Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Insect
2.2. Plants Pre-Infested with Whitefly Nymphs
2.3. Plants Pre-Infested with Whitefly Adults
2.4. Effects of Whitefly Adult and Nymph Pre-Infested Tobacco Plants on the Performance of Aphids
2.5. Qualification of Endogenous Phytohormones
2.6. Virus-Induced Gene Silencing
2.7. Quantitative Real-Time PCR
2.8. Statistical Analyses
3. Results
3.1. Infestation of Whitefly Nymphs and Adults at Different Densities on the Survival and Fecundity of Subsequent Aphids on WT Plants
3.2. Infestation of Whitefly Nymphs and Adults at Different Densities on the Survival and Fecundity of Subsequent Aphids on NahG Plants
3.3. Infestation of Whitefly Nymphs and Adults at Different Densities on the Defense Hormone Levels
3.4. Infestation of Whitefly Nymphs and Adults at Different Densities on the Expression of SA- and JA-Related Genes
3.5. The Relationship between Saliva Effector Bt56 and Aphids Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.C.; Ni, X.Z. Deciphering the Plant-Insect Phenotypic Arms Race. Recent Adv. Entomol. Res. 2011, 3–33. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Defensive Function of Herbivore-Induced Plant Volatile Emissions in Nature. Science 2001, 291, 2141–2144. [Google Scholar] [CrossRef]
- Lawrence, S.D.; Novak, N.G. Expression of Poplar Chitinase in Tomato Leads to Inhibition of Development in Colorado Potato Beetle. Biotechnol. Lett. 2006, 28, 593–599. [Google Scholar] [CrossRef]
- Stam, J.M.; Kroes, A.; Li, Y.; Gols, R.; van Loon, J.J.; Poelman, E.H.; Dicke, M. Plant Interactions with Multiple Insect Herbivores: From Community to Genes. Annu. Rev. Plant Biol. 2014, 65, 689–713. [Google Scholar] [CrossRef]
- Caarls, L.; Pieterse, C.; Van Wees, S.C.M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front. Plant Sci. 2015, 6, 170. [Google Scholar] [CrossRef]
- Lou, Y.G.; Cheng, J.A. Induced plant resistance to phytophagous insects. Acta Entomol. Sin. 1997, 40, 320–331. [Google Scholar]
- Hebert, S.L.; Jia, L.; Goggin, F.L. Quantitative differences in aphid virulence and foliar symptom development on tomato plants carrying the Mi resistance gene. Environ. Entomol. 2007, 36, 458–467. [Google Scholar] [CrossRef]
- Bostock, R.M. Signal Crosstalk and Induced Resistance: Straddling the Line Between Cost and Benefit. Annu. Rev. Phytopathol. 2005, 43, 545–580. [Google Scholar] [CrossRef]
- Heil, M.; Ton, J. Long-distance signalling in plant defence. Trends Plant Sci. 2008, 13, 264–272. [Google Scholar] [CrossRef]
- Kessler, A.; Baldwin, I.T. Herbivore-induced plant vaccination. Part I. The orchestration of plant defenses in nature and their fitness consequences in the wild tobacco Nicotiana attenuata. Plant J. 2004, 38, 639–649. [Google Scholar] [CrossRef]
- Van De Ven, W.T.G.; Levesque, C.S.; Perring, T.M.; Walling, L.L. Local and Systemic Changes in Squash Gene Expression in Response to Silverleaf Whitefly Feeding. Plant Cell 2000, 12, 1409. [Google Scholar] [CrossRef] [PubMed]
- Kant, M.R.; Sabelis, M.W.; Haring, M.A.; Schuurink, R.C. Intraspecific variation in a generalist herbivore accounts for differential induction and impact of host plant defences. Proc. R. Soc. B Boil. Sci. 2007, 275, 443–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, H.S.; Brown, J.K.; Sivasupramaniam, S.; Bird, J. Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. Int. J. Trop. Insect Sci. 1993, 14, 255–266. [Google Scholar] [CrossRef]
- Thaler, J.S.; Stout, M.J.; Karban, R.; Duffey, S.S. Exogenous jasmonates simulate insect wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J. Chem. Ecol. 1996, 22, 1767–1781. [Google Scholar] [CrossRef] [PubMed]
