S.P. Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields. ISPRS J. Photogramm. 2017, 123, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sui, B.; Shen, H.; Wang, Z. Estimating temporal changes in soil pH in the black soil region of Northeast China using remote sensing. Comput. Electron. Agric. 2018, 154, 204–212. [Google Scholar] [CrossRef]
- Blanco, C.M.G.; Gomez, V.M.B.; Crespo, P.; Ließ, M. Spatial prediction of soil water retention in a Páramo landscape: Methodological insight into machine learning using random forest. Geoderma 2018, 316, 100–114. [Google Scholar] [CrossRef]
- Tziachris, P.; Aschonitis, V.; Chatzistathis, T.; Papadopoulou, M. Assessment of spatial hybrid methods for predicting soil organic matter using DEM derivatives and soil parameters. Catena 2019, 174, 206–216. [Google Scholar] [CrossRef]
- Kovačević, M.; Bajat, B.; Gajić, B. Soil type classification and estimation of soil properties using support vector machines. Geoderma 2010, 154, 340–347. [Google Scholar] [CrossRef]
- Farfani, H.A.; Behnamfar, F.; Fathollahi, A. Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Expert Syst. Appl. 2015, 42, 8971–8981. [Google Scholar] [CrossRef]
- Hanna, A.M.; Ural, D.; Saygili, G. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dyn. Earthq. Eng. 2007, 27, 521–540. [Google Scholar] [CrossRef]
- Henderson, B.L.; Bui, E.N.; Moran, C.J.; Simon, D. Australia-wide predictions of soil properties using decision trees. Geoderma 2005, 124, 383–398. [Google Scholar] [CrossRef]
- Dai, F.; Zhou, Q.; Lv, Z.; Wang, X.; Liu, G. Spatial prediction of soil organic matter content integrating artificial neural network and ordinary kriging in Tibetan Plateau. Ecol. Indic. 2014, 45, 184–194. [Google Scholar] [CrossRef]
- Poggio, L.; Gimona, A.; Spezia, L.; Brewer, M.J. Bayesian spatial modelling of soil properties and their uncertainty: The example of soil organic matter in Scotland using R-INLA. Geoderma 2016, 277, 69–82. [Google Scholar] [CrossRef]
- Caubet, M.; Dobarco, M.R.; Arrouays, D.; Minasny, B.; Saby, N.P. Merging country, continental and global predictions of soil texture: Lessons from ensemble modelling in France. Geoderma 2019, 337, 99–110. [Google Scholar] [CrossRef]
- Fathololoumi, S.; Vaezi, A.R.; Alavipanah, S.K.; Ghorbani, A.; Saurette, D.; Biswas, A. Improved digital soil mapping with multitemporal remotely sensed satellite data fusion: A case study in Iran. Sci. Total Environ. 2020, 721, 137703. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.; Welp, G.; Thiel, M. High resolution mapping of soil properties using remote sensing variables in southwestern Burkina Faso: A comparison of machine learning and multiple linear regression models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Emadi, M.; Taghizadeh-Mehrjardi, R.; Cherati, A.; Danesh, M.; Mosavi, A.; Scholten, T. Predicting and Mapping of Soil Organic Carbon Using Machine Learning Algorithms in Northern Iran. Remote Sens. 2020, 12, 2234. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Li, L.D.; Simpson, M.; McGowen, I.; Sides, T. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of easternAustralia. Ecol. Indic. 2018, 88, 425–438. [Google Scholar] [CrossRef]
- Bian, Z.; Guo, X.; Wang, S.; Zhuang, Q.; Jin, X.; Wang, Q.; Jia, S. Applying statistical methods to map soil organic carbon of agricultural lands in northeastern coastal areas of China. Arch. Agron. Soil Sci. 2020, 66, 532–544. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Nabiollahi, K.; Kerry, R. Digital mapping of soil organic carbon at multiple depths using different data mining techniques in Baneh region, Iran. Geoderma 2016, 266, 98–110. [Google Scholar] [CrossRef]
- Fadl, M.A.; Al-Yasi1, H.M.; Alsherif, E.A. Impact of elevation and slope aspect on floristic composition in wadi Elkor, Sarawat Mountain, Saudi Arabia. Sci. Rep. 2021, 11, 16160. [Google Scholar] [CrossRef] [PubMed]
- Farrag, H.F. Floristic composition and vegetation-soil relationships in Wadi Al-Argy of Taif region, Saudi Arabia. Int. Res. J. Plant Sci. 2012, 3, 147–157. Available online: http://www.interesjournals.org/IRJPS (accessed on 6 March 2022).
