Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vegetal Material
2.2. Spectra Acquisition
2.3. Reference Measurements: High Performance Liquid Chromatography
2.4. Multivariate Data Analysis
3. Results and Discussions
3.1. HPLC Results
3.2. Spectral Data
3.3. Interpretation of Spectra
3.4. PLS Model for Total THC
3.5. PLS Model for Total CBD
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Iversen, L.L. The Science of Marijuana, 3rd ed.; Oxford University Press: New York, NY, USA, 2018; Volume 53, ISBN 9780190846848. [Google Scholar]
- Russo, E.B. Taming THC: Potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br. J. Pharmacol. 2011, 163, 1344–1364. [Google Scholar] [CrossRef] [PubMed]
- Hemp Today. El Parlamento Europeo Aprueba el Aumento del Límite de THC de la UE al 0.3%; Fundación Nakło: Lelów, Poland, 2020. [Google Scholar]
- Townsend, D.; Eustis, I.; Lewis, M.; Rodgers, S.; Smith, K.; Bohman, A. The Determination of Total THC and CBD Content in Cannabis Flower by Fourier Transform Near Infrared Spectroscopy; PerkinElmer: Waltham, MA, USA, 2018. [Google Scholar]
- Brown, A.K.; Xia, Z.; Bulloch, P.; Idowu, I.; Francisco, O.; Stetefeld, J.; Stout, J.; Zimmer, J.; Marvin, C.; Letcher, R.J.; et al. Validated quantitative cannabis profiling for Canadian regulatory compliance—Cannabinoids, aflatoxins, and terpenes. Anal. Chim. Acta 2019, 1088, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Carnerero, C.; Núñez-Sánchez, N.; Casano, S.; Ferreiro-Vera, C. The potential of near infrared spectroscopy to estimate the content of cannabinoids in Cannabis sativa L.: A comparative study. Talanta 2018, 190, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Valinger, D.; Jurina, T.; Šain, A.; Matešic, N.; Panic, M.; Benkovic, M.; Gajdoš, G.J.; Jurinjak, T.A. Development of ANN models based on combined UV-vis-NIR spectra for rapid quantification of physical and chemical properties of industrial hemp extracts. Phytochem. Anal 2021, 32, 326–338. [Google Scholar] [CrossRef]
- Cozzolino, D. Near infrared spectroscopy in natural products analysis. Planta Med. 2009, 75, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Warner, M.L.; Alford, I.; Lawrence, D.M.; Kohl, A.C.; Williams, S.J.; Yeatman, D.T. Comparative analysis of freshly harvested cannabis plant weight and dried cannabis plant weight. Forensic Chem. 2017, 3, 52–57. [Google Scholar] [CrossRef]
- Wilson, N.; Heinrich, M. The use of near infrared spectroscopy to discriminate between THC-rich and hemp forms of Cannabis. Planta Med. 2006, 72, P_260. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L. Spectral discrimination of Cannabis sativa L. leaves and canopies. Remote Sens. Environ. 1998, 64, 192–201. [Google Scholar] [CrossRef]
- Borille, B.T.; Marcelo, M.C.A.; Ortiz, R.S.; de Cássia Mariotti, K.; Ferrão, M.F.; Limberger, R.P. Near infrared spectroscopy combined with chemometrics for growth stage classification of cannabis cultivated in a greenhouse from seized seeds. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2017, 173, 318–323. [Google Scholar] [CrossRef]
- Toonen, M.A.; Maliepaard, C.; Reijmers, T.H.; van der Voet, H.; Mastebroek, H.D.; van den Broeck, H.C.; Ebskamp, M.J.; Kessler, W.; Kessler, R.W. Predicting the chemical composition of fibre and core fraction of hemp (Cannabis sativa L.). Euphytica 2004, 140, 39–45. [Google Scholar] [CrossRef]
- De la Asunción-Nadal, V.; Armenta, S.; Garrigues, S.; de Guardia, M. Identification and determination of synthetic cannabinoids in herbal products by dry film attenuated total reflectance-infrared spectroscopy. Talanta 2017, 167, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Duchateau, C.; Kauffmann, J.; Canfyn, M.; Stévigny, C.; De Braekeleer, K.; Deconinck, E. Discrimination of legal and illegal Cannabis spp. according to European legislation using near infrared spectroscopy and chemometrics. Drug Test. Anal. 2020, 12, 1309–1319. [Google Scholar] [CrossRef] [PubMed]
- Risoluti, R.; Gullifa, G.; Battistini, A.; Materazzi, S. Monitoring of cannabinoids in hemp flours by MicroNIR/Chemometrics. Talanta 2020, 211, 120672. [Google Scholar] [CrossRef] [PubMed]
- Real Decreto 1729/1999, de 12 de Noviembre, por el que se Establecen las Normas Para la Solicitud y Concesión de las Ayudas al Lino Textil y al Cáñamo; Ministerio de Agricultura Pesca y Alimentación: Madrid, Spain, 1999.
