Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change
Abstract
:1. Introduction
Conceptual Framework of the Study
2. Material and Methods
2.1. Description of Study Area
2.2. Questionnaire, Sampling and Field Survey
2.3. Collection of Climatic Data
3. Results and Discussion
3.1. Socioeconomic Characteristics of Farm Households
3.2. Perceptions about Climate Change
3.3. Actual Climate Trend of Goa
3.4. Farmers’ Perceptions on Change in Agroecosystems over the Years
3.5. Adaptation Strategies to Climate Change
3.6. Constraints in Adopting Climate-Resilient Practices
3.7. Implications and Limitations of the Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartter, J.; Hamilton, L.C.; Boag, A.E.; Stevens, F.R.; Ducey, M.J.; Christoffersen, N.D.; Oester, P.T.; Palace, M.W. Does it matter if people think climate change is human caused? Clim. Serv. 2018, 10, 53–62. [Google Scholar] [CrossRef]
- Pramanik, M.; Szabo, S.; Pal, I.; Udmale, P.; Pongsiri, M.; Chilton, S. Population health risks in multi-hazard environments: Action needed in the Cyclone Amphan and COVID-19—Hit Sundarbans region, India. Clim. Dev. 2021, 14, 99–104. [Google Scholar] [CrossRef]
- Pramanik, M.; Dash, P.; Behal, D. Improving outcomes for socioeconomic variables with coastal vulnerability index under significant sea-level rise: An approach from Mumbai coasts. Environ. Dev. Sustain. 2021, 23, 13819–13853. [Google Scholar] [CrossRef]
- Pramanik, M.; Paudel, U.; Mondal, B.; Chakraborti, S.; Deb, P. Predicting climate change impacts on the distribution of the threatened Garcinia indica in the Western Ghats, India. Clim. Risk Manag. 2018, 19, 94–105. [Google Scholar] [CrossRef]
- Kumar, A.; Pramanik, M.; Chaudhary, S.; Negi, M.S. Land evaluation for sustainable development of Himalayan agriculture using RS-GIS in conjunction with analytic hierarchy process and frequency ratio. J. Saudi Soc. Agric. Sci. 2021, 20, 1–17. [Google Scholar] [CrossRef]
- Paramesh, V.; Parajuli, R.; Chakurkar, E.B.; Sreekanth, G.B.; Kumar, H.B.C.; Gokuldas, P.P.; Mahajan, G.R.; Manohara, K.K.; Viswanatha, R.K.; Ravisankar, N. Sustainability, energy budgeting, and life cycle assessment of crop-dairy-fish-poultry mixed farming system for coastal lowlands under humid tropic condition of India. Energy 2019, 188, 116101. [Google Scholar] [CrossRef]
- Rehmani, M.I.A.; Ding, C.; Li, G.; Ata-Ul-Karim, S.T.; Hadifa, A.; Bashir, M.A.; Hashem, M.; Alamri, S.; Al-Zubair, F.; Ding, Y. Vulnerability of rice production to temperature extremes during rice reproductive stage in Yangtze River Valley, China. J. King Saud Univ.-Sci. 2021, 33, 101599. [Google Scholar] [CrossRef]
- Escarcha, J.; Lassa, J.; Zander, K. Livestock Under Climate Change: A Systematic Review of Impacts and Adaptation. Climate 2018, 6, 54. [Google Scholar] [CrossRef] [Green Version]
- Asrat, P.; Simane, B. Characterizing vulnerability of crop-based rural systems to climate change and variability: Agro-ecology specific empirical evidence from the Dabus watershed, north-West Ethiopia. Am. J. Clim. Chang. 2017, 6, 643–667. [Google Scholar] [CrossRef] [Green Version]
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Geneva, Sweden, 2006; Volume 4. [Google Scholar]