- Shiojiri, K.; Ozawa, R.; Kugimiya, S.; Uefune, M.; Van Wijk, M.; Sabelis, M.W.; Takabayashi, J. Herbivore-Specific, Density-Dependent Induction of Plant Volatiles: Honest or “Cry Wolf” Signals? PLoS ONE 2010, 5, e12161. [Google Scholar] [CrossRef] [PubMed]
- Herrando-Pérez, S.; Delean, S.; Brook, B.W.; Bradshaw, C.J.A. Density dependence: An ecological Tower of Babel. Oecologia 2012, 170, 585–603. [Google Scholar] [CrossRef] [PubMed]
- Hodge, S.; Bennett, M.; Mansfield, J.W.; Powell, G. Aphid-induction of defence-related metabolites in Arabidopsis thaliana is dependent upon density, aphid species and duration of infestation. Arthropod-Plant Interact. 2018, 13, 387–399. [Google Scholar] [CrossRef]
- Kroes, A.; Broekgaarden, C.; Uribe, M.C.; May, S.; van Loon, J.J.A.; Dicke, M. Brevicoryne brassicae aphids interfere with transcriptome responses of Arabidopsis thaliana to feeding by Plutella xylostella caterpillars in a density-dependent manner. Oecologia 2016, 183, 107–120. [Google Scholar] [CrossRef] [Green Version]
- Ponzio, C.; Gols, R.; Weldegergis, B.T.; Dicke, M. Caterpillar-induced plant volatiles remain a reliable signal for foraging wasps during dual attack with a plant pathogen or non-host insect herbivore. Plant Cell Environ. 2014, 37, 1924–1935. [Google Scholar] [CrossRef]
- Kaplan, I.; Denno, R.F. Interspecific interactions in phytophagous insects revisited: A quantitative assessment of competition theory. Ecol. Lett. 2007, 10, 977–994. [Google Scholar] [CrossRef]
- Liu, T.-X.; Oetting, R.D.; Buntin, G.D. Evidence of Interspecific Competition Between Trialeurodes vaporariorum (Westwood) and Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on Some Greenhouse-Grown Plants. J. Èntomol. Sci. 1994, 29, 55–65. [Google Scholar] [CrossRef]
- Pascual, S.; Callejas, C. Intra- and interspecific competition between biotypes B and Q of Bemisia tabaci (Hemiptera: Aleyrodidae) from Spain. Bull. Èntomol. Res. 2004, 94, 369–375. [Google Scholar] [CrossRef] [PubMed]
- Inbar, M.; Doostdar, H.; Mayer, R.T. Effects of Sessile Whitefly Nymphs (Homoptera: Aleyrodidae) on Leaf-Chewing Larvae (Lepidoptera: Noctuidae). Environ. Èntomol. 1999, 28, 353–357. [Google Scholar] [CrossRef]
- Luan, J.-B.; Li, J.-M.; Varela, N.; Wang, Y.-L.; Li, F.-F.; Bao, Y.-Y.; Zhang, C.-X.; Liu, S.-S.; Wang, X.-W. Global Analysis of the Transcriptional Response of Whitefly to Tomato Yellow Leaf Curl China Virus Reveals the Relationship of Coevolved Adaptations. J. Virol. 2011, 85, 3330–3340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.; Broekgaarden, C.; Zheng, S.; Snoeren, T.A.L.; Loon, J.J.A.; Gols, R.; Dicke, M. Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol. 2013, 197, 1291–1299. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Hernández, M.G.; Valenzuela-Soto, J.H.; Ibarra-Laclette, E.; Délano-Frier, J.P. Differential gene expression in whitefly Bemisia tabaci-infested tomato (Solanum lycopersicum) plants at progressing developmental stages of the insect’s life cycle. Physiol. Plant. 2009, 137, 44–60. [Google Scholar] [CrossRef]
- Zhang, P.-J.; Zheng, S.-J.; van Loon, J.J.A.; Boland, W.; David, A.; Mumm, R.; Dicke, M. Whiteflies interfere with indirect plant defense against spider mites in Lima bean. Proc. Natl. Acad. Sci. USA 2009, 106, 21202–21207. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Peng, Z.; Tong, H.; Xie, W.; Wang, S.; Wu, Q.; Zhang, J.; Li, C.; Zhang, Y. A salivary ferritin in the whitefly suppresses plant defenses and facilitates host exploitation. J. Exp. Bot. 2019, 70, 3343–3355. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.-X.; Qian, L.-X.; Wang, X.-W.; Shao, R.-X.; Hong, Y.; Liu, S.-S.; Wang, X.