- Koom, K.; Wiafe-Akenten, J.; Boamah, D. Soil heavy metal pollution along Subin River in Kumasi, Ghana; Using X-ray fluorescence (XRF) analysis. AIP Conf. Proc. 2010, 1221, 101–108. [Google Scholar]
- EPA/ROC. Environmental Information of Taiwan: ROC: Yearbook of Environmental Protection in Taiwan; Environmental Protection Agency (EPA): Taipei, Taiwan, 1998; pp. 82–83.
- Brouwer, N.P. Theory of XRF-Getting Acquainted with the Principles, 2nd ed.; PANalytica: Almelo, The Netherlands, 2006; pp. 8–25. [Google Scholar]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Puntanen, S. Handbook of Regression Analysis by Samprit Chatterjee, Jeffrey, S. Simonoff. Int. Stat. Rev. 2013, 81, 330–331. [Google Scholar] [CrossRef]
- Sullivan, W. Decision Tree and Random Forest-Machine Learning and Algorithms: The Future Is Here; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2018. [Google Scholar]
- Nisbet, R.; Miner, G.; Yale, K. Handbook of Statistical Analysis and Data Mining Applications, 2nd ed.; Academic Press, Inc.: Cambridge, MS, USA, 2017. [Google Scholar]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Hall, M. Combinatorial Theory, 2nd ed.; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Shacklette, H.T.; Boerngen, J.G. Element Concentrations in Soils and Other Surficial Material of the Conterminous United States; Government Printing Office: Washington, DC, USA, 1984.
- Al-Mamoori, S.K.; Al-Maliki, L.A.J.; El-Tawel, K.; El-Tawel, K.; Hussain, H.M.; Al-Ansari, N.; Jawad Al Ali, M. Chloride, Calcium Carbonate and Total Soluble Salts Contents Distribution for An-Najaf and Al-Kufa Cities’ Soil by Using GIS. Geotech. Geol. Eng. 2019, 37, 2207–2225. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019. [Google Scholar] [CrossRef]
- Weller-Fahy, D.J.; Borghetti, B.J.; Sodemann, A.A. A survey of distance and similarity measures used within network intrusion anomaly detection. IEEE Commun. Surv. Tutor. 2015, 17, 70–91. [Google Scholar] [CrossRef]
- Kurz-Kim, J.R.; Loretan, M. A Note on the Coefficient of Determination in Regression Models with Infinite-variance Variables. Dt. Bundesbank, 2007. Available online: https://ideas.repec.org/p/zbw/bubdp1/5574.html (accessed on 6 March 2022).