- Hoegh-Guldberg, O.; Bruno, J.F. The Impact of Climate Change on the World’s Marine Ecosystems. Science 2010, 328, 1523–1528. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate Change Impacts on Global Food Security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Lobell, D.B.; Gourdji, S.M. The Influence of Climate Change on Global Crop Productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohanty, M.; Sinha, N.K.; Hati, K.M.; Reddy, K.S.; Chaudhary, R.S. Elevated temperature and carbon dioxide concentration effects on wheat productivity in Madhya Pradesh: A simulation study. J. Agrometeorol. 2015, 17, 185. [Google Scholar] [CrossRef]
- Kumar, S.; Raizada, A.; Biswas, H. Prioritising development planning in the Indian semi-arid Deccan using sustainable livelihood security index approach. Int. J. Sustain. Dev. World Ecol. 2014, 21, 332–345. [Google Scholar] [CrossRef]
- Aggarwal, P.K.; Swaroopa Rani, D.N. Assessment of climate change impacts on wheat production in India. In Global Climate Change and Indian Agriculture: Case Studies from the ICAR Network Project; Indian Council of Agricultural Research: New Delhi, India, 2009; Volume 118, pp. 5–12. [Google Scholar]
- Füssel, H.-M.; Klein, R.J.T. Climate change vulnerability assessments: An evolution of conceptual thinking. Clim. Chang. 2006, 75, 301–329. [Google Scholar] [CrossRef]
- Sabella, E.; Aprile, A.; Negro, C.; Nicolì, F.; Nutricati, E.; Vergine, M.; Luvisi, A.; De Bellis, L. Impact of Climate Change on Durum Wheat Yield. Agronomy 2020, 10, 793. [Google Scholar] [CrossRef]
- Nizam, S. Farmers’ Perception on Climate Change. In Proceedings of the 3th International Symposium, Oluvil, Sri Lanka, 6–7 June 2013. [Google Scholar]
- Sarkar, S.; Padaria, R.N. Farmers’ Awareness and Risk Perception about Climate Change in Coastal Ecosystem of West Bengal. Indian Res. J. Ext. Educ. 2010, 10, 32–38. [Google Scholar]
- Sarkar, S.; Padaria, R.N. Measuring Farmers’ Awareness and Knowledge Level about Climate Change and Formulating Future Extension Strategies. Indian Res. J. Ext. Educ. 2016, 15, 107–111. [Google Scholar]
- Dhanya, P.; Ramachandran, A. Farmers’ perceptions of climate change and the proposed agriculture adaptation strategies in a semi arid region of south India. J. Integr. Environ. Sci. 2016, 13, 1–18. [Google Scholar]
- Deressa, T.T.; Hassan, R.M.; Ringler, C. Perception of and adaptation to climate change by farmers in the Nile basin of Ethiopia. J. Agric. Sci. 2011, 149, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Elum, Z.A.; Modise, D.M.; Marr, A. Farmer’s perception of climate change and responsive strategies in three selected provinces of South Africa. Clim. Risk Manag. 2016, 16, 246–257. [Google Scholar] [CrossRef]
- Nhemachena, C.; Hassan, R. Micro-Level Analysis of Farmers Adaption to Climate Change in Southern Africa; International Food Policy Research Institute: Washington, DC, USA, 2007. [Google Scholar]
- Manjunath, B.L.; Paramesh, V.; Mahajan, G.R.; Das, B.; Reddy, K.V.; Chakurkar, E.B.; Singh, N.P. Sustainability through resource recycling, soil fertility and carbon sequestration from integrated farming systems in west coast India. Bioscan 2017, 12, 1875–1880. [Google Scholar]
- Gbetibouo, G.A.; Ringler, C. Mapping South African Farming Sector Vulnerability to Climate Change and Variability: A Subnational Assessment; Citeseer: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Tripathi, A.; Mishra, A.K. Knowledge and passive adaptation to climate change: An example from Indian farmers. Clim. Risk Manag. 2017, 16, 195–207. [Google Scholar] [CrossRef]
- Saroar, M.M.; Routray, J.K.; Filho, W.L. Livelihood Vulnerability and Displacement in Coastal Bangladesh: Understanding the Nexus; Springer International Publishing: Cham, Switzerland, 2015; pp. 9–31. [Google Scholar]