-W. A salivary effector enables whitefly to feed on host plants by eliciting salicylic acid-signaling pathway. Proc. Natl. Acad. Sci. USA 2018, 116, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Peng, L.; Liu, W.-X.; Wan, F.-H.; Harris, M.K. Host Plant Effects on Alkaline Phosphatase Activity in the Whiteflies, Bemisia tabaci Biotype B and Trialeurodes vaporariorum. J. Insect Sci. 2011, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Xue, M.; Wang, C.-X.; Bi, M.-J.; Li, Q.-L.; Liu, T.-X. Induced Defense by Bemisia tabaci Biotype B (Hemiptera: Aleyrodidae) in Tobacco against Myzus persicae (Hemiptera: Aphididae). Environ. Èntomol. 2010, 39, 883–891. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Xue, M.; Zhao, H. Species-specific effects on salicylic acid content and subsequent Myzus persicae (Sulzer) performance by three phloem-sucking insects infesting Nicotiana tabacum L. Arthropod-Plant Interact. 2015, 9, 383–391. [Google Scholar] [CrossRef]
- Ishaaya, I.; De Cock, A.; Degheele, D. Pyriproxyfen, a Potent Suppressor of Egg Hatch and Adult Formation of the Greenhouse Whitefly (Homoptera: Aleyrodidae). J. Econ. Èntomol. 1994, 87, 1185–1189. [Google Scholar] [CrossRef]
- Alon, M.; Malka, O.; Eakteiman, G.; Elbaz, M.; Ben Zvi, M.M.; Vainstein, A.; Morin, S. Activation of the Phenylpropanoid Pathway in Nicotiana tabacum Improves the Performance of the Whitefly Bemisia tabaci via Reduced Jasmonate Signaling. PLoS ONE 2013, 8, e76619. [Google Scholar] [CrossRef]
- You-Ming, Y.; Chu-Nian, X.; Bao-Min, W.; Jun-Zhen, J. Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul. 2001, 35, 233–237. [Google Scholar] [CrossRef]
- Wang, X.-W.; Li, P.; Liu, S.-S. Whitefly interactions with plants. Curr. Opin. Insect Sci. 2017, 19, 70–75. [Google Scholar] [CrossRef]
- Pinto-Zevallos, D.M.; Bezerra, R.H.S.; Souza, S.R.; Ambrogi, B.G. Species- and density-dependent induction of volatile organic compounds by three mite species in cassava and their role in the attraction of a natural enemy. Exp. Appl. Acarol. 2018, 74, 261–274. [Google Scholar] [CrossRef]
- Glazebrook, J. Contrasting Mechanisms of Defense Against Biotrophic and Necrotrophic Pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Walling, L.L. Chapter 13 Adaptive Defense Responses to Pathogens and Insects. Plant Innate Immun. 2009, 51, 551–612. [Google Scholar] [CrossRef]
- Zarate, S.I.; Kempema, L.A.; Walling, L.L. Silverleaf Whitefly Induces Salicylic Acid Defenses and Suppresses Effectual Jasmonic Acid Defenses. Plant Physiol. 2006, 143, 866–875. [Google Scholar] [CrossRef] [Green Version]
- Kempema, L.A.; Cui, X.; Holzer, F.M.; Walling, L.L. Arabidopsis Transcriptome Changes in Response to Phloem-Feeding Silverleaf Whitefly Nymphs. Similarities and Distinctions in Responses to Aphids. Plant Physiol. 2006, 143, 849–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, P.-J.; He, Y.-C.; Zhao, C.; Ye, Z.-H.; Yu, X.-P. Jasmonic Acid-Dependent Defenses Play a Key Role in Defending Tomato Against Bemisia tabaci Nymphs, but Not Adults. Front. Plant Sci. 2018, 9, 1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohase, L.; van der Westhuizen, A.J. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 2002, 159, 585–590. [Google Scholar] [CrossRef]
- Avila, C.A.; Arévalo-Soliz, L.M.; Jia, L.; Navarre, D.A.; Chen, Z.; Howe, G.A.; Meng, Q.-W.; Smith, J.E.; Goggin, F.L. Loss of Function of FATTY ACID DESATURASE7 in Tomato Enhances Basal Aphid Resistance in a Salicylate-Dependent Manner. Plant Physiol. 2012, 158, 2028–2041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Zhang, X.; Xue, M.; Zhang, X. Feeding of Whitefly on Tobacco Decreases Aphid Performance via Increased Salicylate Signaling. PLoS ONE 2015, 10, e0138584. [Google Scholar] [CrossRef] [PubMed]