- European Commission Regulation (EU) 2017/1155 as regards the control measures relating to the cultivation of hemp, certain provisions on the greening payment, the payment for young farmers in control of a legal person. Off. J. Eur. Union 2017, 1–15. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32017R1155 (accessed on 14 March 2022).
- United Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Cannabis and Cannabis Products; United Nations Office on Drugs and Crime: New York, NY, USA, 2010. [Google Scholar]
- Shenk, J.S.; Westerhaus, M.O. Calibration the ISI way. In Near Infrared Spectroscopy: The Future Waves; NIR Publ.: Chichester, UK, 1996; pp. 198–202. [Google Scholar]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- European Medicines Agency Guideline on the use of Near Infrared Spectroscopy (NIRS) by the pharmaceutical industry and the data requirements for new submissions and variations. Eur. Med. Agency 2014, 44, 1–28.
- Zeaiter, M.; Roger, J.-M.; Bellon-Maurel, V. Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. TrAC Trends Anal. Chem. 2005, 24, 437–445. [Google Scholar] [CrossRef]
- Barnes, R.J.; Dhanoa, M.S.; Lister, S.J. Standard Normal Variate Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Steffens, M. The effects of spectral pretreatments on chemometric analyses of soil profiles using laboratory imaging spectroscopy. Appl. Environ. Soil Sci. 2012, 2012, 274903. [Google Scholar] [CrossRef] [Green Version]
- Datt, B. Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. Int. J. Remote Sens. 1999, 20, 2741–2759. [Google Scholar] [CrossRef]
- Martens, H.; Stark, E. Extended multiplicative signal correction and spectral interference subtraction: New preprocessing methods for near infrared spectroscopy. J. Pharm. Biomed. Anal. 1991, 9, 625–635. [Google Scholar] [CrossRef]
- Rinnan, Å.; van den Berg, F.; Engelsen, S.B. Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends Anal. Chem. 2009, 28, 1201–1222. [Google Scholar] [CrossRef]
- Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Comput. Electron. Agric. 2012, 85, 64–69. [Google Scholar] [CrossRef]
- Vasques, G.M.; Grunwald, S.; Sickman, J.O. Comparison of multivariate methods for inferential modeling of soil carbon using visible/near-infrared spectra. Geoderma 2008, 146, 14–25. [Google Scholar] [CrossRef]
- Ertlen, D.; Schwartz, D.; Trautmann, M.; Webster, R.; Brunet, D. Discriminating between organic matter in soil from grass and forest by near-infrared spectroscopy. Eur. J. Soil Sci. 2010, 61, 207–216. [Google Scholar] [CrossRef]
- Williams, P.; Dardenne, P.; Flinn, P. Tutorial: Items to be included in a report on a near infrared spectroscopy project. J. Near Infrared Spectrosc. 2017, 25, 85–90. [Google Scholar] [CrossRef]
- Williams, P.; Norris, K. Near-Infrared Technology in the Agricultural and Food Industries; Williams, P., Norris, K., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001. [Google Scholar]
- Workman, J., Jr.; Weyer, L. Practical Guide and Spectral Atlas for Interpretive Near-Infrared Spectroscopy, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2012; ISBN 978-1-4398-7526-1. [Google Scholar]
- Williams, P. Near Infrared Technology: Getting the Best out of Light; African Sun Media: Stellenbosch, South Africa, 2019; ISBN 9781928480310. [Google Scholar]
- Saeys, W.; Mouazen, A.M.; Ramon, H. Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng. 2005, 91, 393–402. [Google Scholar] [CrossRef]