- McCarthy, J.J.; Canziani, O.F.; Leary, N.A.; Dokken, D.J.; White, K.S. Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001; Volume 2, ISBN 0521015006. [Google Scholar]
- Shewmake, S. Vulnerability and the Impact of Climate Change in South Africa’s Limpopo River Basin; International Food Policy Research Institute: Washington, DC, USA, 2008; Volume 804. [Google Scholar]
- Slegers, M.F.W. Exploring Farmers’ Perceptions of Drought in Tanzania and Ethiopia. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2008. [Google Scholar]
- Gandure, S.; Walker, S.; Botha, J.J. Farmers’ perceptions of adaptation to climate change and water stress in a South African rural community. Environ. Dev. 2013, 5, 39–53. [Google Scholar] [CrossRef]
- Bahta, Y.T.; Jordaan, A.; Muyambo, F. Communal farmers’ perception of drought in South Africa: Policy implication for drought risk reduction. Int. J. Dis. Risk Reduct. 2016, 20, 39–50. [Google Scholar] [CrossRef]
- Bahta, Y.T. Perception of agricultural drought resilience in South Africa: A case of smallholder livestock farmers. Jàmbá J. Dis. Risk Stud. 2021, 13, 11. [Google Scholar] [CrossRef]
- Kumar, M. Impact of climate change on crop yield and role of model for achieving food security. Environ. Monit. Assess. 2016, 188, 465. [Google Scholar] [CrossRef]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Barman, S. The Political Economy of Food Security in India: Evolution and Performance. Int. J. Manag. 2021, 11, 2020. [Google Scholar] [CrossRef]
- Shankara, M.; Shivamurthy, M.; Vijaya Kumar, K. Farmers perception on climate change and its impact on agriculture in eastern dry zone of Karnataka. Int. J. Farm Sci. 2013, 3, 100–107. [Google Scholar]
- Abate, T. Contribution of Indigenous Knowledge to Climate Change and Adaptation Response in Southern Ethiopia. J. Earth Sci. Clim. Chang. 2016, 7, 377. [Google Scholar] [CrossRef]
- Ayanlade, A.; Radeny, M.; Morton, J.F. Comparing smallholder farmers’ perception of climate change with meteorological data: A case study from southwestern Nigeria. Weather Clim. Extrem. 2017, 15, 24–33. [Google Scholar] [CrossRef]
- Prasad, R.; Pandey, A.K.; Newaj, R.; Dhyani, S.K.; Saroj, N.K.; Tripathi, V.D. Risk and vulnerability due to climate change and adaptation initiatives for agricultural resilience in panna district of Madhya Pradesh, central India. Range Manag. Agrofor. 2014, 35, 157–162. [Google Scholar]
- Ado, A.M.; Leshan, J.; Savadogo, P.; Bo, L.; Shah, A.A. Farmers’ awareness and perception of climate change impacts: Case study of Aguie district in Niger. Environ. Dev. Sustain. 2019, 21, 2963–2977. [Google Scholar] [CrossRef]
- Azadi, Y.; Yazdanpanah, M.; Mahmoudi, H. Understanding smallholder farmers’ adaptation behaviors through climate change beliefs, risk perception, trust, and psychological distance: Evidence from wheat growers in Iran. J. Environ. Manag. 2019, 250, 109456. [Google Scholar] [CrossRef] [PubMed]
- Saptutyningsih, E.; Diswandi, D.; Jaung, W. Does social capital matter in climate change adaptation? A lesson from agricultural sector in Yogyakarta, Indonesia. Land Use Policy 2020, 95, 104189. [Google Scholar] [CrossRef]
- Garrett, H.E. Woodswoth Statistics in Psychology and Education; Vakils, Feffer and Simons Pvt. Ltd.: Bombay, India, 1969. [Google Scholar]
- Sahu, N.C.; Mishra, D. Analysis of perception and adaptability strategies of the farmers to climate change in Odisha, India. APCBEE Procedia 2013, 5, 123–127. [Google Scholar] [CrossRef] [Green Version]