- Blanc, S.; Uzest, M.; Drucker, M. New research horizons in vector-transmission of plant viruses. Curr. Opin. Microbiol. 2011, 14, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Tjallingii, W.F. Salivary secretions by aphids interacting with proteins of phloem wound responses. J. Exp. Bot. 2006, 57, 739–745. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, H.; Yang, Y.; Zhang, Y.; Guo, J.; Liu, W.; Wan, F. Plant defense responses induced by Bemisia tabaci Middle East-Asia Minor 1 salivary components. Èntomol. Exp. Appl. 2016, 159, 287–297. [Google Scholar] [CrossRef]
- Puthoff, D.P.; Holzer, F.M.; Perring, T.M.; Walling, L.L. Tomato Pathogenesis-related Protein Genes are Expressed in Response to Trialeurodes vaporariorum and Bemisia tabaci Biotype B Feeding. J. Chem. Ecol. 2010, 36, 1271–1285. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-H.; Guo, J.-Y.; Chu, D.; Ding, T.-B.; Wei, K.-K.; Cheng, D.-F.; Wan, F.-H. Secretory laccase 1 in Bemisia tabaci MED is involved in whitefly-plant interaction. Sci. Rep. 2017, 7, 3623. [Google Scholar] [CrossRef]
- Wang, N.; Zhao, P.; Ma, Y.; Yao, X.; Sun, Y.; Huang, X.; Jin, J.; Zhang, Y.; Zhu, C.; Fang, R.; et al. A whitefly effector Bsp9 targets host immunity regulator WRKY33 to promote performance. Philos. Trans. R. Soc. B Biol. Sci. 2019, 374, 20180313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; Xu, H.; Wang, F.; Qian, L.; Liu, S.; Wang, X. Armet from whitefly saliva acts as an effector to suppress plant defenses by targeting tobacco cystatin. New Phytol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Underwood, N. Density dependence in insect performance within individual plants: Induced resistance to Spodoptera exigua in tomato. Oikos 2010, 119, 1993–1999. [Google Scholar] [CrossRef]
- Kroes, A.; Van Loon, J.J.; Dicke, M. Density-Dependent Interference of Aphids with Caterpillar-Induced Defenses in Arabidopsis: Involvement of Phytohormones and Transcription Factors. Plant Cell Physiol. 2014, 56, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Messina, F.J.; Taylor, R.; Karren, M.E. Divergent responses of two cereal aphids to previous infestation of their host plant. Èntomol. Exp. Appl. 2002, 103, 43–50. [Google Scholar] [CrossRef]
Phytohormone | Feeding Stage | B. tabaciInfestation Level | ||||
---|---|---|---|---|---|---|
Control | N1/A1 | N2/A2 | N3/A3 | N4/A4 | ||
Salicylic acid | Nymph | 55.44 ± 0.84 d | 61.17 ± 2.99 d | 118.26 ± 4.11 c | 145.73 ± 5.25 a | 75.48 ± 1.39 b |
Adult | 56.51 ± 1.19 c | 57.62 ± 0.87 c | 61.74 ± 1.33 c | 69.91 ± 1.52 a | 77.80 ± 2.54 b | |
Jasmonic acid | Nymph | 36.05 ± 0.92 a | 35.22 ± 0.99 a,b | 29.82 ± 0.70 c,d | 26.83 ± 1.32 d | 31.91 ± 0.99 b,c |
Adult | 35.11 ± 1.26 b | 33.75 ± 1.10 b | 35.93 ± 0.98 a,b | 37.84 ± 1.38 a,b | 41.81 ± 2.51 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Qu, C.; Yan, X.; Sun, X.; Yin, Z.; Zhao, H. Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants. Agronomy 2022, 12, 1025. https://doi.org/10.3390/agronomy12051025
Li Y, Qu C, Yan X, Sun X, Yin Z, Zhao H. Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants. Agronomy. 2022; 12(5):1025. https://doi.org/10.3390/agronomy12051025
Chicago/Turabian StyleLi, Yang, Cheng Qu, Xueyan Yan, Xia Sun, Ziyi Yin, and Haipeng Zhao. 2022. "Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants" Agronomy 12, no. 5: 1025. https://doi.org/10.3390/agronomy12051025
APA StyleLi, Y., Qu, C., Yan, X., Sun, X., Yin, Z., & Zhao, H. (2022). Effect of Feeding Stage and Density of Whiteflies on Subsequent Aphid Performance on Tobacco Plants. Agronomy, 12(5), 1025. https://doi.org/10.3390/agronomy12051025