- Deidda, R.; Coppey, F.; Damergi, D.; Schelling, C.; Coïc, L.; Veuthey, J.-L.; Sacré, P.-Y.; De Bleye, C.; Hubert, P.; Esseiva, P.; et al. New perspective for the in-field analysis of cannabis samples using handheld near-infrared spectroscopy: A case study focusing on the determination of Δ9-tetrahydrocannabinol. J. Pharm. Biomed. Anal. 2021, 202, 114150. [Google Scholar] [CrossRef]
- Chen, Z.; de Boves Harrington, P.; Griffin, V.; Griffin, T. In Situ Determination of Cannabidiol in Hemp Oil by Near-Infrared Spectroscopy. J. Nat. Prod. 2021, 84, 2851–2857. [Google Scholar] [CrossRef]
- Cirrincione, M.; Saladini, B.; Brighenti, V.; Salamone, S.; Mandrioli, R.; Pollastro, F.; Pellati, F.; Protti, M.; Mercolini, L. Discriminating different Cannabis sativa L. chemotypes using attenuated total reflectance-infrared (ATR-FTIR) spectroscopy: A proof of concept. J. Pharm. Biomed. Anal. 2021, 204, 114270. [Google Scholar] [CrossRef]
- Geskovski, N.; Stefkov, G.; Gigopulu, O.; Stefov, S.; Huck, C.W.; Makreski, P. Mid-infrared spectroscopy as process analytical technology tool for estimation of THC and CBD content in Cannabis flowers and extracts. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 251, 119422. [Google Scholar] [CrossRef] [PubMed]
Samples | Humidity (%) | THC Total (%) | CBD Total (%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | SD | Min | Max | Mean | SD | Min | Max | Mean | SD | |
32 | 9.02 | 12.34 | 10.65 | 3.16 | 0.057 | 0.161 | 0.103 | 0.028 | 2.178 | 5.342 | 3.367 | 0.892 |
Pretreatment | Nc | RMSEC | RMSECV | R2c | R2cv | LV | RPD |
---|---|---|---|---|---|---|---|
Raw data | 91 | 0.010 | 0.014 | 0.87 | 0.77 | 7 | 2.04 |
Standardization | 94 | 0.011 | 0.014 | 0.85 | 0.75 | 7 | 2.04 |
SNV | 94 | 0.010 | 0.014 | 0.87 | 0.76 | 7 | 2.04 |
SNV-DT | 94 | 0.011 | 0.014 | 0.84 | 0.72 | 6 | 2.04 |
MSC | 94 | 0.010 | 0.014 | 0.86 | 0.76 | 7 | 2.04 |
1st D | 94 | 0.010 | 0.014 | 0.86 | 0.75 | 7 | 2.04 |
Pretreatment | Nc | RMSEC | RMSECV | R2c | R2cv | LV | RPD |
---|---|---|---|---|---|---|---|
Raw data | 103 | 0.333 | 0.431 | 0.86 | 0.77 | 7 | 2.07 |
Standardization | 103 | 0.361 | 0.459 | 0.83 | 0.74 | 7 | 1.94 |
SNV | 103 | 0.357 | 0.464 | 0.84 | 0.73 | 7 | 1.92 |
SNV-DT | 103 | 0.358 | 0.459 | 0.84 | 0.74 | 6 | 1.94 |
MSC | 103 | 0.359 | 0.465 | 0.84 | 0.73 | 7 | 1.91 |
1st D | 98 | 0.389 | 0.494 | 0.79 | 0.68 | 3 | 1.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarén, C.; Zambrana, P.C.; Pérez-Roncal, C.; López-Maestresalas, A.; Ábrego, A.; Arazuri, S. Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.). Agronomy 2022, 12, 938. https://doi.org/10.3390/agronomy12040938
Jarén C, Zambrana PC, Pérez-Roncal C, López-Maestresalas A, Ábrego A, Arazuri S. Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.). Agronomy. 2022; 12(4):938. https://doi.org/10.3390/agronomy12040938
Chicago/Turabian StyleJarén, Carmen, Paula C. Zambrana, Claudia Pérez-Roncal, Ainara López-Maestresalas, Andrés Ábrego, and Silvia Arazuri. 2022. "Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.)" Agronomy 12, no. 4: 938. https://doi.org/10.3390/agronomy12040938
APA StyleJarén, C., Zambrana, P. C., Pérez-Roncal, C., López-Maestresalas, A., Ábrego, A., & Arazuri, S. (2022). Potential of NIRS Technology for the Determination of Cannabinoid Content in Industrial Hemp (Cannabis sativa L.). Agronomy, 12(4), 938. https://doi.org/10.3390/agronomy12040938