- Shashidahra, K.K.; Reddy, B.S. Farmers Perceptions and Adaptation about Changing Climate and Its Variability in UKP Area of Karnataka. Indian Res. J. Ext. Educ. 2012, 12, 196–201. [Google Scholar]
- Kimani, N.C.; Bhardwaj, S.K. Assessment of people’s perceptions and adaptations to climate change and variability in mid-hills of Himachal Pradesh, India. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 47–60. [Google Scholar]
- Varadan, R.J.; Kumar, P. Indigenous Knowledge about Climate Change: Validating the Perceptions of Dryland Farmers in Tamil Nadu. Indian J. Tradit. Knowl. 2014, 13, 390–397. [Google Scholar]
- Ndungu, C.K.; Mercy, W.; Muriu-Ng’ang’a, F.W. Assessment of farmers’ vulnerability to climate variability and extreme events: Evidence from dry Kitui, Kenya, India. Int. J. Environ. Agric. Biotechnol. 2021, 6, 197–209. [Google Scholar]
- Vedwan, N.; Rhoades, R.E. Climate change in the Western Himalayas of India: A study of local perception and response. Clim. Res. 2001, 19, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Gandure, S. Reducing climate change risks by “living with drought”: Investigating local institutional design in Zimbabwe. In Africa Focus; HRSC Press: Pretoria, South Africa, 2011; p. 163. [Google Scholar]
- Jodha, N.S.; Singh, N.P.; Bantilan, M.C.S. Enhancing Farmers’ Adaptation to Climate Change in Arid and Semi-Arid Agriculture of India: Evidences from Indigenous Practices: Developing International Public Goods from Development-Oriented Projects. Working Paper Series No. 32. 2012. Available online: http://oar.icrisat.org/6071/1/WPS_32_enhancingFarmers_2012.pdf (accessed on 12 December 2021).
- Banerjee, R.R. Farmers’ perception of climate change, impact and adaptation strategies: A case study of four villages in the semi-arid regions of India. Nat. Hazards 2014, 75, 2829–2845. [Google Scholar] [CrossRef]
- Sofoluwe, N.A.; Tijani, A.A.; Baruwa, O.I. Farmers’ perception and adaptation to climate change in Osun State, Nigeria. Afr. J. Agric. Res. 2011, 6, 4789–4794. [Google Scholar]
- Okonya, J.S.; Syndikus, K.; Kroschel, J. Farmers’ Perception of and Coping Strategies to Climate Change: Evidence from Six Agro-Ecological Zones of Uganda. J. Agric. Sci. 2013, 5, 252–263. [Google Scholar] [CrossRef] [Green Version]
- Government of India. The State of Forest Report. Forest Survey of India; Government of India: New Delhi, India, 1997.
- Asrat, P.; Simane, B. Household- and plot-level impacts of sustainable land management practices in the face of climate variability and change: Empirical evidence from Dabus Sub-basin, Blue Nile River, Ethiopia. Agric. Food Secur. 2017, 6, 61. [Google Scholar] [CrossRef] [Green Version]
- Nkonya, E.; Place, F.; Kato, E.; Mwanjololo, M. Climate risk management through sustainable land management in Sub-Saharan Africa. In Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa; Springer: Berlin/Heidelberg, Germany, 2015; pp. 75–111. [Google Scholar]
- Asrat, P.; Simane, B. Farmers’ perception of climate change and adaptation strategies in the Dabus watershed, North-West Ethiopia. Ecol. Process. 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Apata, T. Factors Influencing the Perception and Choice of Adaptation Measures to Climate Change among Farmers in Nigeria. Environ. Econ. 2011, 2, 74–83. [Google Scholar]