- Kadkhodazadeh, M.; Valikhan Anaraki, M.; Morshed-Bozorgdel, A.; Farzin, S. A New Methodology for Reference Evapotranspiration Prediction and Uncertainty Analysis under Climate Change Conditions Based on Machine Learning, Multi Criteria Decision Making and Monte Carlo Methods. Sustainability 2022, 14, 2601. [Google Scholar] [CrossRef]
- Bozağaç, D.; Batmaz, I.; Oğuztüzün, H. Dynamic simulation metamodeling using MARS: A case of radar simulation. Math. Comput. Simul. 2016, 124, 69–86. [Google Scholar] [CrossRef]
- Samadi, M.; Jabbari, E.; Azamathulla, H.M.; Mojallal, M. Estimation of scour depth below free overfall spillways using multivariate adaptive regression splines and artificial neural networks. Eng. Appl. Comput. Fluid Mech. 2015, 9, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Y.; Zeng, R.; Srinivasan, R.S.; Ahrentzen, S. Random Forest-based hourly building energy prediction. Energy Build. 2018, 171, 11–25. [Google Scholar] [CrossRef]
- Gholizadeh, M.; Jamei, M.; Ahmadianfar, I.; Pourrajab, R. Prediction of nanofluids viscosity using random forest (RF) approach. Chemom. Intell. Lab. Syst. 2020, 201, 104010. [Google Scholar] [CrossRef]
- Juneng, L.; Latif, M.T.; Tangang, F. Factors influencing the variations of PM10 aerosol dust in Klang Valley, Malaysia during the summer. Atmos. Environ. 2011, 45, 4370–4378. [Google Scholar] [CrossRef]
- Huangfu, W.; Wu, W.; Zhou, X.; Lin, Z.; Zhang, G.; Chen, R.; Song, Y.; Lang, T.; Qin, Y.; Ou, P.; et al. Landslide Geo-Hazard Risk Mapping Using Logistic Regression Modeling in Guixi, Jiangxi, China. Sustainability 2021, 13, 4830. [Google Scholar] [CrossRef]
E | Reference Data | L 1 | L 2 | L 3 | L 4 | L 5 | L 6 | L 7 | L 8 | L 9 | L 10 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | |||||||||||
Si | 310,000 | 16,000–450,000 | 314,400 | 328,200 | 307,000 | 324,700 | 298,100 | 324,800 | 363,900 | 339,400 | 341,100 | 342,00 |
Al | 72,000 | 700 > 10,000 | 71,400 | 61,800 | 48,400 | 71,600 | 50,700 | 50,900 | 50,510 | 68,900 | 57,800 | 63,100 |
Fe | 26,000 | 100 > 100,000 | 67,800 | 58,400 | 65,800 | 59,100 | 61,400 | 50,200 | 39,000 | 50,700 | 45,900 | 42,300 |
Ti | 2900 | 70–20,000 | 8540 | 5050 | 4430 | 5490 | 5470 | 4330 | 4400 | 4870 | 4270 | 4380 |
Cl | 5000 | 100–9900 | 1690 | 110 | 96 | 527 | 400 | 2760 | 350 | 320 | 550 | 690 |
Mn | 550 | ˂2–7000 | 573 | 76 | 60 | 1050 | 102 | 937 | 677 | 833 | 656 | 860 |
Sr | 240 | ˂5–3000 | 463 | 23 | 24 | 381 | 801 | 518 | 271 | 318 | 463 | 331 |
Ba | 580 | 10–5000 | 243 | 90 | 120 | 480 | 460 | 640 | 520 | 400 | 430 | 560 |
Zr | 230 | ˂20–2000 | 121 | 5 | 35 | 203 | 254 | 227 | 301 | 228 | 249 | 539 |
Zn | 60 | ˂5–2900 | 97 | 5 | 5 | 112 | 204 | 1740 | 67 | 101 | 89 | 121 |