- Paramesh, V.; Arunachalam, V.; Nath, A.J. Enhancing ecosystem services and energy use efficiency under organic and conventional nutrient management system to a sustainable are cannot based cropping system. Energy 2019, 187, 115902. [Google Scholar] [CrossRef]
- Kassie, M.; Zikhali, P.; Manjur, K.; Edwards, S. Adoption of sustainable agriculture practices: Evidence from a semi-arid region of Ethiopia. In Proceedings of the Natural Resources Forum; Wiley Online Library: New York, NY, USA, 2009; Volume 33, pp. 189–198. [Google Scholar]
- Wossen, T.; Berger, T.; Di Falco, S. Social capital, risk preference and adoption of improved farm land management practices in Ethiopia. Agric. Econ. 2015, 46, 81–97. [Google Scholar] [CrossRef]
- Berry, P.; Yassin, F.; Belcher, K.; Lindenschmidt, K.-E. An Economic Assessment of Local Farm Multi-Purpose Surface Water Retention Systems under Future Climate Uncertainty. Sustainability 2017, 9, 456. [Google Scholar] [CrossRef] [Green Version]
- Rey, D.; Holman, I.P.; Knox, J.W. Developing drought resilience in irrigated agriculture in the face of increasing water scarcity. Reg. Environ. Chang. 2017, 17, 1527–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paramesh, V.; Sreekanth, G.B.; Chakurkar, E.B.; Chethan Kumar, H.B.; Gokuldas, P.; Manohara, K.K.; Ramdas Mahajan, G.; Rajkumar, R.S.; Ravisankar, N.; Panwar, A.S. Ecosystem Network Analysis in a Smallholder Integrated Crop–Livestock System for Coastal Lowland Situation in Tropical Humid Conditions of India. Sustainability 2020, 12, 5017. [Google Scholar] [CrossRef]
- Manjunath, B.L.; Paramesh, V.; Mahajan, G.R.; Reddy, K.V.; Das, B.; Singh, N.P. A five years study on the selection of rice based cropping systems in Goa, for west coast region of India. J. Environ. Biol. 2018, 39, 393–399. [Google Scholar] [CrossRef]
- Mertz, O.; Mbow, C.; Reenberg, A.; Diouf, A. Farmers’ perceptions of climate change and agricultural adaptation strategies in rural Sahel. Environ. Manag. 2009, 43, 804–816. [Google Scholar] [CrossRef]
- Kurukulasuriya, P.; Mendelsohn, R.; Hassan, R.; Benhin, J.; Deressa, T.; Diop, M.; Eid, H.M.; Fosu, K.Y.; Gbetibouo, G.; Jain, S. Will African agriculture survive climate change? World Bank Econ. Rev. 2006, 20, 367–388. [Google Scholar] [CrossRef] [Green Version]
- Paramesh, V.; Ravisankar, N.; Behera, U.; Arunachalam, V.; Kumar, P.; Solomon Rajkumar, R.; Dhar Misra, S.; Mohan Kumar, R.; Prusty, A.K.; Jacob, D.; et al. Integrated farming system approaches to achieve food and nutritional security for enhancing profitability, employment, and climate resilience in India. Food Energy Secur. 2022, e321. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Astorga, A.; Moreno, P.; Reid, B. Watersheds and Trees Fall Together: An Analysis of Intact Forested Watersheds in Southern Patagonia (41–56° S). Forests 2018, 9, 385. [Google Scholar] [CrossRef] [Green Version]
- Deb, J.C.; Phinn, S.; Butt, N.; McAlpine, C.A. Climate change impacts on tropical forests: Identifying risks for tropical Asia. J. Trop. For. Sci. 2018, 30, 182–194. [Google Scholar]
- Fagariba, C.J.; Song, S.; Soule, S. Factors influencing farmers’ climate change adaptation in Northern Ghana: Evidence from subsistence farmers in sissala west, Ghana. J. Environ. Sci. Manag. 2018, 21, 61–73. [Google Scholar] [CrossRef]
Particulars | Pernem Block (%) | Bicholim Block (%) | All Farmers |
---|---|---|---|
Sample Size | 50 | 50 | 100 |
Average age of the farmers (years) | |||
Young age (<35 years) | 9 | 8 | 17 |
Middle age (35–55 years) | 27 | 32 | 59 |
Old age (>55 years) | 14 | 10 | 24 |
Family Size (no.) | |||
Up to 5 | 32 | 36 | 68 |
More than 5 | 18 | 14 | 32 |
Livestock (yes = 1; otherwise = 0) | 41 | 0 | 41 |
Crop (yes = 1; otherwise = 0) | 1 | 50 | 51 |
Crop & Livestock (yes = 1; otherwise = 0) | 8 | 0 | 8 |
Landholding type (no.) | |||
Marginal (<1 ha) | 19 | 23 | 42 |
Small (1–2 ha) | 13 | 16 | 29 |
Semi-medium (2–4 ha) | 10 | 8 | 18 |
Medium (4–10 ha) | 6 | 2 | 8 |
Large (>10 ha) | 2 | 1 | 3 |
Education (no.) | |||
Uneducated | 4 | 4 | 8 |
Primary | 8 | 7 | 15 |
High School | 30 | 31 | 61 |
Higher secondary | 6 | 6 | 12 |
Graduation | 2 | 2 | 4 |
Sl. No. | Strategies | Pernem | Bicholim | ||
---|---|---|---|---|---|
Garrett Score | Rank | Garrett Score | Rank | ||
1 | Crop diversification | 92.5 | 1 | 92.5 | 1 |
2 | Adaptation of POP of respective crops | 77.5 | 2 | 57.5 | 6 |
3 | Inter and mix cropping | 72.5 | 3 | 82.5 | 2 |
4 | Adoption of variety | 67.5 | 4 | 67.5 | 4 |
5 | Drought tolerant hardy varieties | 62.5 | 5 | 62.5 | 5 |
6 | Water conservation | 57.5 | 6 | 47.5 | 8 |
7 | Combining farm enterprise with livestock | 52.5 | 7 | - | |
8 | Alternate cropping | 47.5 | 8 | 72.5 | 3 |
9 | Adaptation of new crops | 42.5 | 9 | 52.5 | 7 |
10 | Manipulating sowing date | 37.5 | 10 | 42.5 | 9 |
Sl. No. | Strategies | Pernem | Bicholim | ||
---|---|---|---|---|---|
Garrett Score | Rank | Garrett Score | Rank | ||
1 | Borrowing from self-help groups | 77.5 | 1 | 72.5 | 1 |
2 | Borrowing from friends and relatives | 72.2 | 2 | 57.5 | 2 |
3 | Sale of livestock | 67.5 | 3 | - | - |
4 | Non-farm employment | 52.5 | 4 | 47.5 | 4 |
5 | Farmers loan from bank | 47.5 | 5 | 37.5 | 5 |
6 | Migration | 42.5 | 6 | 52.5 | 3 |
Sl. No. | Constraints | Ranks |
---|---|---|
1 | Non-availability of high yielding variety | 9 |
2 | Non-availability of quality seed/planting material | 4 |
3 | Fertilizers & pesticides quality | 5 |
4 | High incidence of insect-pests and diseases | 6 |
5 | Problem of infertility in buffaloes | 11 |
6 | Problem of infertility cattle (cows) | 8 |
8 | Lack of remunerative and assured prices of crops | 12 |
9 | Inadequate/non-availability of farm credit | 2 |
10 | Scarcity of farm labor | 10 |
11 | Smaller and fragmented land holdings | 1 |
12 | Marketing of produce | 3 |
13 | Value addition | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reddy, K.V.; Paramesh, V.; Arunachalam, V.; Das, B.; Ramasundaram, P.; Pramanik, M.; Sridhara, S.; Reddy, D.D.; Alataway, A.; Dewidar, A.Z.; et al. Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change. Agronomy 2022, 12, 1023. https://doi.org/10.3390/agronomy12051023
Reddy KV, Paramesh V, Arunachalam V, Das B, Ramasundaram P, Pramanik M, Sridhara S, Reddy DD, Alataway A, Dewidar AZ, et al. Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change. Agronomy. 2022; 12(5):1023. https://doi.org/10.3390/agronomy12051023
Chicago/Turabian StyleReddy, Krishna Viswanatha, Venkatesh Paramesh, Vadivel Arunachalam, Bappa Das, P. Ramasundaram, Malay Pramanik, Shankarappa Sridhara, D. Damodar Reddy, Abed Alataway, Ahmed Z. Dewidar, and et al. 2022. "Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change" Agronomy 12, no. 5: 1023. https://doi.org/10.3390/agronomy12051023
APA StyleReddy, K. V., Paramesh, V., Arunachalam, V., Das, B., Ramasundaram, P., Pramanik, M., Sridhara, S., Reddy, D. D., Alataway, A., Dewidar, A. Z., & Mattar, M. A. (2022). Farmers’ Perception and Efficacy of Adaptation Decisions to Climate Change. Agronomy, 12(5), 1023. https://doi.org/10.3390/agronomy12051023