Cu | 25 | ˂1–700 | NaN | NaN | 5 | 51 | 55 | 44 | NaN | NaN | NaN | NaN |
Cr | 54 | 1–2000 | NaN | NaN | 29 | 78 | NaN | 108 | NaN | NaN | NaN | NaN |
Y | 25 | ˂10–200 | NaN | NaN | 8 | 46 | 46 | NaN | 44 | 43 | NaN | 67 |
Ni | 19 | ˂5–700 | NaN | NaN | 65 | NaN | NaN | NaN | NaN | NaN | NaN | NaN |
Si | Al | Fe | Ti | Cl | Mn | Sr | Ba | Zr | Zn | Cu | Cr | Y | Ni | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Si | - | 15.05 | 15.63 | 545.0 | 540 | - | - | - | 3.2 | 365 | 0.66 | 142 | 365 | 0.3 |
Al | - | - | 36 | 0.3 | 64 | 0.36 | 365 | 0.69 | 3697 | 314 | 36 | 36 | 14 | 14 |
Fe | 15 | 55 | - | - | - | - | - | - | −22 | 14 | 12 | 524 | 26 | 3 |
Ti | 1 | 4 | 2 | - | 12 | 99 | 3 | 5 | 241 | 34 | 345 | 76 | 87 | 78 |
Cl | 67 | 45 | - | 2 | - | 3 | 3 | - | 132 | - | - | - | 34 | 2 |
Mn | 5 | - | 23 | 2 | - | - | - | 4 | - | −23 | 34 | 23 | 34 | 34 |
Sr | 6 | 45 | - | - | - | 3 | - | 2 | - | - | - | 2 | 6 | 12 |
Ba | 4 | - | 4 | 2 | 225 | - | 45 | - | - | - | 3 | - | 6 | 43 |
Zr | 5 | 23 | - | 12 | 5 | - | - | - | - | 23 | 34 | 67 | 56 | |
Zn | 45 | - | - | 3 | 322 | 44 | - | - | - | - | - | 34 | 57 | |
Cu | 34 | - | - | 23 | - | - | - | - | - | - | - | 8 | 14 | |
Cr | 3 | 23 | 32 | 34 | - | 54 | 23 | - | 23 | 34 | 45 | - | 4 | |
Y | 12 | - | 1 | - | - | - | - | - | - | 3 | 7 | - | - | 45 |
Ni | 56 | - | 34 | - | - | 54 | - | 45 | 544 | - | - | - | 8 | - |
Element | Maximum Number of Trees | Error Readings |
---|---|---|
Si | 100 | 0.001 |
Al | 50 | 0.3345 |
Fe | 150 | 0.0054 |
Ti | 1123 | 0.00574 |
Cl | 234 | 0.0000957 |
Mn | 340 | 0.00141 |
Sr | 324 | 0.00002414 |
Ba | 1575 | 0.001954 |
Zr | 756 | 0.010541 |
Zn | 424 | 0.000955 |
Cu | 477 | 0.00001214 |
Cr | 186 | 0.009665 |
Y | 860 | 0.0000014 |
Ni | 417 | 0.00016345 |
Modeling Technique | Element | Performance Metrics | ||||||
---|---|---|---|---|---|---|---|---|
Multiple Line Regression (MLR) | Si | 6.95 | 3.34 | 2.99 | 3.03 | 3.89 | 2.59 | |
Al | 3.99 | 1.92 | 1.98 | 2.11 | 1.21 | 1.63 | 2.13 | |
Fe | 2.73 | 2.02 | 1.82 | 9.38 | 1.85 | 2.67 | 4.34 | |
Ti | 3.67 | 4.87 | 2.27 | 4.08 | 2.11 | 3.60 | 2.14 | |
Cl | 2.13 | 2.95 | 3.74 | 3.44 | 2.43 | 1.45 | 5.80 | |
Mn | 3.21 | 2.42 | 4.00 | 1.50 | 3.76 | 2.97 | 4.56 | |
Sr | 8.51 | 4.50 | 4.90 | 7.84 | 2.83 | 1.15 | 3.30 | |
Ba | 2.36 | 3.50 | 2.87 | 6.90 | 5.14 | 1.94 | 1.53 | |
Zr | 3.67 | 3.78 | 3.78 | 3.07 | 1.13 | 8.32 | 4.32 | |
Zn | 8.09 | 1.96 | 3.58 | 4.21 | 3.03 | 6.33 | 1.39 | |
Cu | 1.37 | 2.50 | 1.81 | 1.49 | 1.41 | 8.49 | 2.28 | |
Cr | 6.89 | 2.30 | 1.90 | 4.55 | 1.14 | 3.96 | 4.50 | |
Y | 6.14 | 2.87 | 2.31 | 2.66 | 1.27 | 2.64 | 2.21 | |
Ni | 8.91 | 3.82 | 2.75 | 2.66 | 4.83 | 3.83 | 4.60 | |
Random Forest (RF) | Si | 4.59 | 3.95 | 2.85 | 4.67 | 3.69 | 4.99 | 3.56 |
Al | 3.35 | 1.54 | 1.11 | 3.98 | 3.93 | 1.34 | 2.18 | |
Fe | 4.16 | 3.72 | 1.87 | 3.45 | 2.38 | 2.73 | 1.09 | |
Ti | 4.61 | 1.92 | 9.93 | 3.38 | 3.17 | 1.16 | 2.76 | |
Cl | 2.19 | 4.38 | 4.34 | 2.60 | 2.14 | 2.27 | 2.70 | |
Mn | 3.19 | 1.09 | 6.26 | 4.92 | 3.14 | 4.32 | 3.03 | |
Sr | 2.37 | 3.13 | 3.97 | 4.31 | 1.27 | 3.95 | 4.94 | |
Ba | 4.44 | 1.98 | 3.65 | 3.88 | 4.87 | 3.57 | 2.68 | |
Zr | 2.86 | 4.73 | 2.99 | 1.73 | 3.11 | 2.70 | 1.52 | |
Zn | 3.74 | 1.02 | 2.02 | 3.74 | 2.05 | 4.75 | 4.57 | |
Cu | 4.15 | 3.16 | 3.48 | 2.48 | 3.85 | 7.64 | 2.37 | |
Cr | 3.95 | 3.33 | 1.95 | 3.88 | 4.57 | 3.79 | 4.02 | |
Y | 4.60 | 4.90 | 3.55 | 1.86 | 1.35 | 3.83 | 9.87 | |
Ni | 1.64 | 4.92 | 3.66 | 3.72 | 2.13 | 3.27 | 3.02 | |
Multivariate adaptive regression splines (MARS) | Si | 2.92 | 4.88 | 6.89 | 4.52 | 3.43 | ||
Al | 3.04 | 2.63 | 2.70 | 8.16 | 9.66 | |||
Fe | 7.19 | 2.62 | 4.45 | 2.79 | 4.37 | |||
Ti | 4.51 | 4.24 | 1.95 | 4.05 | 1.62 | |||
Cl | 1.50 | 1.30 | 2.98 | 1.40 | 4.51 | |||
Mn | 2.94 | 4.21 | 4.51 | 3.76 | 2.72 | |||
Sr | 3.24 | 2.90 | 3.14 | 1.41 | 1.22 | |||
Ba | 2.90 | 2.27 | 1.99 | 5.68 | 1.25 | |||
Zr | 5.69 | 3.10 | 3.26 | 3.19 | 4.29 | |||
Zn | 3.00 | 3.76 | 2.46 | 2.71 | 7.39 | |||
Cu | 2.71 | 1.85 | 4.14 | 1.82 | 2.92 | |||
Cr | 2.87 | 3.20 | 3.41 | 1.00 | 2.23 | |||
Y | 4.03 | 2.06 | 3.65 | 3.54 | 4.16 | |||
Ni | 1.54 | 6.79 | 3.23 | 1.94 | 3.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelmigid, H.M.; Baz, M.A.; AlZain, M.A.; Al-Amri, J.F.; Zaini, H.G.; Morsi, M.M.; Abualnaja, M.; Althagafi, E.A. Machine Learning Strategy for Improved Prediction of Micronutrient Concentrations in Soils of Taif Rose Farms Based on EDXRF Spectra. Agronomy 2022, 12, 895. https://doi.org/10.3390/agronomy12040895
Abdelmigid HM, Baz MA, AlZain MA, Al-Amri JF, Zaini HG, Morsi MM, Abualnaja M, Althagafi EA. Machine Learning Strategy for Improved Prediction of Micronutrient Concentrations in Soils of Taif Rose Farms Based on EDXRF Spectra. Agronomy. 2022; 12(4):895. https://doi.org/10.3390/agronomy12040895
Chicago/Turabian StyleAbdelmigid, Hala M., Mohammed A. Baz, Mohammed A. AlZain, Jehad F. Al-Amri, Hatim Ghazi Zaini, Maissa M. Morsi, Matokah Abualnaja, and Elham A. Althagafi. 2022. "Machine Learning Strategy for Improved Prediction of Micronutrient Concentrations in Soils of Taif Rose Farms Based on EDXRF Spectra" Agronomy 12, no. 4: 895. https://doi.org/10.3390/agronomy12040895
APA StyleAbdelmigid, H. M., Baz, M. A., AlZain, M. A., Al-Amri, J. F., Zaini, H. G., Morsi, M. M., Abualnaja, M., & Althagafi, E. A. (2022). Machine Learning Strategy for Improved Prediction of Micronutrient Concentrations in Soils of Taif Rose Farms Based on EDXRF Spectra. Agronomy, 12(4), 895. https://doi.org/10.3390/agronomy12040895